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Spatial dispersion in atom-surface quantum friction
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We investigate the influence of spatial dispersion on atom-surface quantum friction. We show that for
atom-surface separations shorter than the carrier’s mean free path within the material, the frictional force
can be several orders of magnitude larger than that predicted by local optics. In addition, when taking into
account spatial dispersion effects, we show that the commonly used local thermal equilibrium approximation
underestimates by approximately 95% the drag force, obtained by employing the recently reported nonequilibrium
fluctuation-dissipation relation for quantum friction. Unlike the treatment based on local optics, spatial dispersion
in conjunction with corrections to local thermal equilibrium change not only the magnitude but also the distance
scaling of quantum friction.
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I. INTRODUCTION

Quantum fluctuations give rise to numerous fascinating
physical effects, especially on submicrometer scales. Some of
these phenomena have been extensively studied and carefully
measured, thus demonstrating their relevance for both funda-
mental physics and future technologies [1,2]. Recently, there
has been a renewed interest in fluctuation-induced interactions
in nonequilibrium systems. A prominent example is quantum
friction [3,4], the quantum drag force between two uncharged,
polarizable objects in relative motion. A large part of the
existing literature on quantum friction considers an atom (or
some other microscopic object) moving in front of a flat
surface, where the corresponding material is modeled using
local optics, i.e., assuming an optical response described by
a permittivity that depends only on frequency [5–14]. Within
the assumption of local optics, several conceptual questions
have been previously addressed, including the functional
dependence of the frictional force on the atom’s velocity
[11,14,15], the impact of non-Markovian effects [16], and even
the relevance of nonequilibrium correlations [17].

At short distances from the surface, however, a local
description of the material becomes inadequate. Earlier works
[18–21] have already shown that using a nonlocal description
can lead to corrections to equilibrium dispersion forces [22].
Nonlocality is to be understood in the sense that spatial
dispersion is included in an optical response; i.e., the material’s
permittivity depends on both frequency and wave vector.
Also, in the case of surface-surface quantum friction, different
material models that include spatial dispersion have been
used to describe the drag force [4,23–27]. The authors
of these works have demonstrated that for short distances
spatial nonlocality can lead to an enhancement of the force
relative to the case of a local material model [23–26]. These
works, however, have resorted to the so-called local thermal
equilibrium (LTE) approximation, where it is assumed that
the subsystems in relative motion are at equilibrium with
their immediate surroundings. Such a procedure makes it
possible to utilize results of equilibrium thermodynamics, like
the fluctuation-dissipation theorem (FDT) [28], but neglects
the contribution due to nonequilibrium correlations [17,29].

In fact, recent work has shown that the LTE approximation
is not well justified for atom-surface quantum friction and
underestimates the magnitude of the drag force [17]. Since the
LTE approximation relies on a short correlation length of the
fluctuations that mediate the interaction, one can expect that,
when spatial dispersion is taken into account, the deviation
from the LTE result is even larger than in the local optics
treatment.

In this work, we study effects of spatial dispersion in atom-
surface quantum friction and compare the results obtained
using the LTE approximation with those obtained using a
full nonequilibrium approach. We show that spatial dispersion
enhances the failure of the LTE approximation, resulting in a
95% deviation from the full nonequilibrium result compared to
the 80% deviation previously reported within local optics [17].
In addition, we show that the inclusion of spatial nonlocality
strongly affects the functional distance dependence of the
frictional force in the low-velocity limit. In contrast to the local
optics case, where both the LTE and the full nonequilibrium
approach predict the same distance scaling law for the quantum
frictional force, their distance behaviors are different in the
presence of spatial dispersion.

II. ATOM-SURFACE QUANTUM FRICTION

Consider an atom driven by an external force and moving
with nonrelativistic velocity (|v| � c) at constant height
za > 0 parallel to a conducting isotropic half-space. The
atom is modeled as an electric dipole, described by the
quantum operator d̂(t). Due to the interaction of the atom
with the surrounding quantum electromagnetic field, a drag
force will progressively balance the external drive until
the system reaches a nonequilibrium steady state, where
the motion continues with constant velocity. Dissipation
in the material gives rise to a nonzero memory time, such that
in the nonequilibrium steady state we can ignore the transient
acceleration process and assume that the atom has reached
the trajectory ra(t) = r0 + vxtx [15,16] (we assume that the
motion is along the x direction). In an earlier work [16], we
have shown that the zero-temperature drag force felt by the
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atom in such a situation can be written as

F = −2
∫ ∞

0
dω

∫
d2p

(2π )2

×px tr
[
SR(pxvx − ω,vx)Gs

I (p,za,ω)
]
, (1)

where p = |p| =
√

p2
x + p2

y is the parallel component of the

three-dimensional electromagnetic wave vector k = pxx +
pyy + qz [30]. For symmetry reasons, the frictional force
is only along the direction of the motion, i.e., F = Fx.
Quantum friction is determined by the velocity-dependent
nonequilibrium power spectrum tensor of the dipole fluctu-
ations, S(ω,vx), and by the Fourier transform (in time and
xy direction) of the electromagnetic surface Green tensor,
G(p,za,ω). In Eq. (1) and in the remainder of the paper
the subscript R (I ) denotes the real (imaginary) part of an
expression, and the superscript s gives the symmetric part of a
tensor [30]. The Green tensor is given by the sum of a vacuum
contribution G0 and a scattering contribution g. Because of
Lorentz invariance, only the latter contributes to the final result
[13,31,32]. In all this work we focus on atom-surface distances
within the surface’s near-field region. In this case the part of
the scattered Green tensor relevant to quantum friction [30] is

gs(p,za,ω) = pe−2zap

2ε0
r(ω,p)

[
p2

x

p2
xx + p2

y

p2
yy + zz

]
, (2)

where ε0 is the vacuum permittivity. The description of
the material properties enters via the transverse magnetic
reflection coefficient, r(ω,p), which, in general, depends on
both the frequency and, for symmetry reasons, the modulus
of the wave vector p. In a spatially local description of the
material and in the near-field limit, the dependence on the
wave vector disappears, and the reflection coefficient is only a
function of frequency [13,16].

In order to calculate the nonequilibrium power spectrum,
we model the dipole’s internal dynamics as a harmonic
oscillator [16],

∂2
t d̂(t) + ω2

ad̂(t) = ω2
aα0 · Ê(ra(t),t), (3)

where ωa is the oscillator’s frequency corresponding to the
atom’s characteristic dipolar resonance frequency [33], Ê is
the electric field, and α0 is the static polarizability tensor,
assumed to be symmetric for simplicity (it is proportional to a
projector parallel to the direction of the dipole moment). We
suppose that the oscillator has no intrinsic dissipation and that
all the dissipative dynamics arises from the coupling to the
electromagnetic field. The harmonic oscillator model allows
for an analytical expression of S(ω,vx) given by [17]

S(ω,vx) = h̄

π
[θ (ω)αI (ω,vx) + J (ω,vx)], (4)

where θ (ω) is the Heaviside-θ function. In contrast to the
LTE approach, which relies on the equilibrium FDT, this
nonequilibrium FDT (4) contains the extra term

J (ω,vx) =
∫

d2p
(2π )2

[θ (ω + pxvx) − θ (ω)]

×α(ω,vx)GI (p,za,ω + pxvx)α∗(ω,vx). (5)

In the previous equations

α(ω,vx) = ω2
a

ω2
a − �(ω,vx) − ω2 − iωγ (ω,vx)

α0 (6)

is the velocity-dependent atomic polarizability, where γ (ω,vx)
and �(ω,vx) denote, respectively, the velocity-dependent
radiative damping and frequency shift [34]:

�(ω,vx)

ω2
a

=
∫

d2p
(2π )2

Tr[α0GR(p,za,ω + pxvx)], (7a)

ωγ (ω,vx)

ω2
a

=
∫

d2p
(2π )2

Tr[α0GI (p,za,ω + pxvx)]. (7b)

According to Eq. (4), the frictional force in Eq. (1)
decomposes into two contributions,

F = F LTE + FJ . (8)

The first, F LTE, is what one would have obtained by applying
the LTE approximation, while the second, FJ , is the correction
entirely due to the nonequilibrium dynamics of the system.

Previous works [16,17,32,35,36] have shown that the
quantum frictional process is characterized by a nonresonant
and a resonant contribution, each being a function of the
atomic velocity and the atom’s separation from the surface.
The resonant part occurs for velocities sufficiently high
to bring the atomic transition frequency within the range
of the surface plasmon-polariton resonances that exist at
the vacuum/material interface. Here, we consider only the
nonresonant part of the frictional force which takes place
at lower velocities and is more likely to play a central role
in typical experimental setups. In Appendix A we show that
the main contribution to the force comes from the frequency
range 0 < ω � vx/za (see also Refs. [16,17]). Therefore, at
sufficiently low velocities [37] the drag force is determined by
the low-frequency behavior of the material’s electromagnetic
response. Under the assumption that the material is Ohmic for
these low frequencies (we will see below that this applies to
our nonlocal model), the low-velocity approximation of the
LTE and the nonequilibrium contributions to the friction can
be written as (see Appendix A)

F LTE ≈ −2h̄
v3

x

π


0
2

3

D0(za)D2(za)[
1 − �(0,0)/ω2

a

]2 , (9a)

FJ ≈ −2h̄
v3

x

π

2

1
D2

1(za)[
1 − �(0,0)/ω2

a

]2 . (9b)

This shows that at low velocities the zero-temperature
frictional force grows as the third power of the atom’s velocity
[8–10,13,14]. In the above expressions, we have introduced
the abbreviations


n =
(

2n

n

) 2n+1
2(n+1)αxx + 1

2(n+1)αyy + αzz

22n+3πε0
, (10)

associated with the dipole’s direction in space, and

Dn(za) =
∫ ∞

0
dp p2(n+1)e−2zapr ′

I (0,p), (11)

which depends on the properties of the surface (the prime
indicates the first derivative with respect to the frequency).
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The functions Dn(za) are the [2n]th derivative with respect
to za of the low-frequency behavior of the electromagnetic
density of states near the vacuum/material interface. In
particular, D0(za) is related to the atomic decay rate induced
by the interaction with the radiation (radiative damping).
Equations (9) show that, under the assumption of Ohmic
dissipation, the LTE and the nonequilibrium correction have
the same functional dependency on the velocity, while their
behavior as a function of the distance can be distinct.
In the local optics approximation, however, we have that
D0(za) ∝ z−3

a , D1(za) ∝ z−5
a , and D2(za) ∝ z−7

a [see Eq. (B8)
in Appendix B]. In this case F LTE and FJ have the same z−10

a

distance dependency, as was already shown in [17].

III. THE SPATIALLY DISPERSIVE MATERIAL
MODEL FOR THE METALLIC BULK

The previous results allow for a quantitative evaluation
of the impact of spatial dispersion on quantum friction. At
this point, we would like to recall that spatial dispersion
becomes physically relevant for materials in which the free
carriers can move over distances which are much larger than
the interatomic separation. This extreme mobility of charged
particles is also related to collective phenomena, such as plas-
mon oscillations in metals [38], dynamical screening [39,40]
and quantum many-body phenomena [41]. In a macroscopic
continuum description of the material, spatial dispersion leads
to a nonlocal relation between the displacement and the electric
fields, leading to a permittivity that depends on the wave
vector of the radiation [22]. In this paper we focus on a
metallic surface and describe its properties using the so-called
semiclassical infinite barrier (SCIB) model [42,43]. In this
model, electrons are treated as a Fermi fluid whose dynamics is
governed by the Boltzmann equation. At interfaces, electrons
are assumed to be specularly reflected by an infinite potential
barrier [44,45]. Although more sophisticated models are
available (see, for example, Refs. [39,46]), the SCIB model
takes into account important phenomena, such as Landau
damping [47,48], which are absent in simpler nonlocal models
(e.g., the hydrodynamic model) [15,39]. Landau damping
occurs when the frequency and the wave vector of the radiation
fulfill the condition ω ≈ k · vp, i.e., when the quasiparticle’s
velocity vp becomes comparable to the phase velocity vph

of the radiation, vp ∼ vph = ω/k (k = |k|). Since quantum
friction is very sensitive to any form of dissipation present
in the system [14,16], this intrinsic damping due to the
exchange of energy between the electronic wave function and
the radiation [41] will play an important role in our analysis.

Within the SCIB model, the reflection coefficient takes the
form [43]

r(ω,p) = 1 − Z(ω,p)/Z0(ω,p)

1 + Z(ω,p)/Z0(ω,p)
, (12)

where Z(ω,p) is the transverse magnetic surface impedance
and Z0(ω,p) is the corresponding vacuum value. In the
nonretarded limit (formally equivalent to the limit for c → ∞)
we have [43,49]

Z(ω,p)

Z0(ω,p)
≈ 2

π

∫ ∞

0
dq

1

k2

p

εl(ω,k)
, (13)

such that the reflection coefficient only depends on the
longitudinal part of the bulk dielectric function, εl(ω,k). For
the latter we use the semiclassical limit of Lindhard’s quantum
dielectric function [41,42,50],

εl(ω,k) = 1 + ω2
p

ω + i�

3u2fl(u)

ω + i�fl(u)
, (14)

where � is the metal’s dissipation rate, ωp is the plasma
frequency, the function fl(u) reads

fl(u) = 1 − u

2
ln

[
u + 1

u − 1

]
, (15)

and u = (ω + i�)/(vF k), with vF the Fermi velocity.
Equation (14) is obtained within linear response theory
[41,42,50] by assuming a thermal equilibrium Fermi-Dirac
carrier distribution. Furthermore, the expression for the per-
mittivity is valid for wave vectors much smaller than the Fermi
wave vector kF = mevF /h̄ (me the effective electron mass) or,
equivalently, when the wavelength of the radiation is much
larger than the de Broglie wavelength λB of the electron at
the Fermi surface [51–53]. Deviations from a Fermi-Dirac
distribution have to be considered for strong interactions
occurring at time scales shorter than the carrier equilibration
time ω−1

p � τEq � �−1 (usually shorter than 1 ps in metals)
[41,54]. In addition, corrections to the semiclassical approach
are expected for atom-surface separations za � λB/π , which
for metals corresponds to half the Bohr radius, i.e., few tenths
of an angstrom. As explained in Sec. II, quantum friction
is a weak low-frequency phenomenon and, therefore, by
considering distances za > 1 Å our approach is well within
the range of validity of such a description.

Depending on the value of u, different mechanisms
dominate the optical response of the metal. In the limit
|u| → ∞ we recover the local Drude model εl(ω,k) →
εD(ω) = 1 − ω2

p[ω(ω + i�)]−1. In this case the main contri-
butions to the atom-surface interaction stem from wavelengths
λ ∼ 1/k much larger than the electron’s mean free path,
λ 
 � = vF /�. For typical physical parameters � ranges from
a few tens up to a few hundreds of nanometers. Since vF /c

is of the order of the fine-structure constant, we then obtain
� ≈ 50 nm for a gold bulk with � ∼ 30 meV. The local
(Drude) regime corresponds to a situation where the electrons’
dynamics averages over a multiscattering scenario and their
ballistic motion is negligible. In this limit the phase velocity
vph becomes larger than the Fermi velocity vF , inhibiting the
interaction responsible for Landau damping [41] (see also
below). On the other hand, for |u| → 0, the wave resolves
the ballistic motion of the electron (λ � �), leading to a
distinct spatially dispersive response to the electromagnetic
field [22]. Scattering becomes less relevant and, since the phase
velocity of the radiation is smaller than or equal to the Fermi
velocity, Landau damping takes over as the dominant damping
mechanism. Mathematically, this phenomenon is represented
by the imaginary part of the function fl(u) in the limit |u| → 0
due to the logarithm appearing in Eq. (15) [see also Eq. (B2)
in Appendix B].

The same physical mechanisms determine the behavior
of the surface impedance. For p� � |ω/� + i| we have
Z(ω,p)/Z0(ω,p) ≈ 1/εD(ω), which leads to the usual local
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limit for the reflection coefficient [14]. In the limit p� 

|ω/� + i| spatial dispersion is relevant, and in Appendix B
we show that we can write

Z(ω,p)

Z0(ω,p)
≈ pλTF√

1 + p2λ2
TF

− i

ω
ωp

Q
(
pλTF,

π2−4
2πp�

)
pλTF

(
1 + p2λ2

TF

) , (16)

where we have defined the function

Q(a,b) = a2(a2 + 1)√
3

∫ 1

0
dx

1 + bx√
1 − x2

x3

(a2 + x2)2
. (17)

Note that the function Q(a,b) is real and nonzero also for
b = 0, which corresponds to the limits � → ∞ or � → 0.
Indeed, due to the Landau damping and despite a vanishing
collision rate �, Eq. (16) still has a nonzero imaginary part
at low frequencies, which implies a dissipative reflection
coefficient. In Eq. (16) λTF = vF /(

√
3ωp) is the Thomas-

Fermi screening length, which is on the order of few angstroms
for typical metals [52] (see also Appendix B) and characterizes
the electrostatic screening of charges in the Fermi fluid (it
can be considered as the analog of the Debye length at zero
temperature [52,55]). In our system λTF is also related to spatial
distribution of the electron density near the surface [56]. Within
the nonlocal region, the values for which pλTF < 1 correspond
to electromagnetic waves that propagate with a phase velocity
vph > vF in the metal. Since at zero temperature no particles
exist with velocity larger than the Fermi velocity, in this region
both Landau damping and impurity scattering are concurrent
but not fully effective dissipative processes. Conversely, for
pλTF > 1 dissipation is dominated by the interaction between
the electrons and the electromagnetic waves. From Eqs. (12)
and (16) and for vx � vF we have that the imaginary part of
the reflection coefficient is

rI (ω,p) ≈
2 ω

ωp
Q

(
pλTF,

π2−4
2πp�

)
pλTF

(√
1 + p2λ2

TF + pλTF
)2

≡ 2ωε0ρ(p), (18)

showing that the material has an Ohmic behavior and that,
formally, the resistivity ρ(p) depends on the wave vector
when spatial dispersion is relevant. The function ρ(p) grows as
|pλTF ln(pλTF)| for small wave vectors, features a maximum
around p ∼ 1/(5λTF), and then decreases as a power law for
large pλTF (see Appendix B). Importantly, at its maximum
ρ(p) can be more than an order of magnitude larger than the
typical resistivity of a metal in the local optics description,
ρ = �/(ε0ω

2
p). We show in the next Section that the previous

characteristics deeply impact the distance dependency of
quantum friction between an atom and a spatially dispersive
metal.

IV. EFFECTS OF SPATIAL DISPERSION
ON QUANTUM FRICTION

Combining Eq. (18) with Eqs. (9)–(11), we are able to
compute the low-velocity quantum frictional force including
spatial dispersion in the material’s optical response. The
results are presented in Fig. 1, where the force is normalized
with respect to F̄ LTE

local, which is the force obtained by the
simultaneous use of local optics and LTE approximations [see
Eq. (19)]. The normalization is chosen in order to highlight the

FIG. 1. Quantum frictional force acting on an atom moving at
constant velocity and parallel to a metallic surface described by
the SCIB model. The low-velocity limit of the force [Eqs. (9)] F̄

is plotted as a function of the atom-surface separation za . In all
plots, the parameters ωp = 9 eV, � = 30 meV, and vF /c = 1/137
are fixed to these same values. In order to emphasize the role of
spatial dispersion and the nonequilibrium physics, the force F̄ is
normalized to its expression obtained using local optics and the
LTE approximation, F̄ LTE

local. In the low-velocity regime the normalized
force does not depend on the velocity [see Eqs. (9) and (19)]. For
atom-surface separations much larger than the electron’s mean free
path za 
 � = vF /γ , the force approaches a value which is almost
twice that of F̄ LTE

local, recovering the result reported in Ref. [17]. For
za < �, spatial dispersion and the non-LTE correction result in a
substantial increase of the force, with a maximum enhancement at
za ∼ 10λTF, where λTF = vF /(

√
3ωp) is the Thomas-Fermi screening

length. The curve is dotted for distances less than 10 Å, where
our description might not be reliable (see text). The black dashed
line shows the total asymptotic behavior for distances λTF � za < �

given by the sum of the expressions in Eqs. (20). The inset shows
the correction exclusively due to the nonequilibrium physics, i.e.,
F̄ J /F̄ LTE, with spatial dispersion taken into account in both forces
of the numerator and the denominator. The curve shows a larger
contribution of the non-LTE correction in the nonlocal case than in
the local limit. It also indicates that, for the parameters used here,
nonlocality is the main source of the force enhancement observed
for za < �.

impact of the non-LTE corrections and of the nonlocal material
properties. We also perform an average over the dipole’s spatial
directions (denoted by the bars above the forces) and define
α0 = Tr[α0]/3, which coincides with the expression of the
static isotropic atomic polarizability. According to Sec. III, we
can distinguish between three physically different regions of
atom-surface separations.

For distances za 
 �, local optics is a valid description
of the metal. From Eqs. (9) we recover the results for
quantum friction obtained in Ref. [17] (see also the end of the
Appendix B):

F̄ LTE
local ≈ −h̄

189

2π3

(
α0

ε0

�

ω2
p

)2
v3

x

(2za)10
,

F̄ J
local

F̄ LTE
local

≈ 29

35
. (19)

Here, for simplicity, we neglected the contribution originating
from the frequency shift, which for distances za 
 (α0/ε0)1/3

(few angstroms for typical atoms) gives only a subleading con-
tribution to the force that arises from the term [1 − �(0,0)/ω2

a]
in Eqs. (9).
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When spatial dispersion is relevant, i.e., for separations
smaller than the electron’s mean free path, we can identify
two distinct distance regimes. Starting with λTF � za < �, we
obtain

F̄ LTE

F̄ LTE
local

≈ ω2
p

�2

[
ln

(
B0za

λTF

) + C0za

�

][
ln

(
B2za

λTF

) + C2za

�

]
1
7

( 2za

λTF

)2 , (20a)

F̄ J

F̄ LTE
local

≈ 145

7

ω2
p

�2

[
ln

(
B1za

λTF

) + C1za

�

2za

λTF

]2

, (20b)

where Bn and Cn are the following numerical constants:
B0 ≈ 0.69, B1 ≈ 0.44, B2 ≈ 0.32, C0 ≈ 0.98, C1 ≈ 0.59,
and C2 ≈ 0.42 (see also Appendix B). We note that spatial
nonlocality induces a nonalgebraic change in the distance
dependence of the force and, in contrast to the local optics
case, the distance scalings of F̄ LTE and F̄ J are different. As it
was expected from the considerations regarding the system’s
nonequilibrium dynamics (see Sec. I), the contribution of
the term F̄ J to the full frictional force is larger than in
the local case, inducing a correction that reaches about 95%
rather than 80% of the LTE contribution (see inset of Fig. 1).
Importantly, the full nonequilibrium force in the nonlocal case
is larger than the corresponding local counterpart calculated
for values of the damping rate � = 30 meV and of the plasma
frequency ωp = 9 eV. For both the LTE and the nonequilibrium
contribution, nonlocality leads to an increase in the force that
scales with ω2

p/�2 [see Eqs. (20)]. Therefore, it is particularly
relevant for very clean materials. The largest enhancement of
roughly three orders of magnitude is reported for a distance
za ∼ 10λTF (of the order of 1 nm for typical metals; see
Fig 1). This value is effectively an additional intrinsic length
scale of the system which derives from the combination of
geometry and material properties. It is related to the value
of za for which the functions p2(n+1)e−2zap and r ′

I (0,p) [see
Eq. (18)] appearing in the integral defining Dn(za) have the
maximum overlap. Physically speaking, p2(n+1)e−2zap selects
as a function of the distance za the parallel component of
the wave vectors participating in the dissipative process in
the material described by r ′

I (0,p). For each n this occurs
at za ≈ 5(n + 1)λTF. Another interesting point to note is the
influence of spatial dispersion on the metal’s resistivity. The
magnitude of the frictional force at za ∼ 10λTF is equivalent
to that obtained via local optics but with a much larger
dissipation rate of � ∼ 1 eV. This corresponds to a ∼30 times
higher resistivity, showing the relevance of spatial dispersion
on quantum friction. This behavior can be understood with
more detail by looking at the wave-vector-dependent resistivity
implicitly defined in Eq. (18): As described above, for values
of p� 
 1, ρ(p) can reach values much larger than those of
the local optics description.

For distances za � λTF, the functional behavior of the fric-
tional force changes once again. Although our model allows
for a full mathematical characterization of the interaction in
this distance range, atomic scale effects, dynamical screening
and electron spillout become relevant at such short separations
(shorter than an angstrom for usual metals), and the continuum
description of the materials is no longer reliable. For recent
discussions on these topics, see [57–59]. Nevertheless, it is

worth mentioning that for distances za � 10λTF the frictional
force (denoted by the dotted line in Fig. 1) is still stronger, but
increases more slowly than its local counterpart (see Fig. 1). In
this case the overlap in Eq. (11) forDn(za) selects wave vectors
for which the dissipative process described by the resistivity
in Eq. (18) becomes less effective.

Finally, we comment on the difference between the behavior
of the frictional force for microscopic systems discussed
so far, where dissipation is induced by the interaction with
the electromagnetic field, and for systems where the source
of dissipation is internal, like, for instance, in metallic
nanoparticles. As pointed out in previous work [16], the LTE
approximation usually provides the leading contribution to the
frictional force for the latter case, for which internal dissipation
is much stronger than radiative damping. Within our treatment,
such systems can be described by a polarizability like in
Eq. (6), but with a vanishing frequency shift, �(ω,vx) = 0
and a constant damping rate γ (ω,vx) ≡ γ . At low velocities
the force is given by the relation

F LTE ≈ −2h̄
v3

x

π


2

3

γ

ω2
a

D2(za). (21)

When compared with Eq. (9a), the previous expression shows
a difference in the functional dependence on the distance. In
the local case this corresponds to a change in the exponent
of the power law from z−10

a for radiative damping to z−7
a

for intrinsic damping [14] [see Eq. (B8)]. In the spatially
dispersive case using the SCIB model, however, a more
qualitative modification of the functional behavior occurs. For
distances λTF � za < � one has

F̄ LTE

F̄ LTE
local

≈ 7√
3

ωp

�

ln
[

B2za

λTF

] + C2za

�

2za

λTF

, (22)

which shows that, in addition to a change in the power law
exponent, the system with intrinsic dissipation features a
single logarithm instead of the product of two logarithms
as obtained in Eq. (20a) [see also Eqs. (B7) and (B8)]. For
such separations Eq. (21) also reveals an enhancement of the
interaction due to spatial dispersion. The strengthening of the
nonlocal frictional force with respect to its local counterpart
has a maximum around za ≈ 15λTF. However, in the case of
intrinsic dissipation, the force enhancement is less significant
because F̄ LTE/F̄ LTE

local in Eq. (22) is proportional to ωp/� and
not to its square [see Eq. (20a)].

V. CONCLUSIONS

In the present work we investigated the impact of spatial
dispersion on atom-surface quantum friction for nonrelativistic
velocities. Our description goes beyond the widely used local
thermal equilibrium approximation and does not rely on the
usual equilibrium fluctuation-dissipation theorem, but rather
on an extension of it for nonequilibrium steady states [17].
The analysis focuses on the behavior of the frictional force
for small velocities, which are more likely to be achieved
in experimental setups. We show that for distances shorter
than the electron’s mean free path �, spatial dispersion and
the system’s nonequilibrium processes have a large impact
on quantum friction enhancing the interaction with respect
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to the LTE value. The closer the atom gets to the surface, the
less important the collision-induced damping becomes and the
more the Landau damping takes over as source of dissipation
(see Sec. III). A maximum enhancement of three orders of
magnitude is attained for distances that are of the order of
ten times the Thomas-Fermi screening length λTF. Our results
also show that in the nonlocal system the failure of the LTE
approximation is more significant than in the local system and
underestimates the force by about 95% (the nonequilibrium
processes are responsible for half of the total frictional force;
see the inset of Fig. 1). The inclusion of spatial dispersion
does not alter the functional dependence of the interaction
on the atomic velocity, which is proportional to v3

x , but it
deeply modifies its behavior as a function of the distance.
Physically, this difference can be understood by recalling
that the velocity dependence is related to the low-frequency
behavior of the electromagnetic density of states [14,16],
Ohmic for both the spatial dispersive and the local materials
(a sub-Ohmic or a super-Ohmic material will also affect the
functional dependency on the velocity). Instead, the behavior
as a function of the atom-surface separation is more related
to the details of the medium’s optical response and to the
different length scales associated with the physical processes
occurring in the material. For atom-surface separations λTF �
za < �, quantum friction is no longer described by a simple
power law but, due to Landau damping, it acquires a more
complex structure involving a logarithmic contribution and the
combination of length scales � and λTF [see Eqs. (20) and (22)].
In addition, unlike the local case, the contribution to the force
resulting from the LTE approximation and its correction have a
different distance dependence, showing again the relevance of
the interplay of nonequilibrium effects and spatial dispersion
for quantum frictional processes.

Quantum friction is a very weak effect and experimental
investigations are therefore challenging [16]. Relatively simple
time-of-flight experiments, where atoms are sent parallel to a
surface and decelerations or stopping distances are measured,
are possible but they may not provide the required sensitiv-
ity. Consequently, rather sophisticated atom-interferometric
techniques would be better suited [60,61]. In view of the

desired atom-surface separations, such experimental designs
come with their own challenges. For instance, at least one arm
of the interferometer must be aligned parallel to the surface at
comparatively short distances of some tens of nanometers to
the surface. The frictional force will produce a different phase
accumulation in this arm with respect to a second arm placed
at much larger separations from the surface. The resulting
phase shift, encoding the information on the drag force, will
appear in the interference pattern. In order to exploit the
enhancement effects associated with spatial nonlocality, the
atom-surface separation should be of the order of or shorter
than the electron mean free path � in the material composing
the surface (large � values correspond to clean materials).
While this clearly is challenging, it is not entirely out of
reach. Inspecting Eqs. (19) and (20), we note that in the
nonlocal region the frictional force scales in absolute value as
ω−2

p . According to our results, preferable characteristics of the
surface material are therefore a reasonably small dissipation
rate as well as plasma frequency. The latter conditions point,
for example, to doped semiconductors like ZnO:Ga for which
� ∼ 50 meV and ωp ∼ 1 eV have already been measured
[62]. The dielectric response of highly doped semiconductors
is, however, more involved than the simple model used here,
and the corresponding behavior of quantum friction will be
investigated in detail in future work.
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APPENDIX A: LOW-VELOCITY EXPANSION

In this appendix we provide the main steps of the procedure that makes it possible to obtain the low-velocity asymptotic
expressions given in Eq. (9). First of all, it is convenient to define the tensor

G(|px |,za,ω) =
∫ ∞

−∞

dpy

2π
G(p,za,ω), (A1)

which has the same symmetry properties as G(p,za,ω) with respect to the variable ω, namely an even real part and an odd
imaginary part under the change ω → −ω. Inserting Eq. (4) into Eq. (1) we can define

F LTE = −4h̄

∫ ∞

0

dpx

2π
px

∫ pxvx

0

dω

2π
Tr[αI (pxvx − ω,vx)G

I
(|px |,za,ω)], (A2a)

FJ = −2h̄

∫ ∞

−∞

dpx

2π
px

∫ ∞

−∞

dω

2π
Tr[J (pxvx − ω,vx)G

I
(|px |,za,ω)]. (A2b)

Further manipulations of the previous expressions are possible. First, using the parity properties of G(|px |,za,ω) and treating
the cases ω > 0 and ω < 0 separately, one can show that the expression for J (ω,vx) in Eq. (5) can be rewritten as (see also the

155448-6



SPATIAL DISPERSION IN ATOM-SURFACE QUANTUM . . . PHYSICAL REVIEW B 95, 155448 (2017)

Supplemental Material of Ref. [16])

J (ω,vx) =
∫ ∞

|ω|
vx

dpx

2π
α(ω,vx)G

I
(|px |,za,pxvx − |ω|)α∗(ω,vx). (A3)

The integration in Eq. (A2b) can be simplified by rearranging the integration domain as follows:∫ ∞

−∞

dω

2π

∫ ∞

|px vx−ω|
vx

dp̃x

2π
(· · · ) =

∫ ∞

0

dp̃x

2π

∫ (px+p̃x )vx

pxvx

dω

2π
(· · · ) +

∫ ∞

0

dp̃x

2π

∫ pxvx

(px−p̃x )vx

dω

2π
(· · · ). (A4)

Combining all the previous expressions, using the parity properties of G(|px |,za,ω) and the definition of γ (ω,vx) in Eq. (7b), we
have

F LTE = −4h̄

∫ ∞

0

dpx

2π
px

∫ ∞

−∞

dp̃x

2π

∫ pxvx

0

dω

2π
|A(pxvx − ω,vx)|2Tr[α0GI

(|p̃x |,za,[px + p̃x]vx − ω)]Tr[α0GI
(|px |,za,ω)],

(A5a)

FJ = −2h̄

∫ ∞

−∞

dpx

2π
px

∫ ∞

−∞

dp̃x

2π

∫ [px+p̃x ]vx

pxvx

dω

2π
|A(pxvx − ω,vx)|2Tr[α0GI

(|p̃x |,za,[px + p̃x]vx − ω)α0GI
(|px |,za,ω)],

(A5b)

where we also rewrote Eq. (6) as α(ω,vx) = A(ω,vx)α0. Due to the exponential function in the Green tensor in Eq. (2), the
dominant wave vectors contributing to the above integrals are px � 1/za . The previous expressions show that quantum friction
is dominated by frequencies ω � vx/za . Under the assumption that for these frequencies a Taylor expansion in ω of the function
G(|px |,za,ω) is possible and that G(|px |,za,ω) ≈ G

R
(|px |,za,0) + iωG ′

I
(|px |,za,0) describes the relevant physics, we have

F LTE = −2
v3

x

π
h̄|A(0,0)|2 1

3

∫ ∞

0

dpx

2π
p4

xTr[α0G ′
I
(|px |,za,0)]

∫ ∞

0

dp̃x

2π
Tr[α0G ′

I
(|p̃x |,za,0)], (A6a)

FJ = −2
v3

x

π
h̄|A(0,0)|2

∫ ∞

0

dpx

2π
p2

xTr[α0G ′
I
(|px |,za,0)]

∫ ∞

0

dp̃x

2π
p̃2

xTr[α0G ′
I
(|p̃x |,za,0)], (A6b)

where we also used that α0 = 2dd/h̄ωa . The previous expressions are quite similar and they involve products of the integrals

In(za) =
∫ ∞

0

dpx

2π
p2n

x Tr[α0G ′
I
(|px |,za,0)], (A7)

where n = 0,1,2. Using the expression for the Green tensor given in Eq. (2), after going to polar coordinates one can show that
the previous function can be written as In(za) = 
nDn(za), where 
n and Dn(za) are given by


n =
(

2n

n

) 2n+1
2(n+1)αxx + 1

2(n+1)αyy + αzz

22n+3πε0
, (A8)

and

Dn(za) =
∫ ∞

0
dpp2(n+1)e−2zapr ′

I (0,p). (A9)

APPENDIX B: THE NONLOCAL IMPEDANCE

In this appendix we discuss the equations reported in Sec. III. For this purpose it is convenient to define the following quantities:
� = vF /γ , λTF = vF /(ωp

√
3), and κF = (ω + iγ )/vF = ω/vF + i/�. Using these definitions we rewrite the dielectric function

in Eq. (14) as

εl(κF ,u) =
[

1 + u2

κ2
F λ2

TF

][
1 + u2

κ2
F λ2

TF + u2

fl(u) − 1

1 + i
fl (u)

κF �−i

]
, (B1)

where u = κF /k. In the first factor we recognize the Thomas-Fermi dielectric function εTF(k) = 1 + (k2λ2
TF)−1 describing charge

screening in the metal [52]. The additional factor is the correction introduced by the semiclassical Lindhard dielectric function
[43]. As explained in the main text (see the beginning of Sec. III) the nonlocal region is characterized by |u| � 1 (low frequencies
and/or large wave vectors) and, therefore,

fl(u) = 1 + iπu

2
− u2 + O(u4). (B2)
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The accuracy of the previous approximation also explains why the asymptotic behaviors presented in Eqs. (20) provide a good
description also for za � �. In this regime the correction to the Thomas-Fermi model is small [63–65] and with the changes of
variable q → u = xκF /p, we can write Eq. (13) as

Z(p,ω)

Z0(p,ω)
≈ 2

π

∫ 1

0
dx

1√
1 − x2

1

εl

(
κF ,x κF

p

) . (B3)

In the nonlocal region κF /p is small and expanding the integrand in this variable leads to

1

εl

(
κF ,x κF

p

) ≈ 1

1 + x2

p2λ2
TF

− i

π
2

ω

ωp

√
3
pλTFx

3

(
p2λ2

TF + x2
)2

[
1 + x

π2 − 4

2πp�

]
. (B4)

In the above expression we have neglected a contribution ∝ω2 since for quantum friction we are interested in the low-frequency
(Ohmic) region. The above expression allows for an analytical evaluation of Eq. (B3). The relevant integrals are

2

π

∫ 1

0
dx

1√
1 − x2

1

1 + x2

a2

= a√
1 + a2

(B5)

and the integral given in Eq. (17), defining the function Q(a,b). Although it results in a mathematically more involved function,
this last integral can also be evaluated analytically and gives

Q(a,b) = a2

2
√

3

[
a2 + 2√
a2 + 1

ln

(√
a2 + 1 + 1

a

)
− 1 +

(
a2 + 1 − a

a2 + 3
2√

a2 + 1

)
πb

]

≈ 2√
3

{− a2

2

[
ln

(
a
2

) + 1−πb
2

]
a � 1,

1
3 − 1

5a2 + 3
32

(
1 − 2

3a2

)
πb a 
 1.

(B6)

These results lead to Eq. (18) and allow the evaluation of the asymptotic expressions of the function Dn(za). In the nonlocal
region we distinguish the cases n = 0 and n = 1,2,

D0(za) ≈

⎧⎪⎪⎨
⎪⎪⎩

4
√

3λTF
(2za )4

ln
(

B0za
λTF

)
+ C0za

�

ωp
za 
 λTF,

− 1
3
√

3λ3
TF

ln
(

B̃0za
λTF

)
−

πza√
2

λTF

ωp
za � λTF,

(B7a)

Dn(za) ≈

⎧⎪⎨
⎪⎩

2λTF√
3

(2n+3)!
(2za )2n+4

ln
(

Bnza
λTF

)
+ Cnza

�

ωp
za 
 λTF,

(2n−1)!
3
√

3λ3
TF(2za )2n

1
ωp

za � λTF,

(B7b)

which lead to the the expression reported in Eq. (20). We defined the constants Bn = 4 exp(�Eu − fn), with fn =
7/3,167/60,433/140, and Cn = (π2 − 4)/hn, with hn = 6,10,14, where �Eu ≈ 0.58 is the Euler constant. These are the
numerical values that are reported after Eq. (20) in the main text. In addition we defined B̃0 = √

2 exp [�Eu] ≈ 2.52.
In the local region (za 
 �), we obtain

Dn(za)
za
�≈ 2

�

ω2
p

⎧⎪⎪⎨
⎪⎪⎩

2!
(2za )3 n = 0,

4!
(2za )5 n = 1,

6!
(2za )7 n = 2,

(B8)

which lead to the expressions in Eq. (19).
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