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Step free energies at faceted solid surfaces: Theory and atomistic calculations
for steps on the Cu(111) surface
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A theory for the thermodynamic properties of steps on faceted crystalline surfaces is presented. The formalism
leads to the definition of step excess quantities, including an excess step stress that is the step analogy of surface
stress. The approach is used to develop a relationship between the temperature dependence of the step free energy
(γ st) and step excess quantities for energy and stress that can be readily calculated by atomistic simulations. We
demonstrate the application of this formalism in thermodynamic-integration (TI) calculations of the step free
energy, based on molecular-dynamics simulations, considering 〈110〉 steps on the {111} surface of a classical
potential model for elemental Cu. In this application we employ the Frenkel-Ladd approach to compute the
reference value of γ st for the TI calculations. Calculated results for excess energy and stress show relatively weak
temperature dependencies up to a homologous temperature of approximately 0.6, above which these quantities
increase strongly and the step stress becomes more isotropic. From the calculated excess quantities we compute
γ st over the temperature range from zero up to the melting point (Tm). We find that γ st remains finite up to
Tm, indicating the absence of a roughening temperature for this {111} surface facet, but decreases by roughly
fifty percent from the zero-temperature value. The strongest temperature dependence occurs above homologous
temperatures of approximately 0.6, where the step becomes configurationally disordered due to the formation of
point defects and appreciable capillary fluctuations.
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I. INTRODUCTION

In theories of crystal morphologies and growth kinetics,
a property of fundamental importance is the step free energy,
γ st, i.e., the excess free energy of a step line defect on a faceted
solid-liquid interface or crystal surface [1,2]. The magnitude
of γ st controls the depth of the cusp in the interfacial free
energy versus orientation plot for faceted interfaces, and this
property is thus fundamental in determining the equilibrium
crystal shape [3]. The step free energy also plays an important
role in governing crystallization kinetics from the melt or
vapor [4], by controlling the magnitude of the barrier to island
nucleation in the growth of a faceted surface or interface. The
step free energy can depend strongly on temperature, and this
dependence ultimately leads to the vanishing of γ st above the
thermodynamic roughening temperature [5]. Below the rough-
ening transition, steps with free energies that are low relative
to the thermal energy will display pronounced capillary fluc-
tuations, which have important consequences for their kinetic
properties, bunching instabilities [6], and morphologies [7,8].

Despite the importance of γ st described above, measure-
ments of this quantity remain relatively rare. Further, reported
values are often available only for a fixed value of the
temperature [9–12] and measurements over a wide temperature
range have been undertaken in few systems [13,14]. As a
consequence, knowledge of the nature of the temperature
dependence of step free energies and understanding of the
microscopic factors that underlie it remain incomplete. This
situation presents a challenge for the development and appli-
cation of quantitative mesoscale theories in studies of faceted
crystal growth phenomena in real systems, and robust methods
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for the direct calculation of temperature-dependent step free
energies from atomic-scale simulations are thus of fundamen-
tal interest. In the present paper we present a thermodynamic
formalism that relates the temperature dependence of γ st

on faceted crystal surfaces to excess quantities that can be
computed directly by atomistic simulations. This formalism
provides a framework for the calculation of γ st as a function
of temperature through the thermodynamic integration of an
appropriate adsorption equation.

The remainder of this paper is organized as follows. In
Sec. II the thermodynamic formalism is introduced, and the
relevant step excess quantities and other fundamental thermo-
dynamic equations are defined. In Sec. III we demonstrate
how the thermodynamic formalism can be combined with the
calculation of a reference step free energy at low temperatures
by the Frenkel-Ladd method [15,16], to compute γ st up to high
temperatures, accounting for contributions arising from the
formation of surface point defects and capillary fluctuations.
In Secs. IV and V we present simulation details and results,
respectively, of an application of the equations derived to the
calculation of the free energy of 〈110〉 steps present on the
{111} surface of face-centered-cubic copper using molecular
dynamics simulations. In Sec. V we also compare the step
free energy obtained here to experimentally measured [11]
and first-principles-calculated [17–19] results available in the
literature. Finally, in Sec. VI we summarize the main findings,
and discuss applications of the formalism presented in this
work more generally.

II. THERMODYNAMIC THEORY OF SURFACE STEPS

A. Step excess quantities

Consider a thermodynamic system that consists of a homo-
geneous solid with a stepped surface, where the step separates
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FIG. 1. Schematic illustration of a thermodynamic system con-
sisting of a homogeneous solid and a stepped surface. The solid is
infinite along the ±x̂, ±ŷ, and −ẑ directions. The surface normal is ẑ
and the average step direction is along x̂.

two flat surface terraces as shown in Fig. 1. Both terraces have
the same structure and thermodynamic properties, while the
surface around the step has properties that are different from
those of the flat terraces. The step region, terraces, and bulk
are in thermodynamic equilibrium with each other. We assume
that atoms can migrate by diffusion between the bulk and the
surface regions, allowing the concentration of point defects to
vary everywhere in the system, in a way required to maintain
equilibrium. We also assume that atoms can attach and detach
from the step, so the system is in equilibrium with an infinite
source and sink of atoms.

The properties of the bulk far away from the surface region
and the properties of the flat terraces far away from the step
region are well described by standard bulk and interfacial
thermodynamic relations [20,21]. In this section we will
address the thermodynamic properties of the steps on the
crystalline surface. Consider an imaginary region that contains
a finite segment of the step, as shown in Fig. 1. The lower
boundary of this region is located inside the homogeneous
part of the bulk crystal, while the side boundaries parallel and
perpendicular to the step line cross the system surface normal
to the terraces. The latter condition is important because it
defines the total surface area inside the region.

The extensive thermodynamic properties of the step region
depend on its dimensions, since the enclosed system is not
homogeneous. We postulate that the total energy of the region
is a function of the following extensive and intensive variables:

Est ≡ Est(Sst,N st,Ast,L,εij ). (1)

The superscript “st” refers to variables of the step region shown
in Fig. 1: Sst is the entropy, N st is the number of atoms, Ast is the
surface area enclosed by the region, L is the step length, and εij

are the lateral components of strain, with i = x,y and j = x,y.
The lateral components of strain in Eq. (1) correspond to the
macroscopic strain in the homogeneous bulk lattice far away
from the step, not to be confused with the local inhomogeneous
strain around the step. As illustrated in Fig. 1, the coordinate

system is chosen such that ẑ is normal to the terraces, while x̂
and ŷ are parallel and normal to the step line, respectively.

Consider a variation when the physical state of the system
is fixed and we extend the boundaries of the region from zero
to some finite values. Assuming that Est is a homogeneous
function of degree one with respect to Sst, N st, Ast, and L we
obtain

Est = T Sst + μN st + γAst + γ stL, (2)

where T is the temperature, μ is the chemical potential, γ is
the surface free energy per unit area, and γ st is the step free
energy per unit step length. Note that by definition γ is the
property of the terrace uninfluenced by the surface step. We
assume that the external pressure is zero since the solid is in
contact with vacuum.

At this point a comment should be made about the meaning
of the quantities introduced above. The current thermodynamic
treatment is focused on steps on solid surfaces, and it is
well known that such steps produce long-range elastic fields
[22–24]. As a result, both terraces and the bulk crystal
are strictly speaking inhomogeneous in the entire system.
Equation (2) can still be used to describe the system if γ

and γ st are understood as the properties of the terraces and the
step in the limit when the system size goes to infinity. In other
words, even though the inhomogeneity due to the strain fields
induced by the step can extend far away from the step line,
its total contribution to the energy of the system is finite. This
will be demonstrated using atomistic simulations in Sec. IV of
this study. This property of surface steps should be contrasted
with the case of lattice dislocations, which are also line defects.
Different from steps, the elastic contribution to the total energy
of a dislocation diverges with the system size [25] and Eq. (2)
would not apply.

The amount of bulk and terrace inside the step region at
this point is arbitrary, and hence quantities in Eq. (2) depend
on the choice of the step region. In order to define the step
excess quantities we need to subtract the bulk and terrace
contributions from the quantities of the step region in Fig. 1.
To this end we write equations analogous to Eq. (2) for the
terrace and bulk regions shown in Fig. 1:

Et = T S t + μN t + γAt, (3)

Eb = T Sb + μNb, (4)

where superscripts “t” and “b” refer to terrace and bulk,
respectively. These two regions are located sufficiently far
away from the step that their extensive properties are not
affected by it. The terrace region includes the surface as well
as a portion of the homogeneous bulk phase, while the bulk
region is unaffected by the surface. Solving the system of
equations given by Eqs. (2), (3), and (4) using Cramer’s rule,
we obtain an expression for step free energy γ st:

γ stL = [E − T S − μN − γA]XY , (5)

where X and Y are any of the extensive quantities S, N , or
A. Terms [Z]XY are Cahn’s determinants and are calculated as
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the ratio of two determinants [21]

[Z]XY =

∣∣∣∣∣∣
Zst Xst Y st

Zt Xt Y t

Zb Xb Y b

∣∣∣∣∣∣∣∣∣∣X
t Y t

Xb Y b

∣∣∣∣
. (6)

The first row of the numerator contains extensive thermo-
dynamic quantities of the region containing the step, while
the second and the third rows contain properties of regions
enclosing the terrace and the bulk, respectively. According to
properties of determinants if any two columns are equal, the
determinant is zero:

[X]XY = [Y ]XY = 0. (7)

Thus, two terms in Eq. (5) automatically vanish.
The quantity [Z]XY has the meaning of the excess property

of a step when the region with the step has the same amount
of X and Y as the terrace and the bulk regions combined.
The excess quantities generally depend on the choice of the
extensive variables X and Y . On the other hand, Eq. (5) shows
that all different choices of X and Y result in the same excess
amount of γ stL.

Considering a particular example when X = A and Y = N ,
we obtain

γ stL = [E]AN − T [S]AN . (8)

The step excess quantities [E]AN and [S]AN are the excess
energy and entropy when the step region has the same
surface area and number of atoms as terrace and bulk regions
combined. The choice of A as one of the extensive variables
means that the excess area of a step is zero. The step is
represented as a dividing line on the surface and the properties
of terraces are extended all the way to this line. Using this
representation, step excess quantities can be formulated in a
manner similar to the Gibbs dividing surface construction for
interfaces. On the other hand, the derivation that uses Cahn’s
determinants provides expressions for excess quantities that
are more general. The ability to choose different definitions can
be useful in applications because some excess quantities are
more accessible than others to measurements or calculations.
In Sec. IV we describe how several step excess quantities can
be calculated directly from atomistic simulations by making
use of the flexibility provided by Cahn’s determinants.

B. Adsorption equation

In the previous section we derived an expression for the
step free energy and other excess quantities. We are now in a
position to derive an equation that describes how γ st changes
with temperature and mechanical deformation, namely the
adsorption equation. Consider a variation of state when
the system exchanges heat and does mechanical work. For
the region containing the step the change in total energy is
given by

dEst = T dSst + μdN st +
x,y∑
i,j

σ st
ij V

stdεij , (9)

where σ st
ij is the stress tensor and V st is the volume. The product

σ st
ij V

st is defined as the derivative of Est with respect to elastic
deformation εij . Equation (9) assumes that the surface area
changes due to elastic deformation of the lattice and not by
incorporation of new lattice units. At the same time the number
of atoms in the region and the relative areas of the terraces
can change by diffusion and attachment of atoms to the step.
The conditions for mechanical equilibrium between the system
and the vacuum [24,26] require that σ st

iz = 0 for i = x, y, or z.
Thus, all summations involving the stress tensor are over the
x and y indices only.

Performing a Legendre transformation on terms containing
entropy and number of particles we obtain from Eq. (9)

d(Est − T Sst − μN st) = − SstdT − N stdμ

+
x,y∑
i,j

σ st
ij V

stdεij . (10)

Combining Eqs. (2) and (10) we obtain

d(γ stL) = − SstdT − N stdμ

− Astdγ +
x,y∑
i,j

(
σ st

ij V
st − δij γAst

)
dεij . (11)

The intensive variables on the right-hand side in Eq. (11) are
not independent since equations similar to Eq. (11) for the
terrace and bulk regions impose additional constrains. For the
terrace we have [27]

0 = − S tdT − N tdμ

− Atdγ +
x,y∑
i,j

(
σ t

ijV
t − δij γAt

)
dεij , (12)

while the Gibbs-Duhem equation for the bulk reads

0 = −SbdT − Nbdμ +
x,y∑
i,j

σ b
ijV

bdεij . (13)

Solving Eqs. (11), (12), and (13) using Cramer’s rule [21], we
obtain the adsorption equation for steps

d(γ stL) = − [S]XY dT − [N ]XY dμ

− [A]XY dγ +
x,y∑
i,j

[σijV − δij γA]XY dεij , (14)

where X and Y are any of the extensive quantities S, N , A, or
(σijV − δij γA). Notice that the coefficients of the differentials
in Eq. (14) are the step excess quantities introduced earlier
in Eq. (6), and are independent of the particular choice
of the regions illustrated in Fig. 1. Due to the property
of determinants in Eq. (7), two terms in the adsorption
equation can be eliminated by specifying X and Y , leaving
only independent variables. The number of variables should
coincide with the number of degrees of freedom available to
the system. Consider the same example given in Sec. II A,
where we choose X and Y equal to A and N . In this case
the four possible variations are changes in temperature and
deformation described by strains εxx , εyy , and εxy . It is natural
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to have the step free energy be a function of these variables.
The differential of surface free energy γ that appears in
Eq. (14) is an unusual variable to describe the changes in the
thermodynamic state of the step. While such an exotic form
of the adsorption equation can be formulated and is consistent
with the Gibbs phase rule, in most practical cases it is more
convenient to eliminate this term by specifying X = A.

C. Step stress

Equation (14) introduces a new excess property in addition
to the quantities that appeared in Eq. (5). The last term in
Eq. (14) describes changes in γ stL due to elastic deformations
and defines the step excess stress as

[τij ]XY ≡ 1

L

∂(γ stL)

∂εij

= 1

L
[σijV − δij γA]XY , (15)

where i = x,y and j = x,y. [τij ]XY is a quantity with units of
energy per length that represents the additional force exerted
on the perimeter of the stepped surface due to the presence of
the step. Different from γ st, the step excess stress [τij ]XY is
not a unique quantity: it is a direct consequence of the derived
adsorption equation that one can introduce several valid step
excess stresses by specifying different extensive properties X

and Y . Notice that by the derivation above [τ ] is a second rank
tensor, not a scalar like step free energy; hence it has nonzero
components parallel and normal to the step line [28].

Differentiating the product γ stL in Eq. (14) and using
dL = ∑x,y

i,j δixδjxLdεij we obtain the intensive form of the
adsorption equation:

dγ st = − [S]XY

L
dT − [N ]XY

L
dμ

− [A]XY

L
dγ +

x,y∑
i,j

([τij ]XY − δixδjxγ
st)dεij , (16)

where the differential coefficients are the step excess quantities
per unit step length. From Eq. (16) we can now obtain the
relation between [τij ]XY and γ st:

[τij ]XY = δixδjxγ
st + ∂γ st

∂εij

. (17)

Equations (15) and (17) are the step analogs of the stress
equations for solid surfaces [27,29,30]. They are a direct
consequence of the derived adsorption equation, Eq. (14), and
give a recipe for how [τij ]XY can be calculated as an excess
property using the determinant formalism.

Consider the example discussed earlier (Secs. II A and II B)
when X = A and Y = N . This choice of extensive variables
eliminates differentials of chemical potential μ and surface
free energy γ , leaving only independent variations with
temperature and deformation:

dγ st = − [S]AN

L
dT +

x,y∑
i,j

([τij ]AN − δixδjxγ
st)dεij . (18)

The second term in Eq. (18) describes how the step free energy
changes when the surface is deformed at constant temperature.
Notice that during such a process the chemical potential μ and

free energy of the terraces γ are not constant. Equation (18)
defines a particular step excess stress given by

[τij ]AN = 1

L
[σijV ]AN . (19)

The components of this stress tensor have been calculated
in the present work from atomistic simulations, and the
magnitudes of this quantity will be presented in Sec. V below.

III. THERMODYNAMIC INTEGRATION FORMALISM

In this section we describe how the equations derived in
Sec. II provide a framework for a thermodynamic-integration
approach to computing the temperature dependence of the step
free energy γ st by atomistic simulations. We also demonstrate
how the absolute free energy of the step can be derived at
low temperatures (i.e., where the concentration of kinks and
surface adatoms are sufficiently low that we can neglect their
contribution to the free energy) using the Frenkel-Ladd [15]
method, to provide a reference value in the thermodynamic
integration approach. The combination of these two methods
provides a general framework for the calculation of step free
energies over a wide temperature range, accounting naturally
for vibrational and configurational disorder.

A. Gibbs-Helmholtz relation for step free-energy integration

The temperature dependence of the step free energy can be
obtained by directly integrating d(γ stL), given in Eq. (14),
along a reversible thermodynamic trajectory. However, in
many applications the calculation of the excess entropy [S]XY

can be challenging. Fortunately, we can avoid the explicit
calculation of [S]XY by integrating d(γ stL/T ) instead of
Eq. (14). We can compute d(γ stL/T ) explicitly by combining
Eqs. (5) and (14):

d

(
γ stL

T

)
= − [E − μN − γA]XY

T 2
dT − [N ]XY

T
dμ

− [A]XY

T
dγ +

x,y∑
i,j

[τij ]XY L

T
dεij , (20)

where [τij ]XY depends on the choice of the X and Y variables.
Equation (20) is the surface step analog of the Gibbs-
Helmholtz equation from bulk thermodynamics. A similar
equation for interfaces was derived previously [31], and was
demonstrated to be efficient for calculating the temperature
dependence of interface free energies [27,31–35].

Before integrating Eq. (20) we need to choose X and Y since
the selection of these variables determines which quantities
need to be calculated to perform the thermodynamic integra-
tion. A convenient choice for the applications considered here
is X = A and Y = N . In this case Eq. (20) becomes

d

(
γ stL

T

)
= −

(
[E]AN

T 2
−

x,y∑
i,j

[τij ]ANL

T

dεij

dT

)
dT , (21)

where [τij ]AN is given by Eq. (19). Equation (21) can be
integrated along a reversible thermodynamic path, where the
temperature is increased from T0 to T while the solid is
expanded to accommodate the thermal expansion, effectively
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maintaining zero bulk stress, i.e., σ b = 0. Notice that this ther-
modynamic path couples the a priori independent variables T

and ε:

αij ≡
(

∂εij

∂T

)
σ b=0

,

where αij is the linear thermal-expansion factor and i and j are
equal to x,y, or z. We will assume here that the crystal lattice
has cubic symmetry, allowing us to define our coordinate
system in a way that eliminates the dependence of αij on
the indexes i and j . One further implication of following
this thermodynamic path is that the system is not subject to
shear strain during the thermal expansion; hence [τij ]AN for
i �= j performs no mechanical work. With these considerations
Eq. (21) becomes

d

(
γ stL

T

)
= −

(
[E]AN

T 2
− 2α [τavg]ANL

T

)
dT , (22)

where

[τavg]AN = [τxx]AN + [τyy]AN

2
(23)

is the average step stress. Upon integration of Eq. (22)
following the thermodynamic path described above we obtain

γ st(T ) = T

T0

γ st(T0) L(T0)

L(T )

− T

L(T )

∫ T

T0

(
[E]AN

T ′2 − 2α [τavg]ANL

T ′

)
dT ′. (24)

Note that all quantities inside the integral depend on the
temperature T ′.

Equation (24) allows for the calculation of the temperature
dependence of γ st if we know how to calculate all quantities
on its right-hand side. The excess quantities inside the integral
on the right-hand side of Eq. (24), [E]AN and [τavg]AN ,
can be computed readily from atomistic simulations since
they only involve the calculation of the system energy and
stress tensor. Thus, the only remaining term on the right-
hand side of Eq. (24) is the step excess free energy at a
reference temperature γ st(T0). This type of term, present in
all thermodynamic integration methods, cannot be trivially
computed using atomistic simulations, since it involves the
calculation of the absolute free energy of the system. In the next
section we present a method due to Frenkel and Ladd [15,16]
which enables the calculation of the absolute free energy of
solid systems. In the present context, this method enables the
calculation of γ st(T0) provided the temperature T0 is chosen
low enough such that the steps are structurally ordered (i.e.,
without an appreciable concentration of kinks, adatoms, or
vacancies). Once we know the free energy of the step at this
reference temperature, we can use Eq. (24) to compute the
absolute free energy of the step at any other temperature T

from values of [E]AN and [τavg]AN at temperatures between
T0 and T .

B. Application of Frenkel-Ladd approach
for calculation of step free energies

The Frenkel-Ladd [15] (FL) method is a type of ther-
modynamic integration approach that allows calculation of

the absolute free energy of crystalline solids from atomistic
simulations. Consider a system composed of N identical
particles with the Hamiltonian

H0 =
N∑

i=1

p2
i

2m
+ U (r1,r2, . . . ,rN ), (25)

where m is the mass of the particles and U (r1,r2, . . . ,rN ) is
a many-body interatomic potential. We assume that, at the
temperature and pressure of interest, the system’s stable phase
is a solid with a known crystalline lattice structure. Considering
this lattice structure we will construct a second Hamiltonian
for a reference Einstein crystal, which consists of particles of
the same mass m attached to the equilibrium lattice sites by
harmonic springs with spring constant k:

HE =
N∑

i=1

p2
i

2m
+

N∑
i=1

1

2
k
(
ri − r0

i

)2
, (26)

where r0
i is the equilibrium lattice position of particle i in the

system described by H0.
In the FL method we use a Hamiltonian which is a linear

interpolation of the Hamiltonians given by Eqs. (25) and (26):

H (λ) = (1 − λ)H0 + λHE, (27)

where λ is a parameter of this Hamiltonian. The free energy
of the system H (λ) is

F (N,V,T ; λ) = −kBT ln

{∫
dx
h3N

exp [−βH (λ)]

}
, (28)

where kB is the Boltzmann constant, h is the Planck constant,
x = {r1,r2, . . . ,rN,p1,p2, . . . ,pN } is a point in the phase space
of the particles of this system, and β = 1/kBT . It can be easily
shown, by computing the derivative of Eq. (28), that

∂F

∂λ
=

〈
∂H

∂λ

〉
λ

,

where 〈. . .〉λ is the canonical ensemble average for a specific
value of the parameter λ. From direct integration of the
equation above from λ = 0 to λ = 1 we obtain

F0(N,V,T ) = FE(N,V,T ) +
∫ 1

0
〈U − UE〉λdλ, (29)

where F0(N,V,T ) ≡ F (N,V,T ; λ = 0) is the free energy of
the solid described by H0, FE(N,V,T ) ≡ F (N,V,T ; λ = 1) is
the free energy of the Einstein crystal, and UE is the potential
energy of the harmonic springs in the Einstein crystal. Since
HE is composed of independent harmonic oscillators we can
calculate its free energy analytically:

FE(N,V,T ) = 3NkBT ln

(
h̄ω

kBT

)
, (30)

where ω = √
k/m is the natural frequency of the harmonic

oscillators.
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Equations (29) and (30) allow calculation of the absolute
free energy of the solid H0 from atomistic simulations. The
only unknown in Eq. (29) is the integrand on the right-hand
side, which is an equilibrium ensemble average and, therefore,
can be calculated directly using atomistic simulation tech-
niques [36] such as molecular dynamics or Monte Carlo with
the Hamiltonian given by Eq. (27). The evaluation of Eq. (29)
can be performed in a straightforward manner using equilib-
rium simulations to obtain averages necessary to calculate the
integral on the right-hand side numerically. However, this is
an inefficient way to perform this thermodynamic integration.
State-of-the-art methods [16] for evaluating Eq. (29) based
on nonequilibrium simulations have been developed and are
now implemented in high-performance atomistic simulation
software such as LAMMPS [37] (Large-scale Atomic/Molecular
Massively Parallel Simulator). These methods drastically re-
duce the computational cost of the thermodynamic-integration
calculation and provide robust error-control criteria. An in-
depth description of these techniques and detailed account of
how they can be implemented in practice is given in Ref. [16].

We have shown in Sec. II, Eqs. (5) and (8), that the
step free energy γ st(T0) is a quantity that can be computed
from the free energies of the three different regions shown
in Fig. 1. Hence, our approach in the work presented below
is to obtain the γ st(T0) using the FL method to compute the
absolute free energies of the relevant required systems. In so
doing we have followed closely the methodology described in
Ref. [16] to perform the FL calculations. Note, however, that
the FL method has its applicability limited to low-temperature
surfaces (flat and stepped), since at high temperatures the
presence of surface vacancies, adatoms, and kinks on the
steps breaks the FL method assumption that the atomic motion
occurs around the equilibrium lattice positions, Eq. (26). Thus,
the free energy computed with the FL method is only used
as an initial integration point for the thermodynamic integral
approach of Sec. III A, more specifically in Eq. (24).

IV. ATOMISTIC SIMULATIONS

A. Methodology

To demonstrate the application of the methodology de-
scribed in the previous section, for computing step free en-
ergies by atomistic simulations, we focus on the (111) surface
of face-centered-cubic Cu, modeled with the embedded-atom-
method (EAM) interatomic potential due to Mishin et al. [38].
In previous simulations it has been found that this surface
remains faceted at all temperatures up to the melting point
of the EAM model (Tm = 1327 K for the potential model
considered [39]). No evidence for surface premelting was
observed in these previous simulations, such that the surface
maintains the layered crystalline structure up to Tm. Since the
surface remains faceted, the step free energies are expected to
remain finite up to this temperature.

We have chosen molecular dynamics (MD) as the atomistic
simulation technique to evaluate the step excess quantities
necessary for the thermodynamic integration equations. All
calculations were performed using LAMMPS [37], an open
source implementation of MD. The Langevin thermostat [40]
was employed to sample the phase space, according to the

canonical ensemble distribution. The relaxation time used
for the thermostat was τL ≡ m/γ = 20 ps, where γ is the
friction parameter and m is the atomic mass. The time step
was chosen based on the highest-frequency normal mode of
the system (νmax = 7.8×1012 Hz); we have taken 
t to be
approximately 1/60th of the oscillation period of that normal
mode: 
t = 2 fs.

B. System geometry and dimensions

In Sec. III Eq. (24) was derived for the temperature
dependence of γ st, based on the choice X = A and Y = N .
In this subsection we elaborate further why this is a conve-
nient choice for the calculation of the excess quantities that
appear in Eq. (24) from atomistic simulations. From Eq. (6)
we have

[Z]AN =

∣∣∣∣∣∣
Zst Ast N st

Zt At N t

Zb Ab Nb

∣∣∣∣∣∣∣∣∣∣A
t N t

Ab Nb

∣∣∣∣
. (31)

The bulk region in Fig. 1 does not have any surface which
means Ab = 0. Heretofore the regions shown in Fig. 1 had
arbitrary dimensions; from now on we choose the dimensions
of the step and terrace regions in such a way that they
have the same surface area, i.e., Ast = At. Furthermore, we
choose the depth of these regions such that they contain
the same number of atoms: N st = N t. With this particular
choice of dimensions, the excess quantities shown in Eq. (31)
become [Z]AN = Zst − Zt. Thus, the need to compute the
thermodynamic properties for the bulk (Zb) is eliminated and
[Z]AN becomes a simple difference between the properties of
the step and terrace regions.

To calculate step excess quantities we modeled two different
simulation blocks illustrated in Fig. 2. The simulation block
shown in Fig. 2(a) is a solid film with two flat (111) surfaces.
Periodic boundary conditions were applied for the directions
parallel to the surface. The second simulation block illustrated
in Fig. 2(b) was obtained from the first one by adding half
of an atomic plane on the top surface and removing half
of the atomic plane from the bottom surface. As a result of
this construction, the second block has four surface steps.
At the same time the construction ensures that the two
simulation blocks have the same number of atoms and the
same surface area. Properties Zst and Zt were then calculated
for the two blocks with and without steps, respectively. The
difference between these quantities gives the step excess
[Z]AN given by Eq. (31). Indeed, Zst − Zt represents the
excess of property Z due to steps, when the reference system
has the same surface area and the same number of atoms.
We remind the reader that the excess quantities inside the
integral on the right-hand side of Eq. (24) are [E]AN =
Est − Et and [τii]AN = (σ st

ii V
st − σ t

iiV
t)/L and can be readily

computed from atomistic simulations since they involve only
the calculation of the energy and stress tensor of each of the
systems in Fig. 2. The steps considered in the MD simulations
of the simulation cells illustrated by Fig. 2(b) are directed
along the close-packed 〈110〉 direction. The crystallographic
symmetry of the (111) surface is such that the two steps shown
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d

L

2h
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[11̄0]

[112̄]

2d

FIG. 2. Simulation box geometry for (a) the system with a flat
terrace and (b) the system containing steps. d denotes the lateral step
separation distance, h the bulk depth, and L the step length. The
step line is parallel to the [11̄0] direction and on the (111) surface
plane. The step separation, d , is measured along the [112̄] direction,
perpendicular to the step line direction. Periodic boundary conditions
are applied along the [11̄0] and [112̄] directions, within the surface
plane. The systems illustrated in (a) and (b) are constructed such
that they contain the same number of atoms and have the same total
surface area.

in each of the surfaces of Fig. 2(b) are slightly different; it can
be seen in Fig. 3 that they have different nearest-neighbor
configurations on the (111) plane immediately below the
surface. The step with lowest zero-temperature energy [24]
(U0 = 103.13 meV/Å) is a 〈110〉A step, while the step with
the slightly larger energy (U0 = 104.08 meV/Å) is a 〈110〉B

(a) (b)

FIG. 3. Atomic configuration of (a) 〈110〉A and (b) 〈110〉B steps
on the (111) surface of an fcc lattice. Atoms are colored according to
the atomic layer they belong to: blue atoms belong to the first layer,
red atoms to the second layer, and yellow atoms to the third layer.
Atoms at the edge of the two different 〈110〉A and 〈110〉B steps
have different nearest-neighbor configurations on the (111) plane
immediately below the surface.

step. Using the terminology of Ref. [17] 〈110〉A steps have
〈100〉 microfacets and 〈110〉B steps have 〈111〉 microfacets.

We have chosen the simulation box size in such a way that
the step-step interaction energy of all four steps in Fig. 2(b) was
negligible compared to the step self-energy (i.e., the energy of
an isolated step). Steps are abrupt interruptions of the surface
first layer; hence, they deform the atomic structure around
them, creating an elastic field [22]. The interaction energy due
to the overlap of the strain fields of the two steps decays as
d−2 with the step-step separation and exponentially with the
bulk depth (see Ref. [23] and references therein). Following
the work of Shilkrot and Srolovitz [23] we have verified this
behavior for the step elastic interaction energy [41] of our
model and we have determined the step-step distance (d) and
bulk depth (h) such that Eint/U0 � 10−4, where Eint is the
total step interaction energy and U0 is the step self-energy
at zero temperature. The box dimensions obtained are d =
70.8 Å and h = 53.2 Å at T = 0 K; for finite temperatures we
have increased the system dimensions to account for thermal
expansion, for zero bulk stress.

The simulation box length along the step line cannot be
determined based on static simulations. In order to determine
the step length necessary to minimize finite-size effects
along the step direction it is necessary to consider fluctuations
of the step line that appear at finite temperatures, known as
capillary fluctuations. The accurate evaluation of step excess
quantities requires satisfactorily sampling the normal modes
of these fluctuations (i.e., the capillary waves) during the
simulation. If the step length used is too small the sampling
of long-wavelength modes is suppressed. On the other hand,
an excessively lengthy step would make the thermodynamic
integration calculations prohibitively long due to the need
to sample normal modes with very long wavelengths and
associated long relaxation times. Thus, to determine the step
length required in the simulations we need to analyze the
convergence of [E]AN and [τavg]AN with the step length since,
according to Eq. (24), the thermodynamic integration equation
depends on the computation of these two quantities.

Using the values of d and h determined above we have
run simulations at T = 1300 K for systems with different step
lengths (L) and calculated the step excess energy and stress.
Figure 4 shows the convergence of the step excess quantities
with step length for these simulations. Based on these results
we have chosen L = 30.7 Å as the step length for the next
simulations since the step excess quantities are seen to be well
converged for steps of this size.

V. RESULTS AND DISCUSSION

A. Step free energies from Frenkel-Ladd simulations

Using the box dimensions specified in Sec. IV B, we have
constructed two systems to be used in the FL simulations,
one with a flat surface and the another with stepped surfaces,
as shown in Figs. 2(a) and 2(b). Both systems have 39 168
atoms and the same surface area. In Fig. 5 we show plan-
view snapshots [42] of the top layer of atoms from typical
configurations for the stepped system at different temperatures.
At temperatures of 700 K or lower, the step line is mostly
straight with small fluctuations due to atomic vibrations,
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FIG. 4. Convergence of step excess energy ([E]AN ) and average
step excess stress ([τavg]AN ) with step length (L) at T = 1300 K.
Error bars are the standard error of the mean, computed by taking
into consideration the relaxation times of the capillary wave normal
modes.

while as we raise the temperature closer to the melting point
(Tm = 1327 K) configurational disorder due to capillary fluc-
tuations and the formation of vacancies and adatoms becomes
pronounced. The presence of appreciable configurational
disorder limits the application of the FL method to tem-
peratures below 700 K. The formation of defects above this
temperature causes a sharp increase in the dissipation during
the switching to the Einstein crystal. This excessive dissipation
is characteristic of irreversible processes and violates the
assumptions necessary for the derivation of the FL method
equations, namely, the reversibility of the integration path and
that the atomic motion occurs around average positions given
by the equilibrium lattice positions.

The FL method was applied to both systems in Fig. 2
according to the nonequilibrium techniques presented in
Ref. [16]. We have employed a switching time of ts = 4 ns
and the S-shaped [16,43] functional form for the λ(t) pa-
rameter. The simulations were carried out at temperatures

700K 800K 900K 1300K

FIG. 5. Plan view of two steps on the (111) surface, showing
only atoms on the top step layer. Variations in the step position due to
capillary fluctuations become larger as we raise the temperature and
approach the melting point.
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Tm = 1327 K

Thermodynamic integration

Frenkel–Ladd

Frenkel-Ladd γst(T0)

Experimental Result (Ref. 11)

FIG. 6. Temperature dependence of the calculated average of
〈110〉A and 〈110〉B step free energies on the (111) surface of
elemental Cu. The black solid line was calculated from the step excess
quantities using the thermodynamic integration method described in
Sec. III A. The initial point for the integration γ st(T0) was obtained
using the Frenkel-Ladd method at T0 = 400 K. Extra calculations
using the Frenkel-Ladd method were performed for T �= T0; they are
shown as red dots in the figure and are in excellent agreement with
the independent thermodynamic integration results. Also included in
the figure is an experimental measurement of the step free energy at
T = 360 K, taken from Ref. [11], which is seen to be very close in
magnitude to the computed value at this temperature.

ranging from 100 K to 700 K in intervals of 100 K. Estimates
for the statistical errors were obtained by performing three
independent switching simulations (forward and backward)
for each temperature.

Based on the discussion in Sec. IV B, the step excess free
energy was calculated from the difference of the free energy
of the two systems in Fig. 2: γ st = (F st − F t)/L, where L is
the total length of the four steps in Fig. 2(b). Since the surfaces
in the system illustrated in Fig. 2(b) contain both 〈110〉A and
〈110〉B types of steps, the FL method provides the average of
the free energy of both of these step types. The results of the
FL simulations are shown as the red and green dots in Fig. 6.
Note that the error bars are smaller than the points on the
plot. The standard error of the mean of the points in Fig. 6 is
≈1 meV/Å, which requires the calculation of the free energy
per atom for each system, which is achieved with an accuracy
of ≈3 μeV/atom. Such high statistical accuracy is achievable
due to the high efficiency and accuracy of the nonequilibrium
Frenkel-Ladd method used in this work. Further details about
the technique as well as an in-depth analysis of error control
and estimation are provided in Ref. [16].

B. Step excess quantities

The step excess quantities were calculated for systems
with the same size and number of atoms as the systems used
for the FL calculations. From the MD simulations we obtained
the average energy of the systems with the step Est and the flat
terrace Et, and also the components of stress tensor σ st and
σ t. The step excess properties [E]AN and [τavg]AN were then
computed by taking the difference between the quantities of
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FIG. 7. Temperature dependence of step excess energy [E]AN and
step excess stress [τavg]AN . [τavg]AN is the average of the step stresses
parallel ([τ‖]AN ) and perpendicular ([τ⊥]AN ) to the step line. Notice
how the stress perpendicular to the step line changes from tensile to
compressive as the temperature increases. Error bars corresponding
to the standard error of the mean were obtained for all data points,
although they are smaller than the symbols employed for some of the
data points.

the stepped system and the flat-terrace system, as described
in Sec. IV B. The MD simulations were performed for tem-
peratures ranging from 100 to 1300 K, in intervals of 100 K.
Additionally, we also performed one simulation at the melting
temperature for the potential Tm = 1327 K. The systems were
equilibrated for 6 ns before calculating the values of Est, Et,
σ st, and σ t. After equilibration, these values were sampled at
intervals of 2 ps for 400 ns at each temperature. Figure 7 shows
the temperature dependence of [E]AN and [τavg]AN . The error
bars correspond to the standard error of the mean for each
data point, obtained through a block average analysis of the
data collected for each temperature. Note that the error bars of
[E]AN are too small to appear on the plot.

The results for [E]AN in Fig. 7 show that the excess energy
increases with temperature from (103.61 ± 0.02) meV/Å at
T = 0 K to (302 ± 4) meV/Å at Tm. Within a large tem-
perature interval, from zero to approximately 800 K (i.e., a
homologous temperature of approximately 0.60), the value of
[E]AN remains essentially constant, and then begins to increase
much more rapidly as the melting temperature is approached.
The simulations show that [E]AN remains finite, and does not
diverge as the melting point is approached.

The results for excess stress in Fig. 7 show that [τ ]AN is
appreciably anisotropic at low T : the step stress component
perpendicular to the step, [τ⊥]AN , is compressive at low
temperatures while [τ‖]AN is tensile. Although they are similar
in magnitude we notice that they have measurably differ-
ent values at 0 K: [τ⊥]AN = −38.3 meV/Å and [τ‖]AN =
34.3 meV/Å. Both parallel and perpendicular components
increase with temperature, but the perpendicular does so
faster, the consequence being that the anisotropy becomes
reduced at high temperatures, where both components become
compressive. Notice also that the excess average stress,
[τavg]AN , remains almost constant for low temperatures, before

the onset of large capillary fluctuations of the step. As for
[E]AN , only for temperatures above approximately 800 K is
a significant temperature dependence of the step excess stress
observed.

C. Step free energies from thermodynamic
integration calculations

In this subsection we focus on the temperature-dependent
step free energies, obtained by the thermodynamic-integration
(TI) approach described in Sec. III A. The results obtained
from this approach are shown as the solid line in Fig. 6,
which plots the value of γ st over the entire temperature range
from T = 0 K up to Tm. In performing the TI calculations,
we have chosen T0 = 400 K as the reference point for the
thermodynamic integration, and the integration was performed
in both directions, from T0 to Tm and from T0 to ≈0 K. As
noted above, the TI values for γ st agree well with those from
the FL method that were not used in the integration (red points
in Fig. 6), demonstrating the consistency of the predictions
for the temperature dependence of γ st at low homologous
temperatures obtained from these two independent methods.
We present in the Appendix a discussion of the numerical
convergence of the TI results, including error calculations
and the independence of the final results on the choice of
the reference temperature T0.

Overall, the TI results in Fig. 6 show that the temperature
dependence of γ st is large and highly nonlinear over the full
temperature range. Although the magnitude of γ st remains
finite at the melting point, indicating that the surface remains
faceted up to Tm, the net effect of increasing temperature is a
sizable decrease of γ st. Specifically, increasing the temperature
up to melting leads to a decrease in magnitude of γ st by more
than half, from a value of (103.61 ± 0.02) meV/Å at T = 0 K
to (45.8 ± 0.4) meV/Å at T = Tm.

Considering the temperature dependence of γ st in further
detail, we divide the results into two temperature ranges:
low homologous temperature up to 800 K (i.e., from
homologous temperatures of zero to approximately 0.60),
and high homologous temperatures from 800 K up to the
melting point. In the first temperature range, the excess
quantities presented in the previous section are approximately
constant in value, and γ st displays a relatively weak rate of
decrease with temperature. Over this temperature range the
value of γ st decreases approximately linearly, by roughly
13% percent, from a value of (103.61 ± 0.02) meV/Å to
(90.3 ± 0.2) meV/Å. Since the steps are observed to remain
straight on the simulation length and time scales (i.e., no
evidence of appreciable kinks, adatoms, or surface vacancies
is observed) for temperatures up to 800 K, we interpret the
temperature dependence of γ st over this temperature range to
arise primarily from atomic vibrational contributions to the
step excess thermodynamic quantities.

Above T = 800 K, γ st displays a much more pronounced
temperature dependence. From 800 K up to Tm the value
of γ st decreases by roughly 51% percent, from a value of
(90.3 ± 0.2) meV/Å to (45.8 ± 0.4) meV/Å. In this temper-
ature range, the concentration of surface adatoms and vacan-
cies increases significantly, and the magnitudes of the step
capillary fluctuations become more pronounced. The larger
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temperature dependence of γ st over this temperature range is
thus interpreted to be a manifestation of the effect of such
configurational disorder on the step excess thermodynamic
quantities.

D. Comparison with previous measured and calculated results

Although we are not aware of previous results presenting
the temperature dependence of step free energies in Cu all the
way up to the melting point, there have been measurements
and previously published calculations at low temperatures for
this system, to which the present simulation results can be
compared.

The step free energy of Cu(111) [110]A and B steps at
selected temperatures has been obtained experimentally from
the analysis of adatom and vacancy islands observed using
scanning tunneling microscopy [9–11,13]. For a comprehen-
sive comparison of two available methods for computing
γ st experimentally, we refer the reader to Ref. [11], where
Steimer et al. report γ st = 256 ± 22 meV/a for an average of
A and B steps, where a is the atomic distance along the [110]
direction and the measurement is for an average temperature
of T = 360 K (T ∈ [280,440] K). The present results are
remarkably close to this value, as indicated in Fig. 6: we obtain
values of γ st = 254.8 ± 0.2 meV/a for the same temperature.
Moreover, the temperature dependence of γ st shown in Fig. 6
is consistent with the analysis in Ref. [11], suggesting that the
step free energy has a weak temperature dependence for the
temperature range at which the experiments were conducted.

This good agreement between the present simulation
results and experimental measurements is achieved despite
the approximations inherent in the classical description of
the interatomic interactions by an EAM potential model.
Importantly, a similar level of agreement is also obtained by the
EAM model and available ab initio values at zero temperature
obtained by density functional theory (DFT). Specifically, the
value of the step energy given by the EAM potential considered
in this work is γ st = 264.8 meV/a at T = 0 K, which agrees
well with the DFT result of γ st = 270 meV/a reported in
Refs. [17–19]. The fact that the current results agree well
with DFT at zero temperature, and with experiment at finite
temperatures, suggests that the latter agreement is not a result
of cancellation of errors resulting from inaccurate energetics
and temperature dependencies. Rather the EAM model for Cu
of Mishin et al. [38] employed in this work appears to yield
accurate values for γ st and its temperature dependence, at least
at low homologous temperatures.

VI. SUMMARY

We present a thermodynamic formalism for steps on faceted
surfaces of single-component crystalline solids, resulting in the
derivation of a general adsorption equation, Eq. (14), relating
changes in step free energy (γ st) to variations in chemical
potential, surface free energy, temperature, and strain. The rate
of change of γ st with respect to variations in these variables is
related to surface excess quantities of particle number, surface
area, entropy, and stress, respectively. Due to the existence of
Gibbs-Duhem relations for the bulk and surface, which give
rise to constraints on the variations of the intensive variables,

Cramer’s rule can be used to express the adsorption equation in
terms of a particular choice for the set of independent variables.
The approach results in the definition of step excess quantities
formulated in terms of determinants, following the formalism
first introduced in the context of interfacial thermodynamics by
Cahn [21]. A direct result of the formulation developed in the
present work is the definition of a step excess stress, Eq. (17),
which is the step analog of the familiar surface stress quantity,
and which represents the excess force on the perimeter of
a stepped surface due to the presence of a step. Although
the formalism presented in this work is developed only for
the special case of single-component crystalline surfaces, the
underlying approach is more general, and can be extended
to multicomponent/multiphase situations, as demonstrated
recently by Frolov and Mishin [44].

The thermodynamic formalism presented in this work
is demonstrated to provide a convenient framework for
thermodynamic-integration calculations of the temperature
dependence of γ st by atomistic simulations. For this purpose,
it is natural to employ a particular choice for the set of
independent intensive variables that leads to the definition of
step excess quantities, in a manner that is similar to choosing a
Gibbs [45] dividing surface leading to zero excess volume and
particle number. By combining the resulting expression for
the adsorption equation with the Gibbs-Helmholtz relation,
we derive an expression for the temperature dependence of
the step free energy, Eq. (22), in terms of step excess energy
and excess stress quantities that can be readily calculated
in atomistic simulations. It is straightforward to extend the
proposed TI approach to steps at faceted solid-liquid interfaces,
grain boundaries, and phase boundaries in multicomponent
systems [44]. This approach can provide full temperature and
composition dependence of step free energy from atomistic
simulations, provided that a reference free energy value is
known at some temperature and composition. In the present
work we have demonstrated how the Frenkel-Ladd method can
be employed for this purpose, when the interfaces of interest
involve only solid phases. For solid-liquid or solid-vapor
interfaces alternative approaches would be needed such as
those based on nucleation simulations (e.g., Ref. [46]) or
analyses of capillary fluctuations (e.g., Refs. [47,48]).

We demonstrate the application of the thermodynamic inte-
gration formalism for the case of 〈110〉 steps on faceted {111}
surfaces of element Cu, employing MD simulations based on
a classical EAM potential due to Mishin et al. [38]. By com-
bining the thermodynamic-integration formalism with the the
Frenkel-Ladd method for computing a reference value of γ st

at low temperatures, where the step structure remains highly
ordered, we present a calculation of the step free energy over
the entire temperature range from zero up to the melting point.

In the process of performing the thermodynamic-
integration calculations, we compute temperature-dependent
values for the step excess energies and stresses, as shown
in Fig. 7. The excess energy is found to display a weak
temperature dependence up to a homologous temperature of
approximately 0.60; beyond this temperature the excess energy
increases strongly as the step displays growing configurational
disorder due to the formation of surface adatoms and vacancies
and appreciable capillary fluctuations. For the step excess
stress, we have obtained negative [τ⊥]AN and positive [τ‖]AN at
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low homologous temperatures, with both terms having similar
magnitudes. With increasing temperature, the low-temperature
anisotropy of the step stress is greatly reduced, and at high
temperatures [τ⊥]AN becomes positive. Therefore, thermal
effects such as thermal expansion, vibrational fluctuations, and
configurational disordering affect each step stress component
differently. It is worth noting that this behavior is not unique to
step stresses; it has been observed before in atomistic simula-
tions [49,50] that the surface stress for solid-liquid interfaces
also presents positive and negative values, depending on the
system properties and thermodynamic conditions.

For the temperature dependence of the calculated step
free energy, our findings are shown in Fig. 6 and can be
summarized as follows. At low homologous temperatures (i.e.,
less than approximately 0.6), where the thermal effects are
interpreted to be associated primarily with atomic vibrations,
γst is calculated to display a relatively weak temperature
dependence. At these low temperatures, the calculated mag-
nitudes of γ st show good agreement with previously reported
experimental measurements and DFT calculations, indicating
the accuracy of the employed EAM potential for the present
application. The calculated temperature dependence of γ st

increases strongly at higher homologous temperatures, as
the step becomes increasingly configurationally disordered.
The net effect is a reduction in the step free energy by
more than half as the temperature is increased from zero up
to the melting temperature. Such a strong temperature depen-
dence at high homologous temperatures would be expected
to have important consequences for kinetic processes such as
surface island nucleation and growth kinetics.

We emphasize that the formalism presented in this work
provides a general framework for the calculation of step free
energies for elemental systems using atomistic simulation
methods, and it is applicable beyond the application demon-
strated in this work for elemental Cu modeled by an EAM
classical potential. In practical applications to other systems,
several considerations should be taken into account. First, the
Frenkel-Ladd approach provides a methodology to compute
step free energies only at temperatures where contributions of
configurational disorder due to kinks, adatoms, and vacancies
can be ignored, i.e., where vibrational contributions to the
temperature dependence of the excess properties dominate; to
ensure that this is the case sufficiently long simulations are
required to guarantee structural equilibration, or theoretical
analyses based on calculated kink and point-defect formation
energies should be performed. For temperatures where the
steps remain structurally ordered, the Frenkel-Ladd approach
converges sufficiently rapidly that it is expected to be appli-
cable to systems with more complex interatomic potentials,
or even within the framework of DFT-based MD simulations,
provided large enough systems can be considered to account
for the strain fields around the steps and adequate sampling of
the phonon spectra. Once reference values have been computed
by the Frenkel-Ladd approach, the thermodynamic-integration
formalism developed in this work can be used to compute
step free energies incorporating configurational and vibrational
contributions on an equal footing. In general, such calculations
require combinations of efficient interatomic potential models
and/or advanced sampling methods to enable equilibration of
kink and point-defect densities. Additionally, the contributions

due to capillary fluctuations can give rise to large size effects
(due to the long-wavelength modes) particularly near the
roughening temperature (e.g., Refs. [51] and [52]), and to
account for these effects calculations with different system
sizes and/or analysis of the capillary wave spectra may be
necessary. Nevertheless, provided these various considerations
are taken into account, the formalism presented in this
work provides a framework for computing benchmark results
against which theories for vibrational (e.g., Refs. [53] and [54])
and configurational (e.g., Refs. [55] and [51]) contributions to
the step free energies can be compared. We thus anticipate
the approach to be useful for furthering understanding of the
thermodynamic properties of steps on crystalline surfaces well
beyond the application demonstrated in this paper.
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APPENDIX: ERROR CALCULATION AND NUMERICAL
CONVERGENCE ANALYSIS FOR THE

THERMODYNAMIC INTEGRATION RESULTS

In this appendix we present analyses of the statistical sam-
pling errors and numerical convergence for the thermodynamic
integration results presented in Sec. V C.
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FIG. 8. Temperature dependence of each term of the integrand of
Eq. (24). Notice how the integrand term that involves the step excess
stress [τavg]AN is much smaller than the term involving the step excess
energy [E]AN . The solid lines are the result of the linear interpolation
of the excess quantities multiplied by the factor of each term in the
integrand.
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FIG. 9. Step free energy at Tm = 1327 K calculated with the
thermodynamic integration method using different initial points
γ st(T0) for the integration. The blue stripe is centered on the average
taken considering all choices for T0 from 100 K to 700 K, and the
width of this stripe corresponds to the standard deviation of these
values for γ st(1327 K).

The numerical integration in Eq. (24) was performed
considering a linear interpolation of the excess quantities
shown in Fig. 7. We have tested interpolation schemes using
polynomials of different orders and the difference compared
to the linear interpolation was negligible. The reason is
that the integrand of Eq. (24) is already smooth for the
linear interpolation due to the renormalization of the excess
quantities by T 2 or T , as shown in Fig. 8. The second term in
the integrand of Eq. (24) (involving the excess stress) was
found to be at least 50 times smaller than the first term
(involving the excess energy) and therefore it is numerically
negligible for the result of the integral.

We have chosen T0 = 400 K as the initial point to perform
the thermodynamic integrations to compute the temperature
dependence of γ st. The integration was performed in both
directions, from T0 to Tm and from T0 to ≈0 K. The choice
of T0 = 400 K as the initial integration point in Fig. 7 was
arbitrary and, within the statistical accuracy of the calculations,
it should not influence the final results for γ st. The free
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FIG. 10. Temperature dependence of the step free energy ob-
tained using different reference temperatures T0 for the thermody-
namic integration [Eq. (24)].

energy calculated with the FL method at any of the other
temperatures (red points in Fig. 6) should all be equally valid
as an initial integration point. Thus, to verify the accuracy of
the calculations, we have performed the integration in Eq. (24)
starting from all the different T0 values for which we have
available FL simulations. The result is shown in Fig. 9 where
we plot the value of γ st at Tm = 1327 K obtained from the
integration of Eq. (24) using different initial points. The error
bar of each point corresponds to the error of the mean for the
particular value of T0. The error in the mean was obtained by
a resampling process of the excess quantities and the initial
value of γ st used in the integration: each of the data points
involved in the integration was picked randomly from a normal
distribution with a mean value corresponding to the calculated
average value of that quantity, and the standard deviation
corresponding to the calculated standard error of the mean
value. The linear interpolation and numerical integration of
the excess quantities for the given choice of T0 was performed
and the resulting step free energy at Tm was averaged over
2000 of these resampled data sets. For completeness we also
show in Fig. 10 the γ st(T ) curve obtained from the integration
starting from the different T0 values. From Figs. 9 and 10 it
is clear that the choice of the initial integration point T0 does
not influence the final result of the thermodynamic integration
significantly.
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Matter 15, S3197 (2003).
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