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Quantum spin Hall density wave insulator of correlated fermions
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We present the theory of a new type of topological quantum order which is driven by the spin-orbit density
wave order parameter, and distinguished by a Z2 topological invariant. We show that when two oppositely
polarized chiral bands [resulting from the Rashba-type spin-orbit coupling αk; k is crystal momentum] are
significantly nested by a special wave vector Q ∼ (π,0)/(0,π ), it induces a spatially modulated inversion of the
chirality (αk+Q = α∗

k ) between different sublattices. The resulting quantum order parameters break translational
symmetry, but preserve time-reversal symmetry. It is inherently associated with a Z2-topological invariant along
each density wave propagation direction. Hence it gives a weak topological insulator in two dimensions, with
even number of spin-polarized boundary states. This phase is analogous to the quantum spin Hall state, except
here the time-reversal polarization is spatially modulated, and thus it is dubbed quantum spin Hall density wave
(QSHDW) state. This order parameter can be realized or engineered in quantum wires, or quasi-two-dimensional
systems, by tuning the spin-orbit coupling strength and chemical potential to achieve the special nesting condition.

DOI: 10.1103/PhysRevB.95.161109

Introduction. A topological state of matter can arise when
two bands with opposite chirality are inverted across the
Fermi level at odd number of time-reversal invariant momenta
(TRIM) [1–3]. One of the prerequisites is thus to obtain a
momentum dependence of the spin state or chirality, which is
often triggered by the spin-orbit coupling (SOC). The inversion
of the chirality between the bulk conduction and valence bands
across the insulating band gap at the TRIM is protected by
the time-reversal (TR) symmetry, leading to a Z2 topological
insulator (TI). At the boundary, both chiral states meet at the
TRIM with gapless edge or surface states. Within the Dirac
Hamiltonian notation, the inverted bulk band gap (denoted
by m < 0) at the TRIM provides the negative Dirac mass,
while the associated gapless boundary states produce Dirac
cones.

While strong quantum fluctuations or disorder are often
detrimental to the band topology, they can conversely drive
the inversion of the chiral bands with nontrivial topological
properties. These states are not always defined by a Landau
order parameter, but rather distinguished by a topological
invariant of the correlated electronic bands. Examples of such
states include topological Mott [4,5], Kondo [6], and Anderson
[7] insulators. The antiferromagnetic order parameter can give
a distinct topological class which breaks time-reversal and
translation symmetries, but preserves their combinations [5].
To date, TIs have been realized in various noninteracting
systems including HgTe/CdTe [8,9], InAs/GaSb [10] quantum
wells for two-dimensional (2D) TIs, and Bi-based chalco-
genides for three-dimensional TIs [11–15]. SmB6 [6,16] and
YbB6 [17] have been extensively studied both theoretically and
experimentally as potential candidates for topological Kondo
insulators.

Proposal. We develop the theory of a Landau-type topologi-
cal order parameter driven by staggered chiral band inversion.
The order parameter arises from the translational symmetry
breaking due to Fermi-surface (FS) nesting between Rashba-
type SOC (RSOC) split bands. Such nesting between opposite
chiral states may occur in 2D systems or quantum wires of Bi,
Pb, Sb, and similar elements in which both SOC and interaction
are large [18,19]. The nesting strength is enhanced with

reduced system dimensionality and thickness [18,19]. Our
theory relies on a particular nesting vector Q ∼ (π,0) or (0,π ),
where the helicity of the RSOC αk = αR(sin ky − i sin kx)
(with αR being the RSOC strength and kx,ky are the crystal
momenta) is reversed to αk+Q = α∗

k. This is the key feature
responsible for modulated chiral band inversion. We find that
as a Landau-type order parameter develops due to this FS
instability, it leads to a negative Dirac mass and insulating
band gap. Along the direction of the nesting, we find that
correlated electronic bands are associated with a nontrivial
Z2 invariant, with spin-polarized zero-energy boundary states.
Such a state can be compared with a noninteracting quantum
spin Hall (QSH) insulator in 2D, with the distinction that here
every alternative atom possesses opposite chirality in the same
valence band, owing to translational symmetry breaking, as
illustrated in Fig. 1(b). Thus we call it a quantum spin Hall
density wave (QSHDW) insulator.

Theory of QSHDW. To develop the theory of QSHDW,
we use a single band tight-binding model in a 2D lattice
with RSOC. The FS nesting is generally known to increase
as the dimensionality is reduced. For this reason, we use
anisotropic tight-binding hoppings along the x and y directions
(tx and ty), so that the nesting at the wave vector Q = (π,0)
or (0,π ) can be monitored by changing the ratio tx/ty . The
concept and formalism of the QSHDW is general for any
dimension as long as the corresponding nesting wave vector
allows for the chirality inversion at all given dimensions. We
use a tight-binding dispersion with nearest-neighbor hopping
as ξk = −2[txcos(kxa) + tycos(kyb)] − ξF, where ξF is the
chemical potential, and a and b are the lattice constants along
the x and y directions, respectively. For the RSOC αk we
assume an isotropic SOC strength, αR for simplicity.

The noninteracting dispersion with RSOC is shown in
Fig. 2(a), with two horizontal arrows dictating the Q nesting
vectors connecting the two helical bands. For our numerical
calculations, we use ty/tx = 0.2, ξF = 0, and αR = −1.25/tx ,
which are realistic parameters for Bi-surface state grown on Ag
thin films [20]. For Bi and Pb atomic wires with one monolayer
coverage, the intrinsic value of the FS nesting is ∼ (0.42π/a,0)
[18,20]. Starting from this band parameter, we estimate that
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FIG. 1. Distinction between a QSH and QSHDW insulator in real
space. (a) A typical QSH insulator where all lattice sites have the same
chirality in the valence band. (b) The QSHDW insulator where two
sublattice sites have the opposite chirality in the valence band.

the required chemical potential shift to obtain the (π,0) nesting
is about 1.74tx , which can be achieved with chemical doping
or gating or varying thickness, among others.

The interaction term responsible for the emergence of the
QSHDW can be sought from on-site Hubbard, or Hund’s
coupling or Heisenberg interaction, as shown explicitly in the
Supplemental Material (SM) [21]. Here we use a generalized
form as

Hint = g
∑

k1 − k4,

σ1 − σ4

c
†
k1,σ1

ck2,σ2c
†
k3,σ3

ck4,σ4 , (1)

where g is the strength of the on-site interaction. c
†
k,σ (ck,σ ) is

the creation (annihilation) operator for an electron with Bloch
momentum k, and spin σ = ±.

We define a four-component Nambu-Gor’kov spinor �k =
(ck,↑,ck,↓,ck+Q,↑,ck+Q,↓). For the particular type of nesting
depicted in Figs. 2(a) and 2(b), one singlet and two possible
triplet order parameters can develop as

Singlet:〈O1〉 =
∑

k

〈�̄k|�1d1k|�k〉, (2)

Triplet:〈O2〉 =
∑

k

〈�̄k|�2d2k + �3d3k|�k〉, (3)

〈O3〉 =
∑

k

〈�̄k|�4d4k|�k〉, (4)

where the Dirac � matrices have the representa-
tion �(1,2,3,4,5,6,7) = (τy ⊗ σy,τx ⊗ σx,τx ⊗ σy,τx ⊗ σz,τz ⊗

FIG. 2. FS topology. (a) Noninteracting RSOC split bands are
plotted along kx with ky = 0. Black horizontal arrows show the
nesting vectors. (b) We show the nesting on the quasi-1D FS.

I,I ⊗ σx,τz ⊗ σy) in the same spinor �. τi and σi are the 2 × 2
Pauli matrices in the sublattice and spin basis, respectively,
and I is the 2 × 2 identity matrix. Except for �1 and �5, all
other � matrices here are odd under TR symmetry. Here, we
are interested only in the TR invariant order parameters for Z2

topological consequence. Therefore, the TR invariance of these
order parameters requires that the structure factor dik must
complement the symmetry of the corresponding �i matrices
under TR symmetry. Therefore d1k for the singlet state must be
even under TR symmetry, while all three d2,3,4 for the triplet
states must be odd under TR symmetry. In what follows, the
order parameters can be either even parity and spin singlet
or odd parity and spin triplet. This is also consistent with the
fermionic antisymmetric property of the order parameters.

These order parameters introduce electronic gap terms
as 	i = g〈Oi〉. All order parameters govern the nontrivial
topological phase as to be shown later. For the singlet case,
we take 	1k = 	10 (s wave) without losing generality. For the
triplet gaps 	2,3, we find through self-consistent solution (see
Supplemental Material [21]) that 	2 has a higher probability
to form and possesses a larger amplitude than the 	3 term.
Henceforth, we thus consider only the 	2 term for the triplet
case. We consider a p-wave form factor for the odd-parity term
as 	2k = 	20 sin (kxa). We note that the essential topological
character deduced here does not depend on the form factor,
which will be clearer below. At Q = (π,0) or (0,π ), the
mean-field Hamiltonian can be fully expressed in terms of
the Dirac matrices as (for singlet)

H1(k) = ξ+
k I4×4 + ξ−

k �5 + α′
k�6 + α′′

k�7 + 	10�1, (5)

and eigenvalues:

E1k = ξ+
k ±

√
(ξ−

k ± |αk|)2 + 	2
10, (6)

and for triplet:

H2(k) = ξ+
k I4×4 + ξ−

k �5 + α′
k�6 + α′′

k�7 + 	2k�2, (7)

and eigenvalues:

E2k = ξ+
k ± |αk| ±

√
(ξ−

k )2 + 	2
2,k. (8)

Here ξ±
k = (ξk ± ξk+Q)/2, and α′

k and α′′
k are the real and

imaginary parts of the RSOC (αk). In analogy with the Dirac
Hamiltonian, we can easily recognize that ξ−

k gives the Dirac
mass term which controls the topological phase transition,
while 	k helps open an electronic gap between the opposite
chiral states.

A few remarks are in order about why the present mean-field
model gives correct results in such quasi-1D systems. In
quasi-1D systems, one may expect that a Luttinger-liquid
theory might be more appropriate. However, experimentally it
is demonstrated that at finite temperature and in the presence
of impurity scattering, the quantitative difference between the
Luttinger-liquid and Fermi-liquid behavior is small and often
undetectable [22]. Therefore, a Fermi-liquid-like physics with
mean-field order parameter can be used here. Moreover, in
the weak-coupling region, quantum fluctuations are Fermi-
liquid like, i.e., it scales quadratically with energy. Such
weak fluctuations only become appreciable near the quantum
critical regime where the gap becomes small. Away from the
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FIG. 3. Electronic dispersion and edge states in quasi-1D strip
geometries. (a),(b) We plot the electronic band structure at ky = 0 for
singlet and triplet states, respectively. The width of each line dictates
the corresponding electronic weight in the QSHDW state. The vertical
dashed lines give the RBZ boundaries. (c),(d) Edge states in quasi-1D
strip geometries for the singlet and triplet state, respectively. We show
the spectrum of the interacting quasi-1D QSHDW in a strip geometry
(inset).

critical region, the QSHDW order is robust against quantum
fluctuations.

Electronic insulator. For a pure 1D case (ty/tx → 0), any
infinitesimally small value of 	 produces an insulating band
gap. As the FS warping increases with increasing ty/tx , some
parts of the FS (which are not nested by Q) remain ungapped
for small values of 	 (topological invariant may still be defined
for the cases with small FS pockets, giving rise to QSHDW
semimetals). With larger 	, an insulating gap appears. The
critical value of 	 required for the insulating state increases
with increasing ty/tx .

In Figs. 3(a) and 3(b), we demonstrate the electronic
dispersion for a QSHDW triplet (singlet) insulator. The vertical
width of each line in Figs. 3(a) and 3(b) dictates the electronic
weight associated with the main bands [thickness of the
line corresponds to the contribution from the first reduced
Brillouin zone (RBZ)]. As the main and shadow bands
possess different spin-orbit chirality (due to αk+Q = α∗

k ), the
emergence of QSHDW order is naturally accompanied by
chirality inversion at the time-reversal symmetric momenta.
In the present QSHDW theory, due to noncollinearity of the
spin coming from the SOC, the spin expectation value of two
different bands at each sublattice cancel each other, and thus
the system preserves TR symmetry.

Topological properties. For the calculation of topological
invariants in a single-particle picture (also applicable to
mean-field electronic bands), Kane and Mele proposed the
concept of “TR polarization.” This is a Z2 analog of the
charge polarization for an integer quantum Hall state [23,24].
TR polarization depends on the number of times an electron
exchanges its “TR partner” between its Bloch state, ψn(k), and
its TR conjugate ψ

†
m(−k) in half of the BZ. This is essentially

quantified by the Pfaffian of a matrix with components
wmn(k) = 〈ψm(−k)|T |ψn(k)〉, where T = iI ⊗ σyK (K is the
complex conjugate operator) is the TR operator, and n and
m are valence-band indices. The relative sign of Pf[w(k)]

between any two TR invariant k points becomes opposite if
the electron switches its TR partner an odd number of times
in traversing between them. This, in other words, implies that
Pf[w(k)] vanishes at an odd number of momenta in between
the two high-symmetric k points [23]. The Z2 invariant ν is
defined as

ν = 1

2πi

∫
L

dk · ∇k log[P (k) + iδ], (9)

where L covers half the BZ. As P (k∗
i ) = 0, the residue theory

dictates that ν = 1. If there are odd number of P (k) = 0, one
obtains ν = 1 (modulo 2), otherwise, ν = 0. According to
the Kane-Mele criterion, there are three Z2 invariants in 2D:
(ν0:ν1ν2), where ν0 is the net Z2 invariant giving a strong
topological insulator, while ν1,2 are the weak topological
invariants representing an odd number of band inversions along
the x and y directions, respectively.

In the present 1D case, the chirality or the TR polarizibility
is reversed along the direction of the nesting. For both singlet
and triplet cases, we find that Pf[w] changes sign when going
from kx = 0 to kx = π , and it vanishes at kx = π/2, but not in
the perpendicular directions. Therefore, the system possesses
a strong Z2 topological invariant (ν1 = 1) along this direction
(in 1D), but a weak topological insulator in 2D with invariants
(0:10). This behavior also makes our model distinct from the
Kane-Mele model of the QSH insulator in graphene which is
defined by Z2 invariant (1:00).

Boundary state. Due to the bulk boundary correspondence,
the nontrivial Z2 invariant implies the existence of zero-energy
edge states as long as the TR symmetry is held. The present
system resembles a Su-Schrieffer-Heeger [25] -type model in
1D if we map the two atoms with opposite chirality in a larger
unit cell as two sublattices. Therefore, the topological invariant
in the bulk dictates a single end state inside the gap. The end
state is localized at the two ends of the lattice in the nesting
direction (here x direction), but disperses along the y direction.
They are further split by the RSOC.

To show the behavior of these edge states, we inves-
tigate a strip geometry [see inset to Fig. 3(d)] with open
boundary condition along the x direction while keeping the
periodic boundary condition along the y direction. Splitting
the corresponding Hamiltonian into three parts as Hstrip =
H1 + H2 + H12, where H1 and H2 are the noninteracting terms
in the first and second RBZ, while H12 is the interaction term,
we get

H1 =
∑

ky ,j,σ

′
[
−2ty cos (ky)c†ky ,j,σ

cky,j,σ − txc
†
ky ,j,σ

cky,j±1,σ

+αR sin (ky)c†ky ,j,σ
cky,j,σ̄ − λ

αR

2
c
†
ky ,j,σ

cky,j+λ,σ̄

]
,

(10)

Hs
12 = 	10

∑
ky ,j.σ

′
[eiQxj c

†
ky ,j,σ

cky,j,σ̄ + e−iQxj c
†
ky ,j,σ

cky ,j,σ̄ ],

(11)

Ht
12 = −i	20/2

∑
ky ,j,σ

′
[e−iQx (j+1)c

†
ky ,j,σ

cky,j+1,σ̄

− e−iQx (j−1)c
†
ky ,j,σ

cky,j−1,σ̄ + H.c.]. (12)
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Here H2 = H1(k → k + Q). The index λ = ±1 takes care
of the fact that for the RSOC, the nearest-neighbor (spin-flip)
hopping along the ±r directions have opposite sign. j is
the lattice site index along the x direction, and the prime
on the summation indicates that it is restricted within the
corresponding RBZ. H

t/s

12 corresponds to the triplet/singlet
case. Also, the first c in H

t/s

12 belongs to the k sublattice while
the second c belongs to the (k + Q) sublattice. The eigenvalues
of Hstrip are plotted in Fig. 3 with 	0 = 1.48tx (3.3tx) for
triplet (singlet). This gap value requires an interaction strength
of g ≈ 3.3tx (5.0tx). It should be noted that the interaction
strength chosen to show the edge state is much higher than the
value required to open the insulating gap. For each 1D strip, the
ν1 = 1 invariant dictates zero-energy end states (Zak phase).
The nearest-neighbor end states are coupled to each other by
RSOC, and thus are split at all ky values except at the TR
invariant points. Since the bulk system is a weak topological
insulator, the boundary states are not immune to perturbations,
as also evident from the presence of an even number of Dirac
nodes in the BZ.

2D extension. Finally, we explore a 2D system in which
we explicitly include both nestings Qx = (π,0) and Qy =
(0,π ), which makes the Hamiltonian in Eqs. (5) and (7)
a 6 × 6 one. In such case, the topological properties be-
come difficult to deduce analytically. Numerically, we find
that Pf[w] changes sign every time while going from one
TRIM point to another, in both the x and y directions,
giving rise to the weak Z2 invariant (0:11), a 2D QSHDW
insulator.

Conclusions. We presented the theory of a new state
of matter, called QSHDW state, which is a spontaneous
symmetry breaking quantum phase associated with a nontrivial
Z2 invariant. The design and synthesis of quasi-2D atomic
quantum wires have become a routine laboratory exercise,
and it has been extensively shown that both intrinsic and
extrinsic tunings of electronic properties, SOC, and Coulomb
interaction are very easy in such geometry [19]. In fact, the
FS nesting between different helical states is observed in a
number of quasi-1D [18] and 2D systems [26]. Moreover, it
is shown that the FS nesting properties, RSOC, as well as
the charge screening process can be monitored by varying
sample thickness and substrate [18,26]. In this connection,
ferroelectric or polar substrates can also have a versatile role
in enhancing SOC and interaction strength.

1D SOC is recently observed in an optical lattice, where
our idea can also be explored with the existing setups. From
a theoretical perspective, the generalization of the proposed
topological phase to higher dimensional FS with the same
nesting condition along all directions is possible. For example,
noncentrosymmetric heavy-fermion materials would be poten-
tial candidates to explore a large SOC interaction. Therefore,
we envision that the emergence of a QSHDW insulator may
open a new area in the field of interaction-induced TIs.

Acknowledgments. The work is facilitated by the computer
cluster facility at the Department of Physics at the Indian
Institute of Science. We acknowledge funding from the
Department of Science and Technology (DST), India under
Young Research Scientist Award given through the SERB.

[1] A. Bansil, H. Lin, and T. Das, Rev. Mod. Phys. 88, 021004
(2016).

[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[3] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[4] S. Raghu, X.-L. Qi, C. Honerkamp, and S.-C. Zhang, Phys. Rev.

Lett. 100, 156401 (2008).
[5] R. S. K. Mong, A. M. Essin, and J. E. Moore, Phys. Rev. B 81,

245209 (2010).
[6] M. Dzero, K. Sun, V. Galitski, and P. Coleman, Phys. Rev. Lett.

104, 106408 (2010).
[7] J. Li, R.-L. Chu, J. K. Jain, and S.-Q. Shen, Phys. Rev. Lett. 102,

136806 (2009).
[8] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314,

1757 (2006).
[9] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann,

L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318,
766 (2007).

[10] I. Knez, R.-R. Du, and G. Sullivan, Phys. Rev. Lett. 107, 136603
(2011).

[11] J. C. Y. Teo, L. Fu, and C. L. Kane, Phys. Rev. B 78, 045426
(2008).

[12] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. Cava, and
M. Z. Hasan, Nature (London) 452, 970 (2008).

[13] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang,
Nat. Phys. 5, 438 (2009).

[14] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil,
D. Grauer, Y. Hor, R. Cava et al., Nat. Phys. 5, 398 (2009)

[15] Y. Chen, J. Analytis, J.-H. Chu, Z. Liu, S.-K. Mo, X.-L. Qi, H.
Zhang, D. Lu, X. Dai, Z. Fang et al., Science 325, 178 (2009).

[16] M. Dzero, J. Xia, V. Galitski, and P. Coleman, Annu. Rev.
Condens. Matter Phys. 7, 249 (2016).

[17] T.-R. Chang, T. Das, P.-J. Chen, M. Neupane, S.-Y. Xu, M. Z.
Hasan, H. Lin, H.-T. Jeng, and A. Bansil, Phys. Rev. B 91,
155151 (2015).

[18] C. Tegenkamp, D. Lükermann, H. Pfnür, B. Slomski, G. Landolt,
and J. H. Dil, Phys. Rev. Lett. 109, 266401 (2012).

[19] C. Brand, H. Pfnür, G. Landolt, S. Muff, J. Dil, T. Das, and C.
Tegenkamp, Nat. Commun. 6, 8118 (2015).

[20] T. Das, Phys. Rev. Lett. 109, 246406 (2012).
[21] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.95.161109 for the details of the calculations.
[22] D.-W. Wang, A. J. Millis, and S. Das Sarma, Phys. Rev. Lett.

85, 4570 (2000).
[23] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802

(2005).
[24] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[25] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42,

1698 (1979).
[26] H. Bentmann, S. Abdelouahed, M. Mulazzi, J. Henk, and F.

Reinert, Phys. Rev. Lett. 108, 196801 (2012).

161109-4

https://doi.org/10.1103/RevModPhys.88.021004
https://doi.org/10.1103/RevModPhys.88.021004
https://doi.org/10.1103/RevModPhys.88.021004
https://doi.org/10.1103/RevModPhys.88.021004
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevLett.100.156401
https://doi.org/10.1103/PhysRevLett.100.156401
https://doi.org/10.1103/PhysRevLett.100.156401
https://doi.org/10.1103/PhysRevLett.100.156401
https://doi.org/10.1103/PhysRevB.81.245209
https://doi.org/10.1103/PhysRevB.81.245209
https://doi.org/10.1103/PhysRevB.81.245209
https://doi.org/10.1103/PhysRevB.81.245209
https://doi.org/10.1103/PhysRevLett.104.106408
https://doi.org/10.1103/PhysRevLett.104.106408
https://doi.org/10.1103/PhysRevLett.104.106408
https://doi.org/10.1103/PhysRevLett.104.106408
https://doi.org/10.1103/PhysRevLett.102.136806
https://doi.org/10.1103/PhysRevLett.102.136806
https://doi.org/10.1103/PhysRevLett.102.136806
https://doi.org/10.1103/PhysRevLett.102.136806
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1103/PhysRevLett.107.136603
https://doi.org/10.1103/PhysRevLett.107.136603
https://doi.org/10.1103/PhysRevLett.107.136603
https://doi.org/10.1103/PhysRevLett.107.136603
https://doi.org/10.1103/PhysRevB.78.045426
https://doi.org/10.1103/PhysRevB.78.045426
https://doi.org/10.1103/PhysRevB.78.045426
https://doi.org/10.1103/PhysRevB.78.045426
https://doi.org/10.1038/nature06843
https://doi.org/10.1038/nature06843
https://doi.org/10.1038/nature06843
https://doi.org/10.1038/nature06843
https://doi.org/10.1038/nphys1270
https://doi.org/10.1038/nphys1270
https://doi.org/10.1038/nphys1270
https://doi.org/10.1038/nphys1270
https://doi.org/10.1038/nphys1274
https://doi.org/10.1038/nphys1274
https://doi.org/10.1038/nphys1274
https://doi.org/10.1038/nphys1274
https://doi.org/10.1126/science.1173034
https://doi.org/10.1126/science.1173034
https://doi.org/10.1126/science.1173034
https://doi.org/10.1126/science.1173034
https://doi.org/10.1146/annurev-conmatphys-031214-014749
https://doi.org/10.1146/annurev-conmatphys-031214-014749
https://doi.org/10.1146/annurev-conmatphys-031214-014749
https://doi.org/10.1146/annurev-conmatphys-031214-014749
https://doi.org/10.1103/PhysRevB.91.155151
https://doi.org/10.1103/PhysRevB.91.155151
https://doi.org/10.1103/PhysRevB.91.155151
https://doi.org/10.1103/PhysRevB.91.155151
https://doi.org/10.1103/PhysRevLett.109.266401
https://doi.org/10.1103/PhysRevLett.109.266401
https://doi.org/10.1103/PhysRevLett.109.266401
https://doi.org/10.1103/PhysRevLett.109.266401
https://doi.org/10.1038/ncomms9118
https://doi.org/10.1038/ncomms9118
https://doi.org/10.1038/ncomms9118
https://doi.org/10.1038/ncomms9118
https://doi.org/10.1103/PhysRevLett.109.246406
https://doi.org/10.1103/PhysRevLett.109.246406
https://doi.org/10.1103/PhysRevLett.109.246406
https://doi.org/10.1103/PhysRevLett.109.246406
http://link.aps.org/supplemental/10.1103/PhysRevB.95.161109
https://doi.org/10.1103/PhysRevLett.85.4570
https://doi.org/10.1103/PhysRevLett.85.4570
https://doi.org/10.1103/PhysRevLett.85.4570
https://doi.org/10.1103/PhysRevLett.85.4570
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.108.196801
https://doi.org/10.1103/PhysRevLett.108.196801
https://doi.org/10.1103/PhysRevLett.108.196801
https://doi.org/10.1103/PhysRevLett.108.196801



