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Edge-state-mediated collective charging effects in a gate-controlled quantum dot array
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We report the observation of two distinct types of magnetoconductance oscillations in six coupled quantum
dots (QDs) in the integer quantum Hall regime. By tuning the magnetic field and gate voltage, we find robust
conductance peaks and dips on the plateau of one conductance quantum 2e2/h. These features fall into two types
associated with two different collective quantum states: for the first type, only dips and the crossing behaviors
are found, and their traces show an anomalous temperature dependence, named “reversed Coulomb blockade
oscillation”, whereas for the second type, the peak traces show both crossing and anticrossing behaviors with
resonance-type temperature dependence. Notably, all peaks show clear Coulomb diamonds in their differential
conductance. We argue that the observed features reveal the electron addition spectra in an edge-state-mediated
QD network, manifesting intricate interdot and dot-edge Coulomb interactions. In the first-type regime, the
dots are more isolated from each other and the electron transport is governed by the dot-edge interaction.
Conversely, in the second-type regime, the QDs behave as a coupled dot array due to the presence of strong
interdot interactions. Our results open a route by using the edge-state-mediated multi-QD system as a laboratory
for exploring coherent many-body interactions.
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I. INTRODUCTION

One-dimensional chiral edge states can be constructed in
a GaAs two-dimensional electron gas (2DEG) in the integer
quantum Hall (IQH) regime [1] wherein IQH states in the
vicinity of the edges of the sample spatially separate into alter-
nating strips of incompressible and compressible states [2–4].
Each edge state is associated with an extended compressible
region with one fully occupied Landau level (LL), and follows
the equipotential along the sample border. The number n of the
edge states counts the number of the fully occupied Landau lev-
els (LLs) in the bulk and corresponds to the quantized plateau
of the Hall conductance at n(e2/h). Theoretically, n can be
understood as a topological quantum number, i.e., the Chern
number [5]. Due to the protection of the topological invariant,
the edge states are intrinsically immune to environmental
disorders. Numerous studies on 2DEGs in the IQH regime have
experimentally demonstrated that the edge states possess rather
long coherence length [6–9], and thus provide a playground
for coherently probing the quantum states in a device.

In mesoscopic devices, the edge states can interact with
nearby local charge states and give rise to various resonant
transmission and reflection interference on the conductance G

[10,11]. The selective manipulation and detection of the edge
channels were first observed by using the point contacts [12].
The population of the edge states is manipulated either by ad-
justing the local potential via the external gate voltages Vg or by
applying the magnetic field B to alter the occupations of LLs.
Conductance variations can be understood by the Landauer-
Büttiker formalism [13]. Subsequent studies are divided
into two branches: the investigation of magnetoresistance in
quantum dot (QD) and quantum antidot (QAD) systems.

A quantum dot is an electron droplet confined in a nanoscale
region, wherein both the energy and charges are quantized. In
the IQH regime, the formation of LLs leads to a modulation of
the screening properties of the electrons in the dot, yielding the
divisions of electrons into compressible and incompressible
regions [14,15]. Conductance measurements are commonly
used to manifest the addition spectra of the QD system
[12,14–23]. As G < 2e2/h (≡G0), electrons are confined in
explicit charge states and the electron transport is dominated
by Coulomb interactions. For example, in a fairly large QD,
containing nearly hundreds of electrons with a filling factor
ν larger than or close to 2, the lowest (LL0) and the first
orbital (LL1) LLs form a compressible metallic outer ring
and inner core islands, respectively, which are separated by
insulating incompressible regions. Conductance is regulated
by a mixture of the Coulomb blockade (CB) between electrons
in the localized outer ring with LL0 and inner core electrons
with LL1. As a result, it reveals periodic CB oscillations with
modulated peak separation and amplitude associated with non-
cyclical depopulation of LLs [12,14–23]. Robust interference
phenomena emerge when G > G0. They arise as the confining
potential of the QDs becomes relatively shallower, so the outer
edge states can extend through the QDs. The fully transmitted
edge channels interact with the trapped core electrons, leading
to interference [12,17]. Furthermore, the interplay between
interference and interaction gives rise to distinct Aharonov-
Bohm type oscillations in conductance [12,24,25].

The quantum antidot (QAD) is a small potential hill,
where the electron is repelled, rather than attracted by a
trap potential as in the QD [11,26,27]. In the IQH regime,
the edge states are established along the periphery of the
potential hill and circulate as closed chiral orbits. The localized
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orbits then interact with the extended edge channels along
the boundary of the 2DEG. Various fascinating phenomena
associated with the effects of resonant transmission, reflec-
tion, and the electron-electron (e-e) interactions have been
studied, including resonant peak or dip structures on the
quantized plateau [28,29], Aharonov-Bohm oscillations of
conductance [26,30,31], charge rigidity (quantization) [32],
spectator modes in antidot molecules [33], the Kondo-like
zero-bias anomaly [34], and charging effects [35].

Based on the aforementioned findings, the QD and QAD
devices in the IQH regime are known to be an ideal tool
for investigating various interference and Coulomb inter-
action effects [36,37]. For a multi-QD/multi-QAD system,
the interactions among the dots/antidots and the edge states
provide a platform to investigate various many-body physics,
but this scheme has not been fully explored to date. To
this end, we report the observation of edge-state-mediated
collective charging effects in a quantum dot array (QDA).
A variety of coherent many-body states is observed. These
states mimicking the bonding states in an artificial molecule
are explicitly probed by conductance spectra and can be ma-
nipulated by tuning the interdot coupling through gate voltages
and magnetic fields.

II. EXPERIMENTAL DESIGN

Our experimental design is schematically illustrated in
Fig. 1. The QDA is formed by confining the 2DEG to a chain of
six quantum dots (QDs) via biasing negative voltages VM and
Vg on the surface side gate and the corrugated gate, respectively
[see the SEM image of the device shown in the upper panel
of Fig. 1(a)]. Under high magnetic field B, the electron states
fall into the IQH region. Conforming to the filling factor ν
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FIG. 1. A schematic top view of the QDA device in the IQH
regime. The QDA consists of the blue stadium-shaped cores and
the outer rings, which are localized compressible (metallic) states.
(a) In the case of G ≈ G0, one edge channel flows along the device
boundaries and extends into the leads. Various possible tunneling
paths are indicated by the colored dashed lines. (b) In the case
of G � G0, the extended edge state disappears; consequently, all
states are localized in the dots. The electron transport is dominated
by the interdot coupling strength. (c) The symbolic change of the
conductance induced by different interacting paths as a function of
gate voltages or B (see the text for the details). The upper-right inset
in (a) displays a scanning electron microscope (SEM) image of the
device defined on the top surface of a GaAs/AlGaAs heterostructure.

of LLs and the potential profile, electrons confined within the
regions between two gates self-consistently tuck into stadium
islands with a partially filled LL, surrounded by alternating
compressible conducting and incompressible insulating stripes
with fully occupied LLs [16]. The outermost compressible
electrons can either flow along the edge of the confining
potential and extend to the 2DEG, as shown in Fig. 1(a), or fold
into closed orbits as nominally isolated dots or rings, as shown
in Fig. 1(b) [17]. In addition, we consider a pair of opposite
spin-degenerate edge states propagating along the periphery
of the confining potential.

The correlated interactions between the dots and the
edge states are indicated by the colored dashed lines in
Figs. 1(a) and 1(b), including (i) the interdot tunneling with
amplitude t (red horizontal lines), (ii) the tunneling between
each individual dot and the outer extended edge states with
amplitude tp (blue vertical lines), (iii) the tunneling between
the two end dots and the edge states on the source (S) and drain
(D) leads with amplitude te (green horizontal lines), and (iv)
the tunneling between two opposite extended edge states with
amplitude ts (orange vertical lines). Here, we simply apply
comprehensive understandings of single-QD/single-QAD
systems in the IQH regime, as reported earlier [23,29,31,36],
and extend them to the case of a multidot system. Note
that different tunneling paths exhibit their own distinct
conductance G characters, as displayed in Fig. 1(c). In the
absence of tunneling, one would expect a quantized G at
2e2/h (≡ G0) to be observed in an isolated QDA. The
interedge coupling ts induces backscattering between the two
opposite-flow edges and causes G to be less than G0. The
dot-edge coupling tp occurs whenever the Coulomb blockade
(CB) is removed and produces periodic dips on G0 associated
with the tuning parameter B,VM , and Vg . Conversely, as the
two end dots are coupled to the reflected edge state on the S

and D leads via te, extra accessible conductance can contribute
to G; consequently, the CB-type peaks emerge on the G0

plateau. Figure 1(b) depicts the case of G � G0 in which
the extended edge channel vanishes in the array area. Under
this circumstance, a serially coupled QD chain is established
through the assistance of t , and the transport is dominated by
collective CB (CCB) phenomena [38]. These aforementioned
interactions can be controlled by adjusting the potential profile
via tuning Vg and VM or by varying the electronic states of
the QDs without modifying the potential landscape via tuning
B. At a given Vg , for example, a less negative VM lowers the
tunneling barrier, hence increasing t and te. Alternatively, by
altering B, both t and te will change with the filling of the LLs
of the QDs. We therefore adjust (Vg,VM ) and B to explore
accessible states of the QDA in the following studies.

The QDA device was implemented by using a pair of
metallic gates on top of a GaAs/AlGaAs heterostructure
with 2DEG 80 nm beneath the surface. The carrier density
of the 2DEG is ns = 3.4 × 1011 cm−2, and the mobility is
μ = 8.8 × 105 cm2/V s at 4.2 K, corresponding to a transport
mean-free path of ∼8.4 μm. The QDA was patterned by
standard e-beam lithography and was electrostatically defined
by applying negative voltages on two metallic Au/Cr gates.
The device consists of a sequence of six quantum dots. The
upper-right inset of Fig. 1(a) displays the scanning electron
microscope image of the QDA device. We label the side-gate
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voltage as Vg and the middle-gate voltage as VM . The
protruding fingers on the side gate have a period of 250 nm, and
Vg is mainly used to define the potential around the fingers. The
measurements were performed in a dilution refrigerator with
a base temperature T of 20 mK. A standard lock-in technique
with ac excitation voltage Vrms = 10 μV at a frequency
of 17 Hz was employed. A magnetic field B was applied
perpendicularly to the plane of the QDA.

III. RESULTS AND DISCUSSION

To illustrate the characteristics of the QDA device with the
scan of the gate voltages, Fig. 2(a) shows the representative
G traces versus VM with Vg at −0.36 V, −0.42 V, −0.47 V,
−0.52 V, and −0.61 V for B = 1.88 T. Conductance plateaus
at approximately G0 and 2G0 are readily observed, suggesting
the edge-state nature of electron transport. The value of the first
plateau slightly deviates from G0 by ∼2%, suggesting that ts
is relatively weak. The plateau features are evident when B

exceeds 1.4 T (ν ∼ 6–8 in 2DEG), indicating the important
role of the QH edge states. As B ranges from 1.4 T to 2.8 T,

VM (V) -0.6-0.8 -0.4

VM (V)
-0.60

-0.60

-0.55

-0.58 -0.50

0.0

1.0

0.5

G
/G

0

-0.65

-0.61 V

T = 20 mK
B = 1.88 T

(a)

(b)

 -0.52 V
-0.42 V

-1.0-1.2-1.4

2.0

1.5 -1.10-1.14-1.16

1.00

0.96
1 2

3 4 5

1

2
34

5
6

0.0

0.3 Vg=
 -0.357 V

-0.54-0.56 -0.52

-0.70

-0.75

-0.80

-0.85

V g (
V

)

-0.47 V

6

-1.12

-1.32-1.34

G/G0

1.0 1.60.5

FIG. 2. (a) Normalized conductance G/G0 as a function of
VM with a few selected side-gate voltages Vg at B = 1.88 T and
T = 22 mK. The upper-left and lower-right insets show the enlarged
view of the dip structures on the first plateau at Vg = −0.36 V and
the CB peaks at Vg = −0.357 V, respectively. (b) Conductance map
G/G0(Vg,VM ) on the first plateau. Note that the white background
indicates G0, and the red and blue traces correspond to peaks and
dips above and below G0, respectively.

various dip and peak structures are superimposed onto the G0

plateau and evolve with (Vg,VM ), manifesting the intriguing
interplay of tp, t , and te and corresponding with the tunneling
events described in Fig. 1(c). All the dip and peak structures
are strikingly reproducible, and similar features are observed
in all studied devices.

The upper-left inset of Fig. 2(a) shows the observation of
five smaller oscillations between two key downward peaks.
Similar features have been reported on a spin-resolved plateau
of e2/h in a QDA, and are attributed to the formation of
minibands [39]. In this work, we argue that the observed
dips originate from the charging effect between the QDs
and the edge states (see below). As G � G0, the dots are
tunneling-coupled in series, and periodic CB-type peaks are
present. At specific gate voltages, where t is comparatively
large, six minipeaks appear on a single broad peak, as shown
in the lower-right inset of Fig. 2(a). The emergence of the
well-resolved six minipeaks strongly suggests that the six
quantum dots are collectively coupled and, more importantly,
demonstrates the existence of a fair uniformity of the dot array
[40]. However, it is difficult to individually control a specific
dot in the array by merely using two gates; as a result, the num-
ber of electrons in each dot may vary from one dot to another
due to the presence of inevitable disorders. An extensive study
on the CB-related physics under the conditions of G < G0

will be presented elsewhere [41]. The present work focuses on
elucidating the coupling effects between the dots and the edge
states in the case of G � G0, as illustrated in Fig. 1(a).

We adopt an empirical rule from an early study on a similar
GaAs-based quantum dot that the carrier density of the dot
is approximately 0.7 times smaller than that of the 2DEG
confined in a GaAs/AlGaAs heterostructure [23]. Correspond-
ingly, the deduced filling factor in the studied array is estimated
to be four to six (2 ∼ 3 occupied spin-degenerate LLs). There-
fore, we can reasonably infer that the quantum dot array con-
sists of a pair of fully transmitted edge channels plus isolated
inner cores and outer rings, similar to the configuration in early
studies [23,29]. Under such circumstance, both inter- and intra-
LL scatterings are present and our proposed scenario illustrated
in Fig. 1(a) is realized. More importantly, there are extra advan-
tages to operate the QDA device in this regime: the Fermi level
in the bulk 2DEG is approximately independent of magnetic
field and the absence of spin-flip scattering makes it possible to
attribute G mainly from a spin-degenerate edge channel [29].

Figure 2(b) shows a comprehensive G plot of the dip (the
blue trace) and the peak (the red trace) on the G0 plateau (the
white background) as a function of Vg and VM . As mentioned
earlier, although the QDs in the array were fabricated to be
nominally identical, the shape of the confinement potential
of each dot is unavoidably different due to disorders in the
wafer, imperfections in the lithography process, and the limited
tunability of two gate voltages. The fact that these dip/peak
features strongly depend on their locations in the VM -Vg

plane represents the variations of the confinement potential;
therefore, the loci of the dips/peaks manifest as a “fingerprint”
of a particular configuration of the QDs. By closely following
these traces, we can see that a blue trace can evolve into a
red one at a certain value of (VM,Vg), and two such traces
exhibit an anticrossing-like behavior; e.g., see the traces in
the vicinity of (VM,Vg) ∼ (−0.52, − 0.73) V. In a certain
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FIG. 3. The conductance spectrum displayed by the VM vs B plot
for (a) type 1 with fixed Vg = −0.36 V, and for (b) type 2 with fixed
Vg = −0.58 V. The color-scale plot of dI/dVSD as a function of
VM and the source-drain voltage VSD for (c) type 1 with fixed Vg =
−0.36 V and B = 2 T, and for (d) type 2 with fixed Vg = −0.58 V
and B = 1.88 T.

regime, however, only the dip—the blue traces—can be found,
and the traces exclusively show crossing behaviors, e.g., in
the lower part of Fig. 2(b) near the end of the plateau. The
observation of the peaks and dips on G0 is in accordance
with our suggestion that interactions between the dots and
the edge channels induce intriguing resonant transmission
and reflection in the form of the CB-type charging effect.
In light of these findings, the conductance map shown in
Fig. 2(b) can be viewed as a charge stability diagram of the
QDA, which reveals the evolution of the energy levels formed
in the QDA with tuning (VM, Vg). As elucidated by early
studies on a double-quantum-dot system, the crossing traces
indicate that each dot retains its own electronic states, i.e.,
in the weak-t regime, whereas the anticrossing trace signals
the formation of coherent bonding/antibonding states arising
from the formation of coupled dots [42]. The appearance of
the peak feature along with the anticrossing trace convincingly
indicates that a fairly strong t is present. We thereby classify
the conductance into two types: type 1 refers to G features
in the weak-t regime where only dips—the blue traces—are
found, and type 2 to those in the strong-t regime, where both
the peak and dip traces are observed. We will show more
comprehensive data below to support our claim.

Figures 3(a) and 3(b) show the conductance spectrum tuned
by VM and B at a fixed gate voltage Vg for type 1 and type 2,
respectively. Here we apply the gate voltages for type 1 such
that the deeper and the minor dips are both visible; e.g., see the
upper-left inset of Fig. 2(a). The B-VM plot of the G spectrum
reveals two distinct features. First, the peak or dip traces in

both types exhibit positive dVM/dB slopes, suggesting that
increasing B is equivalent to applying less negative voltages
to the device. Recent studies on quantum Hall interferometers
have demonstrated that the positive dVM/dB slope arises from
charging effects [36,43], in strong contrast to the negative one
from the interference effect [43]. It supports that the dip and the
peak structures with positive dVM/dB slopes indeed originate
from interactions between the dots and the edge states. Second,
the anticrossing behaviors are observable for these type-2
traces; in contrast, only the crossing behavior can be found
for those type-1 ones. Note that the anticrossing traces in the
stability diagram spanned by VM and B and those observed
in the VM -Vg plane shown in Fig. 2(b) are both predominated
by the effect of t . The distinct signatures in the conductance
spectrum for type 1 and type 2 are consistently observed in
the VM -Vg and B-VM plots, strongly suggesting that type 1
and type 2 represent different collective quantum states with
different values of t in the dot array. For type 1, the six dots
are weakly coupled, i.e., t ∼ 0, and are also coupled to edge
channels via tp. Each tunneling process between an individual
dot and the edge states gives rise to a dip structure. In contrast,
the six dots are strongly coupled for type 2, where the dip
and the peak structures are attributed to the coherent tunneling
events between the molecule-like bound states and the edge
states, governed by the interplay of t, tp, and te.

To substantiate the above-described scenarios, Figs. 3(c)
and 3(d) show the differential conductance g (=dI/dVSD) in
the VM -VSD plot for type 1 and type 2, respectively. Both
the peaks and the dips exhibit pronounced Coulomb-diamond
structures, providing compelling evidence for the predominant
role played by Coulomb charging effects. The dips in type 1
show “inverted” diamonds, i.e., lower g at the diamond bound-
aries [see Fig. 3(c)]. In addition, fine structures are visible and
skirt along the diamond borders, which manifest the tunneling
spectrum of the excited charge states. More interestingly, an
intriguing nested diamond structure, i.e., small diamonds from
the minor dips enclosed by large diamonds from the deeper
dips, is also found in type 1. Figures 4(a) and 4(b) show
the VM dependence of G at different temperatures for type 1
and type 2, respectively. For type 1, two major dips at VM ∼
−1.13 V and −1.10 V are observed. The amplitude of the dips
slightly varies with the increase of temperature to 1 K, whereas
the width of the dips increases and the plateau value slightly
decreases. The temperature dependence of the dip conductance
can be qualitatively described by G ∼ G0 − GCB(T ), where
GCB(T ) represents the typical temperature dependence of CB
for a single QD [44]. For type 2, both dip and peak amplitudes
monotonically decrease with increasing T , indicating that the
increase of T thermally smears out the effects of t, tp, and
te. The different temperature dependencies of the dip features
observed for type 1 and type 2 unambiguously support that
they are attributed to different quantum states.

We proceed to estimate some relevant parameters of the
studied QDA. Based on the voltage bias spectroscopy shown
in Fig. 3(c), we evaluate the charging energy U = e2/C ∼ 1.0
to 0.8 meV from the variations of the diamond width, where
the total QD capacitance C is estimated to be approximately
130 aF. As shown in Fig. 4(a), the dip spacing between the two
pronounced dips is �VM = e/CM ∼ 30 mV (CM ∼ 5 aF; see
below for details). The slope of the dip trace is approximately
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dVM/dB = 0.2 V/T extracted from Fig. 3(a). We adopt the
approach in Ref. [36] to obtain dVM/dB = eνdotAdot/CM�0,
where �0 is a flux quantum, νdot is the number of occupied LLs
in a dot, and Adot is the area of a dot. By assuming νdot ∼ 2 at
B = 2 T, we extract Adot ∼ 1 × 10−14 m2, which is consistent
with the size of a stadium dot evaluated from the SEM image
of the device after subtracting a depletion length ∼75 nm.
Theoretically, t in a QDA can be approximately scaled as
t ∼ h̄2/m∗d2, where m∗ is the effective mass of GaAs and d

is the mean size of a dot [38]. In our case, t is approximately
0.1 meV with d ∼ 100 nm. The values of tp, te, and ts are
expected to lie within the same order of magnitude as that
of t .

IV. SIMULATION OF CHARGE TRANSPORT
IN THE WEAK-COUPLING REGIME

It is difficult for us to perform a fully quantitative analysis of
our data without specific knowledge of t, tp , and te as a function
of the microscopic parameters of the dots. Nevertheless, we
attempt to estimate the relevant parameters of the QDA in
terms of the capacitance model, which is more appropriate to
describe the conditions of the QDs in the type-1 regime, where
each dot is nearly isolated [42]. This classical description,
known as a “constant interaction model”, may not be very
applicable to the type-2 regime, where t is relatively strong;
strictly speaking, one needs to deliberate the complicated
effects of the e-e interactions [38,41,44,45].

Data analysis suggests that the dots in type 1 are weakly
coupled to each other. To provide a self-consistent check,
we calculate the charge stability diagram of the QDA based
on this scenario. Here we simply combine the approaches
proposed by Refs. [36] and [15] in the multiple-quantum-dot
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FIG. 5. Simulation results of a collective charge transport for
a six-quantum-dot array in type 1 described in the text. (a) The
QDA is modeled by a network of tunnel junctions and capacitors.
The inset shows the equivalent circuit of the tunnel barriers.
(b) The conductance as a function of �VM and �Vg maps out
the charge stability diagram of the QDA. (c) The �VM -B plot
of conductance. The dashed lines mark �B at which the darker
and lighter traces intersect. (d) The �VM -VSD plot of differential
conductance dI/dVSD, which shows inverted Coulomb diamond
structures. (e) The temperature dependence of G as a function of
�VM at T = 20, 100, 200, 300, 400, 500 mK.

system by including the interdot interactions. Figure 5 shows
a schematic diagram of the model for the QDA with the upper
and lower tunneling junctions to the edges. The upper/lower
edge states carrying currents are in equilibrium with the
source/drain contact and have a quasi-Fermi energy equal to
μS/μD (=eVS/eVD) [46]. We use a small capacitor Cm to
phenomenologically account for the weak interdot coupling
t . Each dot is capacitively coupled to the middle/side gate
with voltage VM/Vg through a capacitor CM/Cg . We ignore
the cross capacitance between the middle and the side gates.
The inset of Fig. 5(a) shows the equivalent circuit of a tunnel
junction of the ith dot to the edge upper (lower) channel,
characterized by a capacitor C

S(D)
i and a resistor R

S(D)
i . The

number of electrons in the ith dot is ni . As the magnetic
field ranges from 1.4 T to 2.8 T, the electrons of the dot in
the quantum Hall states are distributed into an outer ring and
an inner core with the different LLs. To simplify this model
without losing the most essential features, we consider that
each QD comprises one core. The charges qi in the ith dot can
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be written as [42]

q1 = C1
S(V1 − VS) + CM (V1 − VM ) + Cm(V1 − V2)

+C1
D(V1 − VD),

q2 = C1
S(V2 − VS) + CM (V2 − VM ) + Cm(V2 − V1)

+Cm(V2 − V3) + C2
D(V2 − VD),

. . . ,

q6 = C1
S(V6 − VS) + CM (V6 − VM ) + Cm(V6 − V5)

+C6
D(V6 − VD). (1)

The values of qi vary with the flux changes. Here, we adopt
the approach in Ref. [36] by considering

qi = −ni |e| + νdot
δBAi

�0
|e|, (2)

where νdot ∼ 2 is the occupied LL in the dot, Ai is the area
of the ith dot, and δB is the variation of the magnetic field.
The total charge Q can be expressed in a matrix form Q̂ = Ĉ ·
V̂ [42], where Q̂ = [q1,q2, . . . ,q6], V̂ = [V1,V2, . . . ,V6], and
Ĉ is the matrix of the capacitor network. For a given charge
configuration ni of the quantum dots, the electrostatic energy
Eni

can be obtained by Eni
= 1

2Q̂ · Ĉ−1 · Q̂. In the linear
transport regime, i.e., VS ∼ VD ∼ 0, the charging energy for
ni to ni ± 1 can be obtained from �Eni

= Eni
− Eni±1.

The removing of the CB in the dots causes the interedge
scatterings. Consequently, it results in a dip on the plateau.
Therefore, the conductance can be described as G = 2e2/h −
GCB , where GCB is the conductance of CB oscillations. It
has been reported that GCB can be derived from ICB(VSD)
characteristics of the dots [47]:

ICB = e
∑

ni

6∑

i=1

[�i−→S − �S−→i]P{ni }. (3)

Here P{ni } denotes the probability of finding ni in the dots.
The notation �i→S is the transition rate of tunneling an electron
from the ith dot to the source or vice versa, and can be
expressed as

�i→S = 1

e2RS
i

−�E{ni }
1 − exp(�E{ni }/kBT )

. (4)

We follow the procedures discussed in Chapter 3 of
Ref. [47] to obtain P{ni } and calculate the nonlinear transport
of the QDA. The relevant parameters adopted in the following
are either estimated from the data by standard methods
for characterizing a quantum dot or chosen to match the
experimental data. We have CS

i ∼ CD
i ∼ 90 aF, Cg ∼ CM ∼

5 aF, Cm ∼ 5 aF, RS
i ∼ RD

i ∼ 500 k�,Ai ∼ 10−14 m2 for
i = 1 to 5, and RS

6 ∼ RD
6 ∼ 100 k�,A6 ∼ 8.5 × 10−15 m2 for

the sixth dot. Note that we consider the sixth dot as a variant
dot with a smaller tunneling barrier to the edges and put about
0.17e offset charges between adjacent dots to account for the
charge variations among the dots.

Figures 5(b) to 5(e) show the simulation results. The darker
blue lines trace the deeper dips arising from the sixth dot
which has a stronger coupling to the edges. The lighter traces
are from the smaller dips attributed to the rest of normal dots.
Figure 5(b) shows the calculated conductance as a function of

�Vg and �VM , which maps out the charge stability diagram
of the QDA. Figure 5(c) shows the �VM -B plot of G. As
indicated by the dashed lines in Fig. 5(c), the deeper and lighter
traces intersect at a specific B, which is in good agreement
with the data shown in Fig. 3(a). The constant slope of the
intersecting traces indicates a weak interdot coupling t among
the dots. Figure 5(d) shows the differential conductance
dI/dVSD plot as a function of �VM and VSD. We can find
“inverted” Coulomb diamonds; i.e., the diamond borders
indicate lower conductance as CB is removed. Moreover, the
diamonds show nested features: small diamonds associated
with the small oscillations are enclosed by a large diamond
from the variant dot. The stimulated temperature dependence
of the dip conductance is shown in Fig. 5(e). Notably, turning
the G traces upside down, the T dependence of the dip features
manifests typical CB behavior of the QD (see, e.g., Fig. 2 in
Ref. [44]). The reduction of the plateau value with the increase
of T is a consequence of increasing the interedge scattering
from the normal dots. Our simple model can quantitatively
reconcile the main features observed in type 1 and support our
arguments: (i) the dots are weakly coupled to each other, and
(ii) the dip features are induced by the edge-channel-mediated
CB oscillations. By modeling the QDA as a network of tunnel
junctions and capacitors, we suggest that a variant dot with
a smaller tunneling barrier is responsible for the deeper dip.
The discrepancies in smaller dips can be reconciled when
more specific conditions are considered.

V. CONCLUSION

In summary, we have presented evidence for quantum
Hall edge-state-mediated collective charging effects in a QDA
on the plateau of one conductance quantum G0. Through a
combination of applying magnetic fields and gate voltages,
the electron density of the dots and the interdot coupling can
be continuously fine-tuned to enable the QDA conductance
spectrum to undergo a localization-to-delocalization transition
process. In the weak-coupling regime, electrons are localized
in individual dots. The tunneling between the edge states and
a single dot produces periodic dip structures on G0 when the
CB of one dot is removed. With increasing coherent interdot
coupling, the electrons can be delocalized among the dots.
The interplay of the interactions between the QDA and the
edge states gives rise to intertwined dip and peak features
on G0. Our results demonstrate that the edge channel can be
utilized to manipulate and probe the collective charge states
in an interacting quantum-dot system. The QDA-edge channel
network could potentially serve as an on-chip laboratory for
investigating many-body interactions.
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