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Given recent progress in the realization of Majorana zero modes in semiconducting nanowires with
proximity-induced superconductivity, a crucial next step is to attempt an experimental demonstration of the
predicted braiding statistics associated with the Majorana mode. Such a demonstration should, in principle,
confirm that the experimentally observed zero-bias anomalies are indeed due to the presence of anyonic
Majorana zero modes. Moreover, such a demonstration would be a breakthrough at the level of fundamental
physics: the first clear demonstration of a non-Abelian excitation. It is therefore important to clarify the expected
signals of Majorana physics in the braiding context and to differentiate these signals from those that might
also arise in nontopological variants of the same system. A definitive and critical distinction between signals
expected in topological (i.e., anyonic) and nontopological (i.e., trivial) situations is therefore essential for
future progress in the field. In this paper, we carefully examine the expected signals of proposed braiding
and fusion experiments in topological and nontopological variants of the experimental nanowire systems in
which Majoranas are predicted to occur. We point out situations where ‘trivial’ and ‘anyonic’ signatures may
be qualitatively similar experimentally, necessitating a certain level of caution in the interpretation of various
proposed fusion and braiding experiments. We find in particular that braiding experiments consisting of full braids
(two Majorana exchanges) are better at distinguishing between topological and nontopological systems than
fusion experiments or experiments with an odd number of Majorana exchanges. Successful fusion experiments,
particularly in nanowires where zero bias conductance peaks are also observed, can also provide strong evidence
for the existence of Majorana modes, but such fusion evidence without a corresponding braiding success is not
definitive.
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I. INTRODUCTION

Topological superconductors [1] supporting Majorana zero
modes [2–4] provide one of the simplest systems that are
predicted to support non-Abelian statistics [5]. Such non-
Abelian statistics with the accompanying topological degen-
eracy associated with the Majorana zero modes (MZMs) may
be used as the basis for topologically protected schemes
for quantum computation [6–12]. The theoretically proposed
[13–15] semiconductor-based structures for realizing topolog-
ical superconductors have led to encouraging experimental
results [16–24], suggesting that such semiconductor nanowire
devices might be a viable path to eventual fault-tolerant
topological quantum computation [6–12,25–33].

The optimistic experimental results involving the observa-
tion of the predicted zero bias conductance peaks in nanowire
tunneling transport measurements have encouraged further
theoretical proposals to demonstrate ideas related to testing
braiding and non-Abelian statistics [25,29–31]. In particu-
lar, proposals to directly test the non-Abelian fusion rules
associated with Majorana zero modes [34,35] substantially
simplify the necessary device design relative to that required
for braiding experiments, encouraging experimental groups to
undertake a search for this simplest nontrivial non-Abelian
signature. However, despite the initial and repeated success
in observing the predicted zero bias conductance peaks
(ZBCPs) associated with the existence of Majorana zero modes
[16–18,20–24], the expected precise and robust quantization
of the conductance at zero bias [4,6–12], which is one of
the definitive characteristics of Majorana zero modes, remains

elusive even after five years of substantial experimental
effort [17–24] following the initial observation of a zero-
bias peak [16]. This raises the possibility that the observed
zero bias conductance may arise from physics other than
non-Abelian Majorana zero modes such as disorder induced
zero energy states, weak antilocalization, multiple unsplit
Majorana zero modes [36–39], or other unknown reasons
unrelated to Majorana physics. This is particulary worrisome
since the zero bias conductance peak is a necessary but by no
means sufficient condition for the existence of non-Abelian
Majorana modes. On the other hand, it is not evident that
any of these non-Majorana possibilities are quantitatively
consistent with the experimentally observed signatures of
Majorana zero modes. Clearly a detailed understanding of
the zero bias conductance is still incomplete [40,41] de-
spite the essential simplicity of the tunneling conductance
measurement compared to the substantially more complex
proposals involved in fusion and braiding [25,29–31,34,35].
This is true despite the essential simplicity of the conductance
experiment, which has permitted a detailed theoretical analysis
of the conductance in systems with disorder, interaction,
dissipation, and most importantly even nontopological systems
with no Majorana modes [37,40,42–46]. An important possible
scenario is that the existing tunneling transport measurements
indeed observe nanowire Majorana zero modes, but that
realistic effects in laboratory systems act to allow significant
couplings to and between the Majorana modes that would
not be present in an ideal topological system [45]. Such
modes may be described as quasi- or almost-MZMs, and the
important question then becomes whether such quasi-MZMs
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carry non-Abelian statistics or not as manifested in braiding
experiments.

Thus, while it is clear that ideal Majorana zero modes
should have interesting features in braiding and fusion
experiments [25,29–31,34,35], the complex nature of the
various proposed experiments requires a deeper analysis and a
broader understanding in light of the zero-bias conductance
observations that do not report the theoretically predicted
quantized peak. Specifically, it is crucial to understand in detail
the results of these proposed fusion and braiding experiments
for more generic and realistic systems as compared to ideal
topological ones. For example, one could ask whether systems
that possess low energy fermionic Andreev bound states
as opposed to Majorana zero modes respond qualitatively
differently to the proposed fusion and braiding experiments.
It has already been claimed that such low-lying accidental
Andreev bound states may give rise to zero bias conductance
peaks similar to the Majorana peaks [46], making this question
a key experimentally relevant issue. The same issue is also
germane if the zero bias peak arises from an almost-Majorana
mode comprising an overlap of two (or more) Majorana modes
localized at different spatial regions of the nanowire (not
necessarily at the endpoints). One of the central goals of
the current paper is to provide an extensive characterization
of the fusion and braiding experiment so as to be able
to answer such questions, in the process providing clear
guidelines about distinguishing non-Abelian topological and
trivial nontopological features in proposed future fusion or
braiding experiments on nanowires.

This paper is organized as follows: In Sec. II, we discuss
recent proposals [34,35] for measuring the fusion rules of
MZM defects. We find that the key signature of MZMs
in these experiments—a 50% probability of measuring an
odd parity—is generically reproduced in a random system
(independent of its intrinsic topological properties) and is
even more likely in a system that is already known to
display zero bias peaks (independent of whether the peak
arises from non-Abelian MZMs, quasi-MZMs, or accidental
Andreev states). This particular way of characterizing non-
Abelian Majorana modes through simple fusion experiments
is therefore problematic since a trivial nontopological system
might manifest the same behavior. We draw an analogy to a
spin-1/2 particle precessing in a time-varying magnetic field
and use this analogy to highlight the special characteristic
of the ‘true’ (i.e, non-Abelian) Majorana system. In Sec. III,
we move on to braiding experiments, outlining a set of
assumptions that allow us to narrow down the possible results
of carrying out nominal braid operations through adiabatic
evolution in nontopological systems. We find a remarkable
coincidence in the braiding result for a system with one
topological wire and one wire having ‘accidental’ degeneracy.
Such a system reproduces exactly the 50% probability of
measuring odd or even parity after a single braid, despite
the presence of nontopological couplings. Again, this is a
possibility one must keep in mind in interpreting future
experiments searching for purely topological braiding effects
associated with non-Abelian anyonic excitations. In Sec. IV,
we deal with the implications of quasiparticle poisoning on
the degradation of the braiding signal. We conclude in Sec. V
with a discussion of the outlook for ongoing Majorana braiding

experiments, with emphasis on the caution and care necessary
in the interpretation of proposed fusion/braiding experiments.

II. FUSION EXPERIMENTS

We begin with an analysis of the simple fusion experiment
described conceptually in Ruhman et al. [34] and further ex-
tended and elaborated by Aasen et al. [35]. In this experiment,
two regions of a superconducting one-dimensional system,
each ostensibly containing Majorana zero modes at their
endpoints, are placed end to end. Preparatory measurements
are made to assure that the total fermion parity of the combined
system is even. A strong tunnel coupling between the ends of
the two subsystems prepares a superposition of the fermion
parity states |00〉 and |11〉, where each 0 or 1 represents the
fermion parity of the left or right regions, respectively. If
the system actually contains Majorana zero modes localized at
the endpoints of the subregions, the superposition is expected
to be equal, so that when the system is broken apart [47]
by removing the coupling on a time scale rapid compared
to any remaining Majorana splitting, the state |00〉 will be
measured 50% of the time, and the state |11〉 will be measured
50% of the time. This has been argued to represent a distinct
consequence of the fusion rules for Majorana zero modes
[34,35] and therefore as indirect evidence supporting the
non-Abelian nature of these excitations. The key question
to be addressed here is whether such a fusion measurement
intrinsically conveys any more information than the already
observed zero bias conductance peak arising from low energy
(topological or nontopological) subgap modes [16–24,46].

Here we take a somewhat egalitarian approach to our
analysis of this experimental proposal. First, we note that
the zero bias peaks observed in nanowires built with the
intention of hosting Majorana zero modes [16] represent, at
the very least, direct evidence for the presence of low-lying
energy states at the endpoints of these wires. In the simplest
form of our analysis, we assume that each subregion has
a single low-lying fermionic mode, with associated energy
scales ε1 and ε2, respectively. Fermion tunneling between the
two regions couples states with the same overall fermion parity.
Finally, a (likely small) cross-capacitance between the two
regions alters the energy by εC when both fermionic modes
are occupied. Our Hamiltonian is therefore

H =

⎛
⎜⎝

|00〉
|01〉
|10〉
|11〉

⎞
⎟⎠

T ⎛
⎜⎝

0 0 0 h1

0 ε2 h2 0
0 h∗

2 ε1 0
h∗

1 0 0 ε

⎞
⎟⎠

⎛
⎜⎝

〈00|
〈01|
〈10|
〈11|

⎞
⎟⎠, (1)

where ε = ε1 + ε2 + εC . Here h1,2 are the appropriate tunnel
couplings between the two regions.

Due to fermion parity conservation, we may separate this
Hamiltonian into even and odd parity blocks, from which we
may easily determine the eigenstates

|v1〉 = cos α|00〉 + eiφ1 sin α|11〉
|v2〉 = sin α|00〉 − eiφ1 cos α|11〉
|v3〉 = cos β|01〉 + eiφ2 sin β|10〉
|v4〉 = sin β|01〉 − eiφ2 cos β|10〉, (2)
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where tan 2α = 2|h1|
ε

, tan 2β = 2|h2|
ε2−ε1

, and e2iφ1,2 = h1,2/h∗
1,2.

In the fusion proposal of Ref. [35], the two subregions
are separated on a timescale that is adiabatic with respect to
all but the lowest energy mode, which would be the zero-
energy MZM in the ideal topological scenario. With respect to
this last mode, the experiment must proceed nonadiabatically
(i.e., suddenly) in order to achieve a result that is distinct
from the control experiment [48]. While in the most general
system it may be difficult to independently tune the parameters
of the above Hamiltonian, the zero-bias peaks observed in
transport experiments have proven relatively insensitive to the
voltage present on a back gate near the end of the proximitized
wire [16]. We therefore assume here that the voltage change
necessary to separate the regions by depleting an intermediate
tunnel barrier does not significantly change the splitting of
modes within each subregion. If this is untrue, then one must
know the detailed voltage dependence of the ZBCP to make
further progress in this model, but the relative insensitivity
of the zero bias peak to local perturbations in voltage is a
necessary feature of the topological system [6–12] that may
be (and has been [16]) tested in transport experiments.

If the tunnel coupling were to be abruptly turned off in the
above Hamiltonian, the state |00〉 would be measured (e.g.,
with a charge sensing measurement as outlined by Ref. [35])
with probability

P00 = 1

2
(1 ± cos 2α) = 1

2

(
1 ± ε√

4|h1|2 + ε2

)
. (3)

For systems with true Majorana zero modes, we expect ε1 =
ε2 = 0, and εC � h1,2. However, in this abrupt approximation,
the condition ε � h1 � 1/τ , where τ is the time taken to
make the cut, will lead to a measured probability P00 ∼ 1/2
[49]. More generally, in the presence of multiple (perhaps
low energy) fermionic modes on each side of the tunnel
junction (and in the sudden approximation), a probability
near 1/2 will be measured whenever the tunnel coupling
scale is much larger than the energy of the lowest lying
excited fermionic state on either side of the junction and much
smaller than the energy scale set by the cutoff rate or the next
lowest fermionic mode. Thus, a trivial situation with multiple
low-energy fermions will mimic the Majorana situation in
such a measurement. The important point to emphasize here
is that the experiment manifesting the observation of 1/2
probability by itself has no way of assuring the absence of such
nontopological low-energy fermionic modes that would lead to
this observation. What it can establish is the existence of modes
which have lower energies (and are thus diabatic) with respect
to the cutting rate. The fusion experiment itself has no direct
way of establishing the topological nature of these low energy
modes.

We may further explore the intuitive picture offered by the
above model by explicitly including the possible additional
low-lying modes mentioned above. We now allow several
(N ) low-lying fermionic modes in the system with random
couplings, divided randomly into two subregions A and B

with nA fermionic modes in region A and nB = N − nA

modes in region B. The effective Hamiltonian describing the
low-lying states is written as H = i

∑
ab habγaγb, where hab

is an antisymmetric real matrix and γa represent a basis of

Majorana operators describing the system. The single-particle
density matrix of the system, ρab = i〈γaγb〉, is given by
ρab = ∑

n 	∗
na	n,b where 	n,a are negative energy eigenstates

of hab. Making a ‘sudden’ approximation (as before) that
the coupling between the two regions is turned off at a rate
much higher than the energy scale of the coupling hab of
the low-energy space, the system develops conserved fermion
parities QA and QB for each subregion. We again emphasize
that this situation can occur even in systems that are definitively
nontopological when low-energy modes (with energy scale
below the cutting rate) are present. As we shall see, such
systems are able to mimic some (but not all) of the signals
of braiding, as well, and care must be taken in ruling out
the ‘false positives’ that are likely to be present in realistic
nontopological nanowires, especially if those wires are known
to have zero-bias peaks in tunneling conductance.

Assuming that such a multiple-mode situation arises from
disorder and is therefore random, we compute the expectation
〈QA〉 over an ensemble of Gaussian random antisymmetric
matrices. We restrict to the overall even-parity subsector
and plot the resulting histogram of P00 probabilities in blue
in Fig. 1. Note the generic broad peak around P00 = 1/2
despite the fact that (by construction) there are generally no
non-Abelian MZMs in the model leading to Fig. 1 (and only
low-energy fermionic excitations). The results shown in Fig. 1
explicitly demonstrate that the observation of a probability-1/2
outcome in the fusion measurement might be generic in
the presence of many low energy modes (independent of
their topological nature) arising from random disorder (which
is always present in experiments) and cannot by itself be
construed as definitive evidence for non-Abelian statistics.

A further refinement of the model might include the
information (known from transport data [16–18,20–24]) that
a zero-energy mode is independently present at the end of
each wire region when the coupling between the two regions
is turned off. We note that the existence of any fermionic
mode ĉ at exactly zero energy implies that there is an MZM
γ = ĉ + ĉ† (though this mode is not topologically derived
in general). Therefore the refinement of the model may be
accomplished by assuming that there is (at least) one Majorana
operator in each subregion that couples only to modes in the
other subregion. We contrast this with the topological situation
in which there exists at least one Majorana mode that does
not couple to any other modes, independent of the coupling
between subregions. Assuming this on-site condition remains
even when the coupling turns on, the distribution of P00

becomes much more sharply peaked around P00 = 1/2 (red
histograms of Fig. 1). There are two important caveats in this
analysis. First, the transport experiments do not necessarily
imply a mode at precisely zero energy—indeed, the current
experiments [16–18,20–24] observe a ZBCP which is almost
as broad as the topological gap itself implying the mode energy
could be as large as half the superconducting gap. Second, the
onsite couplings between Majorana modes may indeed drift
as the inter-region coupling is turned on or off, counter to our
initial assumption of independent control. We therefore expect
the actual distribution of even-parity probabilities in a random
multimode system that reproduces the transport results to
interpolate between the red and blue histograms shown in
Fig. 1.
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FIG. 1. Histograms of the probability of measuring even parity in a fusion experiment in which several modes (localized to subregions
A and B) have energy well below the frequency with which the two regions are cut apart. The histograms show a peak around a probability
of 50%. The histograms in blue are for Gaussian distributed random Hamiltonians. Those in red, showing a narrower peak, result when the
couplings are chosen to create an exact zero energy mode within each subregion. (This mode is generically of nontopological origin within our
simulation, as couplings are allowed between regions that would split the energy away from zero.) (Top row, left) N = 3 low energy fermions
split into nA = 2, nB = 1 (top row, right) N = 4 low energy fermions split into nA = 3, nB = 1. (Bottom row, left) N = 4 low energy fermions
split into nA = 2, nB = 2. (Bottom row, right) N = 8 low energy fermions split into nA = 4, nB = 4.

Thus far, our analysis has taken place in a ‘sudden’
approximation: The energies associated with the low lying
states are assumed to be small compared with the rate at
which the coupling between the two regions goes to zero.
As the system is cut at a faster and faster rate, more modes
become active and the probability distribution becomes more
and more sharply peaked around P00 = 1/2. This should not
be surprising, as at very high cutoff rates (which basically
correspond to very high energies) we may expect the system
to behave essentially as a Fermi gas, with no preference for
even or odd parity in the two subregions. At slower cutoff
rates, the higher energy modes ‘freeze-out,’ leaving us with
the few-mode effective model described above. If we cut
slowly enough, even these last fermionic modes freeze-out
and leave the qubit polarized with a definite parity on each
island at the end of the evolution. Such a slow cutting rate
is thus important in the fusion experiment for establishing
the Majorana zero mode, but, on the other hand, the rate
cannot be so slow that the system decoheres (e.g., through
quasiparticle poisoning) or so slow that the residual coupling
between Majorana modes can polarize the system (i.e., slower
than the scale set by the Majorana splitting) [48,50]. We note
that tunneling transport on existing nanowires most often finds
broad zero-bias conductance peaks (sometimes of the order of

the induced gap), which may indicate the generic presence of
several low-energy fermionic modes in addition to one near
zero energy. If this is indeed the source of the broadening, a
P00 = 1/2 result may be expected unless the cut rate is slow
enough to freeze-out these modes.

It is therefore clear that a P00 = 1/2 result in the fusion
experiment is ultimately analogous to spectroscopy in the
sense that it determines the proximity of the energy of
low-lying states to zero energy. The measurement precision
will depend on (and be roughly of the scale of) the experimental
cut rate, although the precision cannot surpass that set by the
quasiparticle poisoning rate. We may quantify the relevant
time or energy scales by examining, e.g., the zero-bias peak
data of Mourik et al. At a temperature of 60 mK, Mourik et al.
[16] measured a zero bias peak in their transport data with a
full width at half maximum of 20 μeV ∼ 252 mK � 60 mK.
This gives an approximate upper bound on the energy scale
ε of the low energy mode or modes leading to the zero
bias peak. While the quality of the conductance data has
improved in more recent experiments [23], the peak width
remains of a similar order of magnitude [41]. One of the
chief benefits of a fusion-type experiment is therefore the
possibility of an improvement in the energy resolution of
the low-lying states (i.e., by going to slower and slower
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cut rates). If an experiment using wires similar to those in
transport experiments [16–18,20–24] has a cut rate that is
faster than the time scale set by the ∼20 μeV peak width (i.e.,
taking a time shorter than ∼0.016 ns to perform the cut), a
probability of P00 = 1/2 may be expected quite generically,
as it is already known from those transport experiments that
modes with energy �20 μeV are present near the ends of the
wire. Observing a peak in the fusion probability at 1/2 at a cut
rate slower than the 20 μeV scale (taking longer than 0.016 ns)
would confirm the existence of zero modes to a higher level of
precision than these conductance experiments. At sufficiently
slow cut rates the fusion experiment can be expected to lead to
the adiabatic result. If a P00 = 1/2 is consistently seen, the cut
rate would then determine a new upper bound on the splitting
of the low energy states away from zero.

Since 0.016 ns is indeed a rather short time scale, it is
encouraging that successful fusion measurements may very
well be able to decrease the uncertainty in the zero-mode
considerably—in fact (at zero temperature) a factor of 20 im-
provement (i.e., the mode energy being constrained to within
1 μeV of zero) should be achievable by using experimental
cut rates ∼1 ns. This will still not settle the question of the
topological nature of these modes, but being able to determine
with precision how low in energy the low energy modes really
are will be a great improvement compared with the existing
transport results where the bound on the mode energy from
the peak width appears to be stuck near 10 μeV.

Such an improved resolution may be able the resolve the
Majorana splitting present in current nanowires. Following
Aasen et al. [35], we may use the earlier theoretical work
of Das Sarma et al. [50], to put a conservative estimate of
the Majorana splitting for a nanowire similar to those used
in current experiments (3 μm long with a pairing energy
of 1 K and an induced coherence length of 500 nm) at
3 mK ∼ 0.25 μeV. This would suggest that in the case of ideal
topological Majorana modes that follow the theory closely,
the fusion experiment on these wires would cease to give
values of P00 near 1/2 for cutting timescales longer than
h̄/ε ∼ 1.5 ns. (This assumes that the Majorana modes are
localized at the ends of the wire, which is by no means assured
[45]. Importantly, the fusion experiment does eliminate the
normal metal lead present in transport experiments. It can
therefore rule out sources of the zero-bias peak (such as the
Kondo effect [51]) that are not intrinsic to the nanowire but
rather require the interaction of the lead with the nanowire.
The utility of fusion experiments may increase in longer wires,
which are expected to have a smaller splitting in the topological
degeneracy (requiring a slower cutoff rate to resolve via fusion)
but which may have similar resolution in transport. However,
experimental data (even for tunneling transport) in such long
nanowires does not yet exist (and the issue of disorder-induced
low lying fermionic states may become more severe in longer
wires).

We emphasize again that the hard physical constraint to
making the cut rate extremely slow (so that the process is
adiabatic with respect to everything except for a strict zero
energy mode) is that it must be faster than the quasiparticle
poisoning rate, which can randomly change the parity. It
is important to note that the control experiment described
by Ref. [35] can effectively determine whether quasiparticle

poisoning is happening on the timescale of the experiment,
thus avoiding a false positive. The best case scenario for
the fusion experiment is therefore an energy resolution on
the scale of the inverse quasiparticle poisoning time. This
time may be extremely long [52,53] but even in more conser-
vative estimates should be long enough to resolve the above
Majorana splitting [54]. Whether the quasiparticle poisoning
rate is indeed the functional resolution of the fusion experiment
remains to be seen and is beyond the scope of our analysis here.
We note, however, that we have not taken into account the
effects of temperature, which may generically be expected to
favor the maximally random result (i.e., P00 = 1/2) and which
therefore can only decrease the experimental resolution. This is
especially relevant when the expected splitting is far below the
base temperature scale of the experiment, which has typically
been 50–60 mK [16–18,20–24].

Given our emphasis on the fact that fusion experiments
do not uniquely determine a system to have topologically-
derived MZMs, one may ask if there is anything special about
a ‘true’ Majorana system (at least with regard to this fusion
experiment) beyond simply having a low lying fermionic mode
such that ε = 0. We may illuminate the difference by returning
to the simple model of Eq. (1), which may be mapped onto
the Hamiltonian for a spin 1/2 evolving in a time-dependent
magnetic field. The energy difference between even and odd
occupation of the two subregions ε is mapped to the field Bz

in the z direction, while h1 = Bx + iBy . In the true Majorana
case, not only is Bz = ε = 0, but the in-plane direction of
the field (i.e., the phase of h1) is fixed, corresponding to the
conservation of a dual fermion parity shared by the Majoranas
near the center junction. This leads to a precise probability
of P00 = 1/2 independent of dynamics in the case of true
Majoranas. In the spin-1/2 picture, the field in the case of true
Majorana modes is confined to (say) the x direction, while in
the case of ‘accidental’ degeneracy ε = 0 the field is merely
confined to the equatorial plane. In either case, if the spin is
initially in the direction of the field and the field is quickly
turned off, the spin remains in the plane no matter what path
the field took in turning off. Likewise in either case if the field
is varied infinitely slowly so that the spin remains locked to the
field direction, the spin remains in the plane as the field turns
off. In the intermediate case, however, the field that is confined
only to the plane may deflect the spin out of the plane as it
varies, leading to a P00 �= 1/2, which is impossible if the field
is only allowed to vary along a line. This analogy informs our
discussion above on the importance of the ‘slowness’ of the
cutting protocol. In this analogy, quasiparticle poisoning (or
temperature effects) correspond to spin decoherence, which
shortens the spin polarization vector within the Bloch sphere
and ultimately leads to a P00 = 1/2 result, also independent
of any dynamics. These decoherence effects therefore set the
ultimate lower bound on the precision with which the Majorana
splitting may be measured.

III. BRAIDING

We have thus far seen that the ‘fusion rule’ based
experiments described above, while an attractive stepping
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stone to braiding from an instrumentation standpoint, may
not qualitatively identify topological systems more than the
transport experiments that have already been conducted.
(Certainly, fusion does not provide a sufficient condition for
the existence of non-Abelian Majorana modes since there
are explicit situations, as discussed above, where purely
nontopological systems with multiple low-lying fermionic
modes would produce similar fusion signals.) Rather, we look
to the braid properties of the Majorana system in order to
demonstrate unequivocal topological behavior. As predicted
in several places [6–12] and reviewed in Aasen et al. [35],
a system of four Majorana zero modes, two each on left and
right ‘islands,’ is expected to have the following behavior upon
exchange of one of the Majoranas from the left island with
one from the right: Before any exchanges, the fermion parity
is set to be even on both islands, so that the probability P0 of
finding both parities even is P0 = 1. After the first exchange,
P0 = 1/2; after the second, P0 = 0; the third, P0 = 1/2; the
fourth, P0 = 1 again and the sequence starts over. This may
be summed up as

P00 = 1

2
+ 1

2
cos

nπ

2
, (4)

where n is the number of braid operations, all taken to wind in
the same direction.

A. Single exchange

In order to conduct a braid operation with Majorana zero
modes bound to semiconductor nanowires, one generically
needs to leave a strictly one-dimensional setting [25,27,29].
Here, we follow the geometry of Aasen et al. [35], shown in
Fig. 2, which allows some simplifications in the Hamiltonian
we examine, although we expect our results to be broadly
applicable. Out of the six Majorana bound states shown in
Fig. 2, only the three at the ends of the islands toward the
middle of the system participate in the braid process through
direct tunneling in the ideal (topological) case, while the
bottom Majorana bound state participates through the charging
energy of the central island (island 2). In a more general
(nontopological) case, couplings are allowed between any two
Majorana modes, although we shall assume that the islands
storing the qubit information at the beginning of the braid
process have fermionic zero modes.

In this section we consider in detail the Hamiltonian of
this 3-island geometry as it is tuned through the braid process.
Each of the islands will be assumed to have a single low-lying
fermion state, and the total parity of the three islands will be
assumed to be conserved over the duration of the experiment.
The most general Hamiltonian of this type, restricted to the
even parity sector in which our computation takes place, is
given by

H =

⎛
⎜⎝

|000〉
|011〉
|110〉
|101〉

⎞
⎟⎠

T
⎛
⎜⎜⎜⎝

A h2 h1 h3

h∗
2 B h′

3 h′
1

h∗
1 h′∗

3 C h′
2

h∗
3 h′∗

1 h′∗
2 D

⎞
⎟⎟⎟⎠

⎛
⎜⎝

〈000|
〈011|
〈110|
〈101|

⎞
⎟⎠. (5)

We shall alternately write our Hamiltonian and unitary trans-
formations in bra/ket notation or in matrix notation. Matrices

FIG. 2. Diagram of the geometry assumed in our braiding
analysis. We consider a three island geometry. The qubit is stored
in the parity of superconducting islands 1 (left) and 3 (right), whose
total parity is taken to be even at the beginning of the experiment.
The middle island (2), is interposed between islands 1 and 3 so that
no direct hopping from island 1 to island 3 is allowed, simplifying
the analysis. In the topological case, each island would contain two
Majorana zero modes, and only the nearest to the island junction
would couple and decouple from one another during the braid process.
The allowed couplings in the topological case are represented by solid
black lines. We may represent the nontopological case in the same
Majorana basis, but more couplings are now allowed between the
Majorana modes. Case 1 allows all the couplings shown in solid,
dashed, and dotted lines. Case 2 separates out one Majorana mode
on an outer island, disallowing either the red (left) or blue (right) set
of dotted lines as couplings by setting h1 = h′

1 or h2 = h′
2 in Eq. (6),

respectively. Case 3 allows none of the dotted line couplings (h1 = h′
1,

h2 = h′
2) and tends toward the topological case as the dashed green

couplings are turned off [θ = ±π/2 in Eq. (6)].

in this section should be understood to be written in the above
basis. The three entries in each bra or ket represent the fermion
parity of islands 1–3, respectively.

We may refine this Hamiltonian using the following
assumptions:

Assumption 1: Parity cannot hop directly from island 1 to
island 3 (so h3 = h′

3 = 0).
Assumption 2: The cross capacitance of the three islands

is small, so that we may assign independent energies εi to the
occupation of the fermion states on islands i = 1,2,3.

Assumption 3: In the absence of tunnel coupling, islands 1
and 3 each have a fermionic zero mode (so ε1 = ε3 = 0).

Assumption 1 is justified in the braiding arrangement of
Aasen et al., in which island 2, used for braiding, is interposed
between islands 1 and 3. We may therefore take the direct
coupling of islands 1 and 3 to be small. This assumption is
specific to the geometry of Aasen et al., but direct coupling
between islands 1 and 3 is not necessary to braiding, so we
exclude it. Assumptions 2 and 3 are experimentally motivated
by the idea that these wires have presumably already demon-
strated zero-bias conductance peaks in transport experiments
[16–24] and potentially demonstrated near-zero-energy modes
in fusion-rule experiments as well (as in Sec. II), so that both
the bare excitation energy and the capacitive energy may be
assumed to be small.
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The most general Hamiltonian under these assumptions is

H =

⎛
⎜⎜⎝

−ε2 h2e
iθ h1 0

h2e
−iθ ε2 0 h′

1
h1 0 ε2 h′

2e
−iθ

0 h′
1 h′

2e
iθ −ε2

⎞
⎟⎟⎠, (6)

where we have performed a gauge transformation to make
the hi and h′

i entries real and positive. The matrix therefore
contains only a single phase parameter θ .

To describe the braiding process, we further assume that one
may independently decouple the first island (h1 = h′

1 = 0) or
the third island (h2 = h′

2 = 0), or cause a degeneracy in the
second island (ε2 = 0). The braiding process begins with all
the couplings off (hi = h′

i = 0) and island 2 given a charging
energy so that ε2 �== 0. We then proceed in the following
steps:

Step 1: Decrease ε2 to 0, while increasing the tunnel
coupling between islands 1 and 2 so that h1,h

′
1 → h1max �= 0.

Step 2: Decrease h1,h
′
1 to 0, while increasing the tunnel

coupling between islands 2 and 3 so that h2,h
′
2 → h2max �= 0.

Step 3: Decrease h2,h
′
2 to 0, while increasing the charging

energy on island 2 so that ε returns to near its original value.
We assume that these steps are performed adiabatically, so

that each eigenstate at the beginning of a step is mapped to an
eigenstate at the end of that step in such a way that the ordering
of the energies is maintained.

Step 1 begins with two degenerate states |000〉 and |101〉,
but there is no ambiguity in the mapping because the step 1
Hamiltonian does not couple these two sectors. We may thus
infer that the adiabatic performance of step 1 results in the
unitary operation:

U1 = eiξ1

√
2

(|000〉 − |110〉)〈000|

+ eiξ2

√
2

(|011〉 + |101〉)〈011|

+ eiξ3

√
2

(|000〉 + |110〉)〈110|

+ eiξ4

√
2

(|011〉 − |101〉)〈101|, (7)

where the ξi are accumulated phases (a combination of
dynamic and Berry phases) to be determined later if necessary.
Note that the ground state degeneracy is maintained during step
1 only if h1 = h′

1.
Likewise, performing step 3 adiabatically results in:

U3 = eiψ1

√
2

|000〉(〈000| − eiθ 〈110|)

+ eiψ2

√
2

|011〉(〈000| − eiθ 〈110|)

+ eiψ3

√
2

|110〉(eiθ 〈110| + 〈101|)

+ eiψ4

√
2

|101〉(eiθ 〈110| − 〈101|), (8)

where again the ψi are accumulated phases to be determined
later if necessary. Note that the ground state degeneracy is
maintained during step 3 only if h2 = h′

2.
The analysis of Step 2 is somewhat more involved. During

this step, degeneracy is maintained between the lowest two
energy states only if h1 = h′

1, h2 = h′
2 and θ = ±π/2. These

are exactly the conditions for the topological system. Any
nontopological system will accumulate a dynamic phase due
to the splitting. Furthermore, if θ = 0,π , the first and second
excited energy states meet during the evolution, which leads
to diabatic errors in the evolution—the system will not return
to the ground state space after the braid operation. This type of
error can be somewhat mitigated by measuring all three islands
at the end of the braid test, rather than just those containing
the qubit [55].

If adiabatic evolution is maintained, however, we note
three distinct cases for a general nontopological system: h1,2

are each distinct from h′
1,2, one of them is distinct, or both

are equal. These three cases lead to quite different unitary
transformations. Note that these requirements are not sharp and
that the crossover between the regimes below is governed by
the rate at which the braid process is performed. For instance,
in what follows, h1 = h′

1 may be taken in practice to mean
|h1 − h′

1| � h̄/τ , where τ is the timescale over which the braid
is performed, while h1 �= h′

1 indicates |h1 − h′
1| � h̄/τ . We do

not consider the case |h1 − h′
1| ∼ h̄/τ , where a consideration

of the full nonadiabatic dynamics of the system is required and
the results are expected to interpolate between those below. We
also ignore constraints from any quasiparticle poisoning in our
braiding consideration assuming such poisoning time scales to
be very long compared with all braiding operation time scales
(see Sec. IV for the effects of quasiparticle poisoning).

1. Case 1: Generic couplings (h1 �= h′
1 and h2 �= h′

2)

We first consider the case in which all of the couplings
shown in Fig. 2 are allowed. Dotted-line (nontopological)
couplings between islands are assumed to be zero whenever
the solid-line couplings between those islands are off. The
generic case in which all the couplings shown in Fig. 2 are
allowed corresponds to h1 �= h′

1 and h2 �= h′
2 in Eq. (6). In

this case there is no degeneracy at any time during step 2. We
may then proceed with the same analysis as worked for steps
1 and 3 above, as each eigenstate is mapped unambiguously
by adiabatic evolution. There are, however, two possibilities
as to the order of the energies at each end of step 2, leading to
different transformations. Either sgn(h1 − h′

1) = sgn(h2 − h′
2)

or sgn(h1 − h′
1) = −sgn(h2 − h′

2). In the first case,

U2 = eiζ1

2
(|000〉 − eiα|110〉)(〈000| − 〈110|)

+ eiζ2

2
(|000〉 − eiα|110〉)(〈011| + 〈101|)

+ eiζ3

2
(eiα|110〉 + |101〉)(〈000| + 〈110|)

+ eiζ4

2
(e−iα|110〉 − |101〉)(〈000| − 〈101|), (9)
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leading to an overall unitary U = U3U2U1 given by

U =

⎛
⎜⎜⎝

eiα1 0 0 0
0 eiα2 0 0
0 0 eiα3 0
0 0 0 eiα4

⎞
⎟⎟⎠ (10)

that simply adds a phase αi = ψi + ζi + ξi to each of the initial
eigenstates. We label this possibility case 1a in later sections.

The other possibility, that sgn(h1 − h′
1) = −sgn(h2 − h′

2),
ultimately leads to a deterministic switching between the
ground states

U = Pf

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠Pi (11)

at the completion of each nominal braid, where Pf and Pi are
diagonal unitary matrices collecting the dynamic and Berry
phases. We label this possibility case 1b in later sections.

2. Case 2: One isolated Majorana mode (h1 = h′
1 and h2 �= h′

2)

We now move on to the case in which either the left-most
or right-most Majorana mode in Fig. 2 is isolated from the
rest of the system. In this case, a degeneracy exists within
the even-parity subsector at one end of step 2 [56]. We take
h1 = h′

1, with h2 �= h′
2, corresponding to an isolated Majorana

on the left island and the absence of the dotted (red) couplings
to the far left side of that island in Fig. 2 (the analysis of
h1 �= h′

1, h2 = h′
2, an isolated Majorana on the right island, is

similar and omitted here). Physically, this situation might arise
if one wire is fully topological, so that the situation corresponds
to isolated or exponentially-protected MZMs, while the other
two wires simply have near-zero-energy modes but are in
the topologically trivial phase (e.g., two nearby Majorana
bound states with nearly orthogonal wave functions). Now
there is a degeneracy at the beginning of step 2, so that it
is no longer immediately clear how adiabatic evolution will
map the eigenstates. However, except in the topological case
(where degeneracy persists throughout steps 1, 2, and 3),
the degeneracy is immediately lifted upon adding a small
h2 ∼ h′

2 ∼ h̄/τ � h1max . Furthermore, barring the special
case θ = 0,π or a fully topological system, there are no gap
closures during the evolution. We can therefore find the initial
eigenvectors using degenerate perturbation theory for small
h2 ∼ h′

2 and proceed as we did in case 1.
The energy eigenstates near the beginning of step 2 and

their corresponding eigenvalues are given by

1

2

⎛
⎜⎝

eiφ

−1
−eiφ

1

⎞
⎟⎠, − h1 − η2;

1

2

⎛
⎜⎝

eiφ

1
−eiφ

−1

⎞
⎟⎠, − h1 + η2;

1

2

⎛
⎜⎝

eiφ

−1
eiφ

−1

⎞
⎟⎠, h1 − η2;

1

2

⎛
⎜⎝

eiφ

1
eiφ

1

⎞
⎟⎠, h1 + η2. (12)

Here η2 =
√
h2

2 + h′2
2 + 2h2h

′
2 cos 2θ+O(h2

2) and φ =
arg(h2e

iθ + h′
2e

−iθ ).

Adiabatic evolution maps these states to the eigenstates of
the Hamiltonian with h1 = ε = 0. Taking h2 > h′

2, we have

U2 = eiζ1

2
√

2

⎛
⎜⎝

1
−e−iθ

0
0

⎞
⎟⎠(

e−iφ −1 −e−iφ 1
)

+ eiζ2

2
√

2

⎛
⎜⎝

1
e−iθ

0
0

⎞
⎟⎠(

e−iφ 1 e−iφ 1
)

+ eiζ3

2
√

2

⎛
⎜⎝

0
0

e−iθ

1

⎞
⎟⎠(

e−iφ −1 e−iφ −1
)

+ eiζ4

2
√

2

⎛
⎜⎝

0
0

e−iθ

−1

⎞
⎟⎠(

e−iφ 1 −e−iφ −1
)
, (13)

so that the total unitary enacted by the nominal braid is given
by

U = 1√
2
Pf

⎛
⎜⎜⎝

e−iφ 0 0 −1
0 1 e−iφ 0
0 −1 e−iφ 0

e−iφ 0 0 1

⎞
⎟⎟⎠, (14)

where Pf is a diagonal unitary matrix collecting the dynamic
and Berry phases. Note that no dynamic phase is accumulated
during step 1 [57], so that Pi = I .

3. Case 3: Two isolated Majorana modes (h1 = h′
1 and h2 = h′

2)

We now move on to the case in which both of the wires
storing the initial state of the qubit are fully topological. In
Fig. 2 the dotted (red and blue) couplings to the far ends
of the outer islands are disallowed. The consequence for the
Hamiltonian stems from the fact that each of these wires has a
Majorana zero mode that is far away from the junction and so
does not enter into the Hamiltonian for the braid process. With
the appropriate choice of gauge, this means that we may set
h1 = h′

1 and h2 = h′
2. Now there is a degeneracy at both ends

of step 2. This two-ended degeneracy allows the possibility
of interference effects between different paths in the Hilbert
space, which is crucial to the topological case. The present
case differs from the topological case in that θ �= ±π/2. This
represents the nontopological nature of the center island and
results in energy splitting during step 2. Following a procedure
similar to that detailed for case 2 and finding the appropriate
eigenstates at each end of step 2, we find a total unitary given
by

U =

⎛
⎜⎜⎝

cos χ

2 0 0 i sin χ

2

0 cos χ ′
2 i sin χ ′

2 0

0 i sin χ ′
2 cos χ ′

2 0
i sin χ

2 0 0 cos χ

2

⎞
⎟⎟⎠, (15)

where χ,χ ′ include Berry and dynamic phases. As the dynamic
phases tend to zero, χ,χ ′ → ±π/2, the topological result.
That is, the Berry phase associated with the braid process
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always gives a ±π/2 contribution to χ,χ ′, regardless of the
dynamic phase. Assuming that no other states are excited, this
result may also be achieved by performing the nominal braid
quickly relative to the induced gap. Note that no dynamic phase
[58] is accrued during steps 1 and 3, where the degeneracy of
the qubit states is maintained.

B. Qubit polarization after multiple braids

Thus far, we have discussed the possible unitary transfor-
mations resulting from carrying out a braid process (i.e., the
set of operations that enacts a braid on a topological system)
when the experimental system is not necessarily topological.
In this, we are able to see the entirety of the expected unitary.
An experiment verifying the braid process is generally much
more limited, measuring only the probability of, e.g., returning
to the state |000〉 after completing the braid process some
number of times. We label this probability P0(n), where n is
the number of nominal braids and the subscript indicates that
an even parity is measured on both wires. That is, P0(n) is the
conditional probability of measuring 0 on the left wire given
that the overall parity is measured to be even [59].

To find P0(n), we first reduce the unitary braid transfor-
mations of Sec. III to the parity conserving sector, giving the
following four options:

Case 1a

U =
(

e−iχ1a/2 0
0 eiχ1a/2

)
Case 1b

U =
(

0 −e−iχ1b/2

eiχ1b/2 0

)
Case 2

U = 1√
2

(
e−i

χ2
2 −e−i( χ2

2 −φ)

ei( χ2
2 −φ) ei

χ2
2

)
Case 3

U =
(

cos χ3

2 i sin χ3

2
i sin χ3

2 cos χ3

2

)
. (16)

In each case we have removed all of the overall phases in favor
of a single remaining dynamic phase variable χi . We assume
the experimental procedure is the same for each attempted
braid, so that for each attempt χ is a random variable with
mean χ̄i and variance σ 2

i [60]. After each nominal braid, the
density matrix transforms as

ρ(n) =
∫

dχ√
2πσi

U (χ )ρ(n − 1)U †(χ )e
− (χ−χ0)2

2σ2
i , (17)

where n is the total number of nominal braid operations (of
the same chirality) performed.

We define the qubit polarization

z(n) = 〈000|ρ(n)|000〉 − 〈101|ρ(n)|101〉) (18)

so that

P0(n) = 1
2 + 1

2z(n), (19)

where P0(n) is the probability of finding the system in the state
|000〉 after n nominal braids.

Assuming we begin with the system in the ground state
with even parity on both islands storing the qubit (|000〉), we
find

Case 1a

z(n) = 1 (20)

Case 1b

z(n) = (−1)n (21)

Case 2

z(0) = 1

z(1) = 0

z(2) = −e− σ2
2
2 cos χ̄2

z(3) = e−σ 2
2 sin2 χ̄2

z(4) = e−σ 2
2 cos2 χ̄2 + e−3

σ2
2
2 cos χ̄2 sin2 χ̄2

Case 3

z(n) = e− nσ2
3

2 cos nχ̄3. (22)

For case 2, we have listed only the polarization values for
the first four braids of the same chirality. A solution for
arbitrary n is possible but cumbersome, and we do not show
it here. The case 3 results reduce to those [Eq. (4)] for a
fully topological system when χ̄3 = ±π/2, σ 2

3 = 0. Note,
however, the possibility of an accidental similarity between
case 2 results and those of true braiding, should χ̄2 ≈ 0. The
case 2 results after a single braid are also noteworthy: A
probability of P0 = .5 is obtained independent of the dynamic
phase distribution in this (nontopological) case. This is another
example of the unreliability of 50-50 type signals in attempting
to distinguish topological phenomena.

The three cases may be compactly summarized by an
analogy with a linear optics device, as shown in Fig. 3. In
particular, this gives insight into the oddly exact value z(1) = 0
found in case 2. This case is analogous to an interferometer in
which one of the two 50-50 beam splitters has been replaced
by a mirror, so that the beam is always split evenly into the
two outputs regardless of the accumulated phase. We have
further summarized our results for the first four braids for easy
reference in Table I.

We have not discussed or included any effect of extrinsic
decoherence in the above analysis. In practice, of course,
all dynamic processes involving braiding and fusion will
be limited by an effective decoherence time which puts a
sharp lower (upper) limit on how slow (τ ) the braiding can
be in realistic situations. In particular, the whole braiding
measurement must be carried out over a time scale much
shorter than the typical decoherence time (e.g., the poisoning
time associated with the entrance of stray quasiparticles in
the system from the environment). Heuristically, however, one
might expect the effect of such poisoning to be similar to
that of variance in the dynamic phase in cases 2 and 3—the
signal is degraded toward an unpolarized (z = 0) state. We
expect such depolarizing noise to be present in all cases,
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FIG. 3. A linear optics device analogous in operation to the braid
process. When both the left-and right-hand optical elements are
50-50 beam splitters, and the accumulated phase in the resulting
interferometer loop is ±π/2, an incoming beam is transformed
by the topological braid matrix (as in our case 3). Nontopological
couplings between the islands in Fig. 2 lead to imperfections in the
corresponding optical elements, so that, e.g., generic couplings (red in
Fig. 2) leading to h1 �= h′

1 cause the left hand beam splitter to be either
replaced by a mirror or removed entirely (in either case, a random
dynamic phase is added). Likewise the (blue in Fig. 2) nontopological
couplings to the right hand island replace the right hand beam splitter
with a mirror or remove it. Finally, the inability to isolate the bottom
Majorana on the center island in Fig. 2 leads to a nontopological value
of the phase � accumulated in the interferometer. All of our braid
results are reproduced by this device.

further complicating the distinction between the topological
and nontopological results.

IV. QUASIPARTICLE POISONING

Since topological qubits are intrinsically robust, the domi-
nant ‘decoherence’ mechanisms are extrinsic, with quasipar-
ticle poisoning (i.e., introduction of random stray nonther-
mal quasiparticles into the superconductor) being the most
important one. Such quasiparticles violate parity conserva-
tion, destroying the topological qubit. While great strides
have been made in limiting the problem of quasiparticle
poisoning in Majorana nanowires experimentally [52,53],
the presence of stray fermions within the superconducting
system will have a deleterious effect on braiding experiments.
We approach this problem with the simplifying assumption
that stray quasiparticles will populate all fermionic modes
within the system equally, regardless of energy, since they are
intrinsically nonthermal in nature (all thermal quasiparticles
are exponentially suppressed at low temperatures due to the

superconducting gap). In particular, if the system begins in an
even state of total fermion parity, then no information about
the braid process remains if the total measured fermion parity
is odd. Indeed, as the extra fermion is equally likely to have
entered the left or right wires, whether the prior state was |00〉
or |11〉 is completely unknown. However, in the sector with
total even fermion parity, information degrades more slowly.
There, the net effect of quasiparticle poisoning (as with many
decohering processes) is a tendency to drive P0 → 1/2. This
form of quasiparticle poisoning leads to the master equation
for the density matrix ρe of the even subspace

ρ̇e = −i[H,ρe] − κp

2

(
ρe − Trρo

Ne

I

)
, (23)

where ρo is the density matrix of the odd subspace, I is the
identity matrix, and Ne is the size of the even parity subspace
(in our simple model for the braiding experiment, Ne = 4,
while Ne = 2 for the simplest model of the fusion experiment).
κp is the poisoning rate. Note that only the trace of ρo enters
the equation for ρe, representing the fact that all information
(other than the total density) is lost in the poisoning process.

This master equation is actually separable: noting that
Trρo = 1 − Trρe and setting

ρe = Trρe

Ne

I + e− κp t

2

(
ρ̄ − 1

Ne

I

)
, (24)

where

Trρ̇e = −κp

(
Trρe − 1

2

)
, (25)

we find that ρ̄ is a unit trace matrix obeying

˙̄ρ = −i[H,ρ̄]. (26)

We may therefore treat the quasiparticle poisoning separately
from the Hamiltonian evolution, as if it all occurred (e.g.) at
the end of the braid process.

Given that no information about the braid process is
transferred into the odd parity sector, we assume all islands
involved in the experiment are measured (including the central
island in the braiding experiment), and that results showing an
odd total parity are thrown out. We must therefore normalize
the probability to only these outcomes.

TABLE I. Qubit polarization z(n) = 2P00 − 1 after n repeated braid attempts. Cases 1–3 are detailed in the main text and Fig. 2. Case 4 is
the topological case, listed here for reference. The second column lists the number of Majorana modes that remain isolated, not participating in
the braid process. The mean χ̄i and variance σ 2

i of the dynamic phases are system dependent. Note that χ̄2 = 0, σ2 = 0 makes the case 2 results
equal to the topological ones, and χ̄3 = ± π

2 , σ3 = 0 gives the series of results associated with a topological system in case 3. Neither of these
cases are topological. However, these are not equivalent situations. Case 3 is a ‘near topological’ system, and tends to case 4 as the bottom
Majorana on the center island of Fig. 2 becomes better isolated during step 2 and therefore χ̄3 → ± π

2 with zero variance. The topological
seeming result in case 2 is somewhat coincidental and should change drastically with a small change in experimental parameters.

Case Isolated Majorana modes z(0) z(1) z(2) z(3) z(4)

1a 0 1 1 1 1 1
1b 0 1 −1 1 −1 1

2 1 1 0 −e− σ2
2
2 cos χ̄2 e−σ 2

2 sin2 χ̄2 e−σ 2
2 cos2 χ̄2 + e− 3σ2

2
2 cos χ̄2 sin2 χ̄2

3 2 1 e− σ2
3
2 cos χ̄3 e−σ 2

3 cos 2χ̄3 e− 3σ2
3

2 cos 3χ̄3 e−2σ 2
3 cos 4χ̄3

4 2 1 0 −1 0 1
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Beginning with a state such that at t = 0, Trρe = 1, we find
for an n-braid process that takes time t

P
poisoned
00 (n) = ρe

000

ρe
101 + ρe

000

= 1

2
+ z(n)

cosh
( κpt

2

) + 1
, (27)

where ρe
s = 〈s|ρe|s〉. Note that we have taken ρ̄000 + ρ̄101 = 1

and ρ̄000 = (1 + z(n))/2 at the end of the braid process, thus
assuming no diabatic errors in the Hamiltonian evolution.
Obviously, the outcome depends crucially on the poisoning
rate κp, which must be a phenomenological input into
the theory. However, as might be expected, the poisoned
system has a tendency to revert to P

poisoned
00 = 1/2 over time,

independent of the braiding operation that is performed. This
underlines the importance of control experiments in which no
braid is expected to be performed, especially in any experiment
for which the expected topological result is P00 = 1/2. We
emphasize that for finite quasiparticle poisoning rate, both
braiding and fusion invariably produce a 1/2-probability if
the experiment is conducted over a long time period. This is
independent of the topological nature of the system. Thus,
only experiments done over a time scale fast compared with
quasiparticle poisoning would be relevant for the observation
of Majorana zero modes in fusion or non-Abelian statistics in
braiding.

V. SUMMARY AND OUTLOOK

We have critically considered recently proposed fusion and
braiding experiments in semiconductor nanowires, carefully
distinguishing features arising from trivial nontopological
effects (which could nevertheless be quite subtle) from the
important ones arising from topological effects of non-Abelian
Majorana statistics, finding that there are situations where
the same experimental signature could arise equally well
from both topological and nontopological origins, making
the situation less clear-cut or definitive in the presence of
realistic effects which are likely to be present experimentally.
We then discussed various specific techniques capable of
discerning non-Abelian signatures in braiding (or fusion) from
trivial nontopological effects. In general, our conclusion is
that fusion, by itself, can only satisfy necessary conditions
supporting the existence of non-Abelian excitations, probing
essentially the same information as the existing Majorana
signatures manifested in the zero bias conductance peak in
nanowire tunneling transport measurements (although fusion
could provide compelling support for Majorana modes if suc-
cessful in nanowires already manifesting zero bias tunneling
conductance peaks, particularly because it has the potential to
provide better energy resolution than transport experiments).
We have carried out a detailed analysis of various proposed
nanowire braiding experiments clarifying in depth the non-
Abelian signatures as distinguished from accidental nontopo-
logical effects, thus providing a clear guideline for future
experiments on how to discern non-Abelian braiding statistics
from the measurements. Below we provide a more technical
summary of our findings, emphasizing our assumptions and
approximations, and discuss their implications briefly.

Our results are obtained within a simple model that assumes
only a few low-energy modes are present in the system.
In the case of fusion, we find that even if there is only a
single mode per wire segment, it is possible to reproduce
the topological results of fusion with nontopological system
whose on-site energy is pinned near zero. Additional modes
do not provide further distinction and in fact tend to converge
to the topological result in the many-mode limit. In the case
of a braiding experiment, we find that the model with a
single complex fermionic mode per island is sufficient to
provide a distinction between the topological case and the
case of nontopological fermions with on-site energy fine-tuned
to zero. Our results suggest an ‘operational’ definition of a
non-Abelian Majorana zero mode at a given endpoint as one
whose partner is completely decoupled from any operator
located at that endpoint (couplings all much less than the
inverse timescale of the experiment). That is, any coupling to
that end of the nanowire by fermionic modes outside the wire
‘sees’ only one Majorana mode. This is a stronger condition
than the decoupling of Majorana modes within the wire, as
evidenced by the variety of braiding results possible even when
such decoupling is present (see Sec. III). This condition also
leads to the ‘true’ Majorana result for the fusion experiment of
Sec. II (i.e., that the P00 = 1/2 result occurs independent of the
dynamics), although as described in that section this result my
be difficult to distinguish from those of more generic systems.
In order to conclusively establish the existence of such anyonic
Majorana zero mode excitations, it is important that the
experimental signatures satisfy both necessary and sufficient
conditions for non-Abelian braiding statistics and not just the
necessary conditions (since the necessary conditions may also
arise from nontopological effects in various circumstances as
discussed in our work).

It is important to note in either the fusion or braiding
context that the measurements of the system are necessarily
destructive. After each measurement, the system is reset.
In particular, this means that a measurement of z(3) (i.e.,
measuring the qubit polarization after three braids) is three
times as costly in time as a measurement of z(1) (the
polarization after just one braid). This may indeed be far
too costly, increasing the possibility of decoherence effects
such as quasiparticle poisoning substantially. However, one
braid is not the best option even though it can obviously
be carried out faster than a multiple braid experiment. The
probability P0(n) is probed through a series of Bernoulli
trials, ultimately resulting in a binomial distribution for
the qubit state (0 or 1) with mean P1(n) = 1 − P0(n) and
variance P0(n)P1(n)/Ntr, where Ntr is the number of trials.
In order to distinguish one of the nontopological cases from
the topological one, enough statistics must be accumulated
to separate the resulting probability distributions. Judging
by Table I, this may be particularly difficult after just one
braid. Case 2 is indistinguishable from the topological case
after a single braid, while Case 3 may give P0(1) = 1/2
for nontopological reasons if the variance is large. (In fact,
in the presence of depolarizing noise such as quasiparticle
poisoning, all braid results have a tendency to revert to
P0 = 1/2). The result after a double braid is more robust
because the topological result lies at one extreme of the range
of values for z. Dephasing, noise, quasiparticle poisoning, and
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nontopological terms can only move the polarization away
from the topological result for a double braid.

In general we find that experiments with a predicted
unpolarized outcome of z = 0 (including fusion experiments)
do not robustly distinguish topological and nontopological
systems, at least not without careful manipulation of the
involved system parameters, such as wire length or experi-
mental timescale. This is not to say that such experiments
have no value. Indeed the timescale of the cut in a fusion
experiment may be used to put a bound on the energy splitting
of Majorana modes in the associated double wire system. In
particular, such fusion measurements, if successful, provide
evidence in support of Majorana zero modes at the same
level of satisfying a necessary condition as do the zero bias
conductance peak observation. As fusion is an independent
measurement not connected with tunneling transport, this
would further strengthen the case for non-Abelian statistics
(while not clinching it conclusively). Likewise, the braiding
experiment should be carefully optimized to include data from
both the first and second braids (and beyond, if possible) in
distinguishing between the cases described here.

Finally, we comment on four concrete aspects of the
experimental nanowires which are likely to be important
physical mechanisms in determining success or failure of
fusion/braiding experiments. First, the current experimental
nanowires manifest zero bias peaks whose broadening or
energy width is typically comparable to the topological gap.
If the zero bias peak width arises entirely from splitting
between the Majorana bound states, then there is the serious
problem of fusion/braiding experiment being unable to satisfy
the key necessary condition of being much faster (slower)
than the Majorana splitting (topological gap), as these energy
scales are not well separated in current transport experiments
[16–24]. Second, it has recently been argued [40,41] that
intrinsic dissipative broadening may play a role in Majorana

nanowires. In the presence of such dissipation it is of course
necessary for fusion/braiding to occur much faster than the
dissipation energy scale, which may be difficult to satisfy
until dissipative broadening is suppressed in the experimental
systems compared with the current estimates. Third, all
measurements must occur on a time scale much faster than any
quasiparticle poisoning time scale, which necessitate careful
engineering to avoid the nonthermal poisoning endemic in
mesoscopic superconducting structures. Finally, much like
quasiparticle poisoning, finite temperature will generically
degrade the visibility of fusion or braiding results, drawing
the measured probabilities toward the maximumally random
result of P = 1/2. It is interesting to note that such a result, in
the absence of an appropriate control experiment [35], would
lead to false positives (suggesting a topological result in a
nontopological system) in the fusion experiment but false
negatives (a nontopological result in a topological system)
in a double-braid experiment.

Our work shows that a fusion experiment, when interpreted
cautiously, could lead to useful information regarding the exis-
tence of non-Abelian Majorana zero modes, but, by itself, can-
not conclusively establish non-Abelian statistics because the
possibility of trivial nontopological effects can never be com-
pletely ruled out. Braiding measurements can of course dis-
tinguish the topological phase from the nontopological ones,
but sufficient statistics involving many measurements with
different numbers of braids may be necessary in order to make
a compelling case for the existence of non-Abelian statistics.
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