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In the search for states with non-Abelian statistics, we explore the fractional quantum Hall effect in a system of
two-dimensional (2D) charge carrier holes. We propose a method of mapping states of holes confined to a finite
width quantum well in a perpendicular magnetic field to states in a spherical shell geometry. We take into account
strong coupling between the spin and motion of charge parallel and perpendicular to the 2D layer. This method
gives the single-particle hole states used in the exact diagonalization of systems with a small number of holes
in the presence of Coulomb interactions, density matrix renormalization group, and topological entanglement
entropy calculations. The hole quantum Hall state at half filling of the ground state in a magnetic field near the
crossing of single-hole states is likely the Moore-Read Pfaffian state.
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Non-Abelian statistics paves the way to fault-tolerant
quantum computing [1–3]. States with non-Abelian excitations
can arise in two-dimensional (2D) quantum liquids in magnetic
fields. The fractional quantum Hall (FQH) electron state
at a filling factor ν = 5

2 , most studied theoretically and
experimentally [4–9], is possibly such a state. Non-Abelian
excitations were discussed for ν = 12

5 , ν = 8
3 , and ν = 1

4 FQH
states [10–14], and the bilayer ν = 1

2 2D electron state [15–18].
Here, we show that the fractional quantum Hall effect

(FQHE) of 2D holes is a different non-Abelian system.
Luttinger valence band holes differ fundamentally from
electrons. They exhibit non-Abelian phases in transport even
for single-hole states [19]. In a magnetic field, the single-hole
states are four-component spinors with each component given
by a distinct Landau level (LL) wave function un, n � 0. The
relative weights of un in spinors vary with magnetic field [20]
or with strain, driving transitions between, e.g., the Laughlin
ν = 1

3 state and gapless states [21]. The non-Laughlin FQH
electron correlations [22] arise in LL1 due to u1. For holes, the
ground state is often defined by un�=0, including u1. Thus, the
non-Abelian FQH hole states can arise when only the ground
level in a single quantum well is filled.

Single-hole spectra show multiple level crossings, e.g., in
the ground state. Near the crossings, the interaction pseudopo-
tentials can be easily tuned. This can lead to Moore-Read [4]
or anti-Pfaffian states [23], such as for electrons at ν = 5

2 [24].
The crossing of electron levels dominated by u0 and u1 is
important at ν = 2

5 [2], but such electron cases are rare. Hole
level crossings are numerous, and the phase diagram is richer
compared to electrons.

We propose a theoretical framework for FQHE in hole
systems. Unusual hole spectra in a magnetic field stem
from a strong spin-orbit coupling between the in-plane and
z-direction motion in a quantum well. For electrons, including
multicomponent systems [25–28], these degrees of freedom
are independent. It is then possible to use the Haldane
technique [29] on a sphere in a monopole magnetic field.
Hole four-spinors and the inseparability of the in-plane and
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z-direction motion make the treatment of Coulomb interac-
tions challenging. The Haldane sphere cannot be used for
holes. We propose a method for holes in a spherical shell
geometry (Fig. 1) and study the many-body wave functions and
topological entanglement entropy. We investigate the ν = 1

2
hole system and show that it is not in the Halperin 331 FQH
state [30] but in a Moore-Read (MR) state.

Holes in the spherical shell geometry. The Luttinger
Hamiltonian [31] in magnetic field B is

Ĥ0 =
(

γ1 + 5

2
γ

)
k̂2

2
I − γ (k̂ · s)2 −

(
γ

2
+ κ

)
sz, (1)

where energies are in units of h̄ω0
c = h̄eB/m0c, coordinates r

are in units of magnetic length (� = √
h̄c/eB), wave vectors

k = −i∇r + e�A/(h̄c), A is the vector potential, s is the spin- 3
2

operator, and γ1, γ , and κ are isotropic Luttinger parameters.
Ĥ0 commutes with the z projection of the total angular
momentum jz = lz + sz, and l is the angular momentum. In
the symmetric gauge, the hole wave functions in a quantum
well of width L are

�{α}
n,m =

⎛
⎜⎜⎜⎜⎝

ζ
{α}
0 (z)un,m

ζ
{α}
1 (z)un−1,m+1

ζ
{α}
2 (z)un−2,m+2

ζ
{α}
3 (z)un−3,m+3

⎞
⎟⎟⎟⎟⎠, (2)

where un,m are symmetric eigenfunctions [32], and ζ (z) stems
from �(±L/2) = 0. Index α describes the size quantization
and odd/even inversion parity about z = 0. Energies and wave
functions scale with w = L/(2λ) [20]. For n < 3, �{α}

n,m vanish
for n − l < 0, l = 1,2,3. For holes, the finite well width is
intrinsically important, because of the strong coupling of spin,
2D, and z-direction motions. This coupling distinguishes our
case from exact diagonalization with finite width on the sphere
[33].

Constructing states with translationally invariant wave
functions, we confine holes to a spherical shell with radius
R0 − δR � r � R0 + δR , as shown in Fig. 1(a). A magnetic
field B = 2Qhc/(4πer2) is related to an integer monopole of
strength 2Q, and the magnetic flux through spherical surfaces
around it is φ = 2Qhc/e. Because j = l + s is a good quantum
number for single-hole states, the eigenfunctions of (1) for
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FIG. 1. (a) Spherical shell geometry; (b) ground level crossings
in a spherical shell (red solid lines) and planar geometry (black dotted
lines); (c), (d) lowest nine states (n � 5) in a (c) spherical shell and
(d) planar geometry. The highest index Landau wave function of
the shown hole states: black lines, u0; blue, u1; green, u2; red, u3;
magenta, u4; orange, u5. Thick lines, even states; thin lines, odd states.
The thin red line state has a significant u1 component.

spherical shell are

ψαjm(r,θ,φ) =
l=j+ 3

2∑
l=j− 3

2

Rl
αj (r)

×

⎛
⎜⎜⎜⎜⎜⎝
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2 ; 3
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,

(3)

where 〈j,mj |l,m − l; 3
2 ,ms〉 are the Clebsch-Gordan coeffi-

cients of j = l + s, YQ,l,m are the monopole harmonics [34],
and α labels subbands. Radial functions Rl

αj (r) are defined
by ψαjm(R0 ± δR) = 0. The wave function (3) contains four
spinors, each with four components. YQ,l,m are defined if l � Q

[34], so 2j � 2Q − 3. Figures 1(c) and 1(d) show hole spectra
in spherical and layer geometries. Figures 2(c) and 2(d) show
radial charge distributions for the lowest states. The 2D layer
and spherical shell spectra are nearly identical, and crossings of
the corresponding states occur almost at the same w. In much
the same way as for the Haldane sphere, there are finite size
effects, but the shell spectra and the charge density converge
to the layer limit for large Q. Thus, we mapped layer holes
over a spherical shell. Each spherical state with total angular
momentum j corresponds to a layer state with n = j − Q + 3

2 .
Each spinor of the spherical wave functions with an angular

FIG. 2. (a), (b) Pseudopotentials for w = 1.6 for 2Q = 10 (blue
dots) and 2Q = 15 (red squares) for the (a) odd n = 3 state and (b)
even n = 3 state. (c), (d) The charge density ρ. The vertical axis is for
the (c) odd n = 3 state and for the (d) even n = 3 state. Black line: − 3

2
spin component, which contains u0(r); red line: − 1

2 spin component,
which contains u1(r); magenta: 1

2 spin component, which contains
u2(r); blue: spin 3

2 , which contains u3(r). The odd n = 3 state, which
is the ground state between crossings in Fig. 1(b), has the biggest u1

admixture, and its pseudopotential resembles that of LL1 electrons.
In (c) and (d) the solid lines are for the planar case, dashed lines
are for Q = 15, and dotted lines with Q = 108 merge with the solid
lines.

momentum l corresponds to a spin component in the layer
with sz = j − l, and Rl

αj (r) are spherical equivalents of ζ (z).
Hole states mix various un(r). The weights of un in (3) and the
average spin of states depend on w, and can be sizably varied
by changing the magnetic field.

Coulomb interactions. The Coulomb interactions Hi =∑
ij

e2

εrij
are treated nonperturbatively. The many-body basis

is given by wave functions obtained when N holes are placed
in single-particle states (3) in a spherical shell geometry. The
integral of motion in a many-body hole system is the total
angular momentum J = ∑

i ji and its z projection. We apply
the Wigner-Eckart theorem [35]

〈J ′,M ′,β ′|Hi |J,M,β〉 = δJJ ′δMM ′Vββ ′ (J ), (4)

and reduce the Hilbert space by using the independence of
the interaction matrix elements on Jz. Here, index β labels
the multiplets with the same total J and M , and Vββ ′ (J ) =
〈J ′,β ′|Hi |J,β〉 are the pseudopotentials [29]. We first compute
the main contribution to the two-body pseudopotentials of two
holes, each with an angular momentum j , without including
virtual transitions to other states, V 0

00(J = j + j) ≡ V0(R),
where R = j1 + j2 − J is the relative angular momentum.
For the two-body interactions, there is one multiplet for each
allowed J . The two-hole pseudopotentials V0(R) are shown
in Figs. 2(a) and 2(b) for holes whose wave functions are the
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FIG. 3. (a) LL mixing corrections to the two-hole pseudopo-
tentials. Red: δV (R = 3) − δV (R = 1); blue: δV (R = 5) − δV

(R = 1), w = 1.6. (b) Three-hole irreducible pseudopotentials. Red:
Ṽ (R3 = 5) − Ṽ (R3 = 3); blue: Ṽ (R3 = 6) − Ṽ (R3 = 3), w = 1.6.
(c) Spectra for ten holes at ν = 1

2 . The J = 0 ground state
(red circle) separated by a gap indicates an incompressible state.
(d) Pair quasihole excitations of the ν = 1

2 state for N = 10. The
values of overlap between low lying excitations (red circles) and the
Moore-Read excitations are shown.

spherical shell counterparts of the odd n = 3 and the even
n = 3 layer states, correspondingly.

Landau level mixing. The hole LL mixing parameter
e2/(ε�h̄ωC) is large, so we include virtual transitions to other
states [36,37]. In the two-hole states with J , both holes are in
the same single-hole state. We diagonalize the system in this
basis with the lowest energy acting as an effective interaction.
We include virtual transitions into 17 excited states that span
the energy range 4h̄ωC [38] due to a nonregular separation
between hole states. The results are corrections δV to the
two-hole pseudopotentials V0(R). Differences between δV at
different R in units of e4/(�ε)2/(h̄ω0

C) are shown in Fig. 3(a).
The three-body pseudopotentials V00(J ), J = j + j + j,

are due to LL mixing. At R3 = 3j − J < 9 there is one
multiplet at each value of J . The effective three-body pseu-
dopotential is found using a basis set made of the three-hole
states, which comprised single-hole states with energy <4h̄ωC .
We extract its irreducible part Ṽ (R3) as for electrons [39],
by subtracting the ground-state energy of a three-hole system,
whose interactions are given by the two-body pseudopotentials
above. Differences between Ṽ at different R3 in units of
e4/(�ε)2/(h̄ω0

C) are shown in Fig. 3(b). See the Supplemental
Material [40].

Hole FQHE at ν = 1
2 . Simulating N holes at ν = 1

2 on
a spherical shell at a total angular momentum j given by
2j = 2N − 3, and magnetic monopole 2Q = 2j − 3, we
obtain a ground state J = 0 separated by the gap from the
excited states for N = 6, 8, 10, 12, 14, and 16. Simulating

N = 6 and N = 12 systems can describe ν = 2
3 and ν = 3

5 ,
respectively, besides ν = 1

2 , and we use only N = 8, 10, 14,
and 16 results. The gaps indicate an incompressible FQH
state, as for electrons [41–43]. Figure 3(c) shows the N = 10
spectrum. The incompressible state for holes persists in the
entire range 1.4 < w < 2.2 including crossings of the ground
odd and even n = 3 levels. The maximal gap occurs at w =
1.6, as in experiments [44]. For understanding correlations
in an incompressible state, we calculate the many-body wave
functions and density matrix, the topological entanglement
entropy, and the overlap with the wave functions of the model
states.

We examine whether the FQH state in experiments [44] is
the 331 state. The Halperin 331 state arises for two species of
interacting electrons. The wave function of the model 331
state was found in Ref. [45], and for bilayer electrons in
Ref. [17]. For the 331 state of holes at ν = 1

2 , the many-body
Hilbert space is made using the n = 3 odd and even states.
Its size is very large (≈106 for ten particles). The calculated
wave-function overlap of the J = 0 ground state with the
331 state [45] is only 0.165–0.17 for all fields giving an
incompressible state. It was suggested for bilayers [46] that no
interlayer tunneling favors the 331 state. For holes, crossings
correspond to no single-hole tunneling. However, mixing
induced by hole-hole interactions due to the nonconservation
of the “pseudospin” comprising n = 3 odd and even states
takes the role of tunneling and precludes the 331 state.

The MR state is favored by a sizable weight of u1 and by
an average spin ∼ − 1 of both n = 3 states. We test the MR
state of ν = 1

2 holes using (i) a Hilbert space built using the
ground state away from degeneracies, and (ii) a Hilbert space
made of both n = 3 states. In case (i) we include LL mixing
accounting for all higher states, and in case (ii), the closest
state to the ground state is included exactly. Using the obtained
wave functions, we find overlaps of the model MR ground state
[47] with the ground-state wave functions in eight to 16 hole
systems ranging from 0.8 to 0.6. We also examine the excita-
tions [Fig. 3(d)]. Removing one flux quantum in the ground
state gives two quasielectrons in a hole system, and adding flux
quantum creates two quasihole excitations. The MR quasiholes
obey non-Abelian statistics [4]. We find the overlap of the wave
functions of quasiholes in the ν = 1

2 , N = 10 hole system with
the wave functions of MR quasiholes ∼0.65.

Topological entanglement entropy for ν = 1
2 holes. The

universal aspects of the FQHE are efficiently revealed by
investigating the entanglement properties of ground states
[48–52]. Entanglement entropy gives a measure of the cor-
relations in FQHE. The system is partitioned in blocks A and
B, and the reduced density matrix ρA is computed by tracing
over B degrees of freedom. Bipartite topological entropy is
SA = −Tr ρA ln ρA. 2D systems exhibit topologically ordered
states with correlations not contained in the usual correlation
functions. It was shown that for these states, SA = αL − � +
O(L−1), where L is the length of the boundary between
A and B, and α is a nonuniversal constant. The � term
is the topological entanglement entropy (TEE), which is
the logarithm of the inverse quantum dimension [48–52].
This method was applied successfully to probe the Laughlin
correlations at ν = 1/m and MR correlations at ν = 5

2 [53].

161111-3



RAPID COMMUNICATIONS

GEORGE SIMION AND YULI LYANDA-GELLER PHYSICAL REVIEW B 95, 161111(R) (2017)

FIG. 4. Entanglement entropy for the single ground level basis
(upper panel) and two-level basis (lower panel). The insets show
fitting for NA = 10 orbitals. Red dots: MR state.

We first compute the TEE for Hilbert space (i). Using the
orbital partition, with block A including the first NA orbitals
near the south pole of the spherical shell, and other orbitals
in block B, entanglement entropy is computed for N = 8, 10,
14, and 16 holes and NA = 2–10 orbitals. For each number of

orbitals, we obtain the thermodynamic limit of entanglement
entropy by a parabolic fit of the data. This limit of SA is
linear in

√
NA. The y intercept shows the topological part −�.

A value of � = 1.04 corresponds to the MR state [50,52].
A numerical calculation for the MR state of electrons gives
� = 1.1 ± 0.3. Our result, �1 = 1.4 ± 0.4, agrees well with
these values, indicating a MR state, as shown in the upper
panel of Fig. 4.

For holes populating the two lowest levels [case (ii)], we
use the density matrix renormalization group (DMRG) for
N = 14 and 16, because very large Hilbert spaces make exact
diagonalization difficult. We start with a few orbitals of the
spherical shell, dividing the system into L and R parts. Adding
orbitals between them, L • •R, we obtain the ground-state
density matrix. Tracing it over •R and diagonalizing the
reduced part, we retain up to 2000 states with the largest
eigenvalues, forming the basis L used in the next iteration.
The procedure stops when the required accuracy is reached
[54,55]. Here, we obtain �2 = 1.0 ± 0.4, as shown in the lower
panel of Fig. 4. This value is larger than ln

√
6 ≈ 0.9, where

6 is the degeneracy of the MR state on the torus, indicating a
non-Abelian state [50].

Conclusion. We proposed a method to study the quan-
tum Hall hole systems in a spherical shell geometry. We
demonstrate the incompressible FQH state at ν = 1

2 of the
hole ground state in a magnetic field. The hole liquid at
ν = 1

2 is not in the Halperin 331 state but is described by
the Moore-Read-like correlations, with a sizable overlap of
the wave functions of hole excitations and the Moore-Read
Pfaffian excitations. The topological entanglement entropy
indicates the non-Abelian character of the correlations for the
ν = 1

2 hole state. Experimentally, besides direct interference
tests aimed at the discovery of non-Abelian statistics [1,6],
it is interesting to compare the transport characteristics and
response to hydrostatic pressure [56] of the ν = 1

2 hole state
and the ν = 5

2 electron state in high magnetic fields.
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