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Circular dichroism (CD) of a single-wall carbon nanotube (SWNT) is calculated as a function of the wavelength
of light. Because of the symmetry between the K and K ′ points in the hexagonal Brillouin zone, the conventional
theory for CD intensity gives a zero value in which the absorption probability near the K point for right-handed
circular polarized light and that near the K ′ point for left-handed circular polarized light cancel each other.
Considering the phase differences of the light for carbon atoms of a nanotube, which are beyond so-called dipole
approximation, a formulation of CD for a SWNT is presented. Analytic and numerical calculations show (1) the
alternating sign of the CD intensity at Eii (i = 1,2,3, . . .) van Hove singular energies and (2) opposite sign of
the CD values as a function of wavelength of the light for different types and handedness of nanotubes, which
reproduce the experimental results. In the metallic SWNTs, we predict the opposite sign of CD values for split
E+

ii and E−
ii .
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I. INTRODUCTION

The circular dichroism (CD) of a material is defined by
a difference of optical absorption for left-handed circular
polarized light (LCP) and right-handed circular polarized light
(RCP). Nonzero CD values as a function of the wavelength of
light are observed for materials that have an enantiomer, where
an enantiomer is the mirror image of a molecule (solid) that is
not superposable to the original molecule (solid). Separation
and evaluation of the enantiomer of synthesized molecules
are important from a biocompatibility point of view since all
plants or animals are made of only the left-handed molecules
and the right-handed molecules might be sometimes harmful.

A single-wall carbon nanotube (SWNT) whose geometrical
structure is specified by two integers, (n,m), belongs to
either achiral [armchair (n,n) and zigzag (n,0)] or chiral
[(n,m) with n �= m and m �= 0] SWNTs [1–3]. In the case
of the achiral SWNTs, the mirror image of an armchair (or a
zigzag) nanotube by mirror operation parallel to the nanotube
axis is identical to the original SWNT, while the mirror
image of a chiral nanotube (n,m) is not the original (n,m)
SWNT but another chiral nanotube (n + m,−m) with different
handedness [4]. Thus the CD spectra can be observed in the
chiral SWNTs once one of enantiomers is separated from the
sample. Since the mechanical or electronic properties of a pair
of the enantiomer SWNTs are identical to each other, it is
not possible to define and observe the handedness of SWNTs
by conventional optical absorption spectra. It is important to
evaluate the purity of one enantiomer in the SWNT sample by
the measurement of optical activity combined with theoretical
analysis of, e.g., CD spectra [5–12] or Raman optical activity
spectra [13].

Measurements of the CD spectra for single chirality
SWNTs have been reported in which separation of an
enantiomer for a pair of chiralities [(n,m), and (n + m,−m)]
is achieved by the agarose gel column chromatography
method [5,7,10], the two-phase methods with DNA [6], use
of the chiral surfactant diporphyrin [7–9], and the density
gradient ultracentrifugation method with sodium cholate [10].
Liu et al. [5] and recently Wei et al. [11] adopted the
allyl dextran-based gel for separation because the plant-based

gel has a stronger interaction for the left-handed nanotubes (L-
SWNTs) than the right-handed nanotubes (R-SWNTs). Here
they propose a definition of L- and R-SWNTs by a minus and
plus sign of CD values at E22 van Hove singularity energy,
respectively. The reason why they select not E11 but E22 is
that we usually measure E22 for the semiconductor SWNTs
(s-SWNTs) in the visible-light range. In the case of the metallic
SWNTs (m-SWNTs), we usually observe E11 which are split
into E+

11 and E−
11 by the trigonal warping effect, except for the

armchair SWNTs [14]. We will show that the CD values at
E+

11 and E−
11 have opposite signs. Thus we will define L and R

m-SWNTs as having positive and negative CD at E−
11 energy,

respectively. Experimental results show that (1) opposite CD
values are observed for a given wavelength for a pair of L-
SWNT and R-SWNT, (2) the sign of the CD values for a
L-SWNT (or a R-SWNT) oscillates at the van Hove singularity
energies Eii of the joint density of states [14], and (3) the signs
of the CD at Eii are opposite to each other for the type-I and
type-II semiconductor chiral SWNTs. Here the metallic (m)
SWNTs, the type-I and type-II semiconductor (s) SWNTs are
defined by (n,m) SWNTs with mod (2n + m,3) = 0, 1, and
2, respectively [14,15].

Sánchez-Castillo et al. reported the CD spectra for several
chiralities such as (6,4), (6,5), and (8,4) by first-principles
calculations [16,17]. Although they showed the alternating
behavior of the calculated CD spectra as a function of the
wavelength of light, they could not get a good agreement with
experiment, simply because the purification of the enantiomer
in the experiment that they used for the comparison was
not good. Further, it would require long computational time
by first-principles calculations if they calculated the CD
spectra for chiral SWNTs with a large unit cell, which makes
the investigation of chirality dependence of the CD spectra
difficult, especially for a large unit cell of a chiral SWNT.

In this paper, we have calculated CD spectra of SWNTs
by the tight binding method as a function of the wavelength.
The tight binding method is convenient for discussing optical
properties of graphene and nanotubes [18,19] since only the π

orbitals of carbon atoms are relevant to the optical absorption in
the visible-light range. The tight binding method will be able to
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extend to CD spectra calculation with use of the exciton wave
function, [20,21], although we do not adopt the exciton wave
function in the present calculation for simplicity. In molecular
quantum electrodynamics, CD of a molecule is expressed by
the product of electric dipole moment and magnetic dipole
moment [22] by considering not only electric dipole but also
magnetic dipole interaction in the Hamiltonian, which is the
lowest order of CD intensity of a molecule within the dipole
approximation. If the size of a molecule is sufficiently small
compared with the wavelength of incident light, phases of the
electric field of the light for all atoms in the molecule can be
taken to be the same for calculating the optical absorption,
which is the dipole approximation. However, in the case of
SWNTs, since the length (100–1000 nm) and/or diameter
(2–3 nm) are not always negligibly small compared with the
wavelength (500 nm), we discuss the difference of optical
absorption using the CD angle θ in the order of 1 mdeg = 10−5

rad, defined by

tan θ = I (RCP)1/2 − I (LCP)1/2

I (RCP)1/2 + I (LCP)1/2
, (1)

where I (RCP) [I (LCP)] is the transmitted optical intensity
for RCP (LCP) [5,10]. If we only consider the electric
dipole moment, the CD value becomes zero within the dipole
approximation. When we consider a correction term from the
dipole approximation of an electric dipole, the term contributes
to the CD spectra without considering the magnetic dipole
term. It is noted that the dipole approximation works well
when we discuss not the CD but the absolute value of optical
absorption intensity.

In this paper, we will show that the phase of the light at each
position of an atom in a SWNT, which is beyond the dipole
approximation, gives the CD intensity of SWNTs. Thus we
propose a theory of the CD spectra for SWNTs in this paper.
The calculated results of the CD spectra as a function of the
wavelength of light reproduce many aspects of experimental
results.

Organization of the present paper is as follows. In Sec. II
we present analytical formula for the CD of SWNTs within
the tight binding method. In Sec. III numerical calculations of
the CD spectra for type-I and -II s-SWNTs and m-SWNTs are
given with a summary of the paper.

II. CIRCULAR DICHROISM OF A SWNT

Here we will show an analytical formula of the difference
of optical absorption probability of a SWNT between the RCP
and LCP within the tight binding method. When we consider
the optical absorption intensity, we usually adopt the dipole
approximation in which we assume the vector potential A
as a constant in the calculation of electron-photon matrix
elements 〈�c|A · ∇|�v〉 ∼ A · 〈�c|∇|�v〉, in which �v and
�c are, respectively, the wave functions of the valence and
conduction bands (or π and π∗ band) as the initial and final
states, respectively. Here since we intentionally consider the
phase factor of A at each site of carbon atoms in a SWNT, we
will calculate not A · 〈�c|∇|�v〉 but 〈�c|A · ∇|�v〉 to obtain
the nonzero CD values.

The electronic structure of SWNTs is characterized by
the chiral vector Ch = na1 + ma2 ≡ (n,m), where a1 and a2

are unit vectors of the two-dimensional (2D) graphene [2,3].
The wave functions, �v and �c, are expressed by a linear
combination of the Bloch functions for either the A or B

carbon atom in the hexagonal unit cell of (hereafter hexagon)
two-dimensional (2D) graphene [1] as follows:

�b(r,kb) = Cb
A(kb)�A(r,kb) + Cb

B(kb)�B(r,kb), (2)

where the label b = v or c denotes the valence or conduction
band, respectively, and Cb

A(kb) [Cb
B(kb)] is a coefficient of the

Bloch function �A(r,kb) [�B(r,kb)] as a function of wave
vector kb. Since we consider the phase of light, we expect
kc �= kv and kc is given as a function of kv in this paper. The
�� (� = A or B) is expressed by tight binding wave function
of the 2pz orbitals ϕ(r) as follows:

��(r,kb) = 1√
U

U∑
m=1

1√
N

N∑
j=1

exp
(
ikb · Rj,m

�

)

×ϕ
(
r − Rj,m

�

)
, (3)

where U is the number of one-dimensional (1D) unit cells
of the SWNT and N = √

n2 + m2 + nm is the number of
hexagons in the 1D unit cell [1]. The vector Rj,m

� = Rj

� + mT
is the position of the �th atom in the SWNT in which T is the
translational vector of the SWNT and Rj

� denotes the position
of the �th atom in the j th hexagon in the 1D unit cell [1].
The coefficients Cb

� (kb) are calculated by solving the 2 × 2
Hamiltonian of graphene at k = kb in the 2D Brillouin zone
in which the wave vector k is given by

k = μK 1 + k
K 2

|K 2|
(
μ = 1, . . . ,N ; −π

T
< k <

π

T

)
, (4)

where K 1 and K 2 denote, respectively, the reciprocal lattice
vectors in the directions of circumferential and nanotube
axes [1], and μ denotes the μth segments of N 1D Bril-
louin zones of the SWNT (hereafter we call them cutting
lines [15,23]) in the 2D Brillouin zone of graphene as shown
in Fig. 3, and T is the length of T .

By the definition of CD, we calculate the difference of
optical absorption intensity of the (n,m) SWNT between the
RCP and LCP as

�W (EL) ≡ W−1(EL) − W+1(EL), (5)

where W−1(EL) and W+1(EL) denote optical absorption
probabilities as a function of the energy of light EL, per unit
time for RCP and LCP, respectively, and per unit length of the
SWNT, each of which is given by the Fermi golden rule,

Wσ (EL) ∝ |〈�c|Aσ · ∇|�v〉|2, (6)

where σ is defined by an integer that specifies either RCP or
LCP as follows:

σ =
{−1 (RCP),

+1 (LCP).
(7)

Hereafter we set the axis of a SWNT in the direction of the
z axis. When we consider Aσ as incident light, there are only
two inequivalent propagating directions of the light (q) as
shown in Fig. 1; that is, (a) parallel to the nanotube axis
(q ‖ T ) and (b) perpendicular to the nanotube axis (q ⊥ T ).
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FIG. 1. Two geometries of propagating circular polarized light
in the directions (a) parallel to the nanotube axis (z axis) and
(b) perpendicular to the nanotube axis (x axis). The corresponding
Jones vectors are given in Eq. (8).

The corresponding Jones vectors (the unit vector of Aσ ) are,
respectively, given by

P3D ‖
σ = t (iσ,1,0)/

√
2 and P3D ⊥

σ = t (0,iσ,1)/
√

2. (8)

For the general propagating direction of circular polarized
light, the Jones vector is given by the linear combination of
P3D ‖

σ , P3D ⊥
σ , and t (1,0,iσ )/

√
2.

In the calculation of Eq. (6), we consider an unrolled
SWNT in which we redefine the vector potential Aσ at
each atom [see Figs. 2(a) and 4(a)] on an unrolled plane
as shown in Figs. 2(b), 2(c), and Figs. 4(b), 4(c). Figures 2
and 4 correspond to the cases of parallel and perpendicular
propagation, respectively. If we plot Aσ on the unrolled plane,
the vector potential is rotating by changing the position of the
carbon atom. In this case, the perpendicular component of Aσ

to the unrolled plane does not contribute to the matrix element
[see Eqs. (A8) and (A10) in the Appendix]. Thus we consider
only the in-plane component of Aσ which is expressed by Ch

and T . For convenience, we hereafter define unit vectors on
the unrolled plane in the directions of Ch and T as

eC = Ch

L
and eT = T

T
, (9)

where L = |Ch| = πdt (dt is the diameter of the SWNT [1]).

A. Propagation of light parallel to the SWNT axis

First we consider the optical absorption for the circular
polarized light which propagates in the direction parallel to the
nanotube axis (q ‖ T ) as shown in Fig. 1(a). In the following
calculation, we assume that the light does not become extinct in
the direction of the nanotube axis (z) for simplicity. However,
for any polarization directions of the light in the direction of x

or y, the polarization vector can be tangential to a cylindrical
surface of the SWNT from which we expect some extinction
of the light in the z direction, which will not be discussed in
this paper. In the case of q ‖ T , the in-plane component of
polarization vector P‖

σ at Rj,m

� defined on the unrolled SWNT
is given by

P‖
σ

(
Rj,m

�

) = (−iσ sin θ�
j + cos θ�

j

)
eC

= exp
(−iσ θ�

j

)
eC, (10)

FIG. 2. Vector potential that propagates in the direction of
z (q ‖ T ) for a (4,2) SWNT (N = 28). (a) The Jones vector of light
that propagates in the direction of z at each carbon site in the unit
cell. We set the origin of coordinates at the 0th A atom in the 0th
unit cell, R0,0

A , on the x axis, R0,0
A = (dt/2,0,0). The red and blue

arrows correspond to x and y components, repsectively, of the Jones
vector for the case of q ‖ T . (b) The x component and (c) the y

component of vector potential projected on the unrolled plane. In the
case of q ‖ T , only the eC component of vector potential contributes
to optical absorption [Eqs. (10) and (11)].

where the x and y components of P‖
σ (Rj,m

� ) for (4, 2) SWNT
are shown in Figs. 2(b) and 2(c), respectively. The θ�

j is the
angle of the �th atom of the j th hexagon measured from the
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x axis as shown in Fig. 2(a). Using Eq. (10), we consider
the vector potential with the phase factor of light for q ‖ T ,
A‖

σ,q(Rj,m

� ), where q = |q| = 2π/λ is the wave number of the

light (λ is the wavelength) at Rj,m

� as follows:

A‖
σ,q

(
Rj,m

�

) = AP‖
σ

(
Rj,m

�

)
exp

(
iqeT · Rj,m

�

)
, (11)

where A is the amplitude of the vector potential. Here the
origin of the phase of light is set to be zero at z = 0 and
the time t = 0. Using Eqs. (2), (3), (10), and (11), we obtain
the matrix element of optical absorption (see the Appendix,
section 1, for the derivation) for the light propagating in the
direction parallel to the SWNT axis as follows [18]:

M‖
σ (kc,kv) ≡ 〈�c(kc)|A‖

σ,q

(
Rj,m

�

) · ∇|�v(kv)〉
= AeC · C(kc,kv)δ

(
kc − kσ

c

)
, (12)

where kσ
c and C(kc,kv) are, respectively, defined by

kσ
c = kv − σ K 1 + τ K 2, (13)

C(kc,kv) = 2
√

3mopt

a
Re

[
Cc∗

A (kc)Cv
B(kv)ZA

]
. (14)

Here τ = T/λ is the ratio of T to the wavelength of light λ

and ZA is defined in Eq. (A9). It is important to note that
kσ

c depends on τ and σ . Hereafter we denote k+
c and k−

c for
σ = +1 and σ = −1, respectively for avoiding the confusion
of the inversion. Since the direction of the electric field (x or y)
is perpendicular to the nanotube axis z, an angular momentum
of either K 1 or −K 1 is added to kσ

c in the delta function
of Eq. (12) as the momentum conservation for σ = −1 or
+1, respectively [see Fig. 3(a)]. Further, additional momentum
τ K 2 which depends on λ appears in the expression of kσ

c when
we consider the phase of the vector potential. Since the kσ

c ’s
for RCP and LCP are different from each other for a given
kv , the optical transition probabilities for RCP and LCP for a
given kv are different from each other, too.

Using Eq. (12), the difference of optical absorption at kv for
given EL is obtained from the Fermi golden rule as follows:

�W
‖
RL(EL,kv) ≡ ∣∣M‖

−1(k−
c ,kv)

∣∣2
δ(EL − E−

cv)

− ∣∣M‖
+1

(
k+

c ,kv

)∣∣2
δ(EL − E+

cv), (15)

where Eσ
cv = Ec(kσ

c ) − Ev(kv) is the energy gap between
the initial and final states where Ec(kσ

c ) and Ev(kv) are
energies of conduction and valence energy bands at kσ

c and
kv , respectively. We note that M‖

σ (kσ
c ,kv) with different kv

contributes to the CD of a given EL for σ = ±1. The CD
intensity as a function of EL is calculated by integrating
Eq. (15) on kv in the 2D Brillouin zone for all cutting lines
defined by Eq. (4) as follows:

�W ‖(EL) =
N∑

μ=1

∫ π/T

−π/T

�W
‖
RL(EL,kv)dkv. (16)

In the numerical calculation, we take a summation on all
cutting lines and k points on each cutting line with the

FIG. 3. (a) Cutting lines of SWNT and the selection rule of optical
absorption for RCP (red arrow) and LCP (blue arrow) for the case of
the incident light parallel to the nanotube axis. (b),(c) The selection
rule for optical absorption (b) without and (c) with considering the
optical phase factor τ K 2. In the case of (b) τ = 0, the optical transition
around the K point that are shown by either the red arrow [star
(RCP)] or the blue arrow [circle (LCP)] are identical, respectively,
to the blue arrow [star (LCP)] or red arrow [circle (RCP)] around
the K ′ point, which would give zero CD values. (c) If we consider
the effect of the phase factor of light (τ �= 0), the arrows tilt from
the perpendicular direction in the same direction (τ K 2), and thus the
cancellation between either circle or star does not occur.
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same density in the k space for all (n,m) SWNTs, which
corresponds the fact that CD intensity is normalized by the
length of the SWNTs. We take 100 k points on each cutting
line for calculating the CD of a (6,4) SWNT. It is important
to note that the additional momentum τ K 2 in the direction
of the nanotube axis appears in Eq. (13) as an effect of the
phase of the light. In fact, in the limit of λ → ∞, we get
τ = 0.

When τ = 0, the momentum difference of kc − kv =
−σ K 1 is perpendicular to the cutting lines (K 2) as shown
in Fig. 3(a). In this case, the optical transition probability near
the K point for RCP (LCP) that is shown as a star (circle) in
Fig. 3(b) is identical to that near the K ′ point for LCP (RCP).
Thus even though the two transitions by RCP and LCP for
a given kv are different from each other, the difference of
optical transition probability becomes zero by canceling the
transitions near the K and K ′ points when we integrate the
probability over the 2D Brillouin zone. However, when we
consider the effect of τ , the momentum difference is no longer
perpendicular to the cutting line as shown in Fig. 3(c); the
momentum vectors for LCP and RCP tilt in the same direction
for a given kv and for K and K ′ points. In such a situation,
the cancellation between K and K ′ does not occur. Thus this
effect of τ is essential for obtaining the finite values of CD in
SWNTs.

B. Propagation of light perpendicular to SWNT axis

When propagating direction of light is perpendicular to the
nanotube axis (q ⊥ T ) as shown in Fig. 1(b), the projected y

and z components of polarization vector P⊥
σ at Rj,m

� are given
by [see Figs. 4(b) and 4(c)]

P⊥
σ

(
Rj,m

�

) = iσ cos θ�
j eC + eT . (17)

The phase of the vector potential at the �th atom in the j th
hexagon in the 1D unit cell (Rj,m

� ) depends on θ�
j , while the

phase does not depend on T . In this case, the vector potential at
Rj,m

� , A⊥
σ,q(Rj,m

� ), can be expressed by sum of the components
in the direction of eC and eT [see Figs. 4(b) and 4(c)] as
follows:

A⊥
σ,q

(
Rj,m

�

) = iσAC
q

(
Rj,m

�

)
eC + AT

q

(
Rj,m

�

)
eT , (18)

where AC
q (Rj,m

� ) and AT
q (Rj,m

� ) are the coefficients of the
vector potential for the directions of Ch and T , respectively.
When we put the origin of the phase of the incident light at
x = 0 as shown in Fig. 4(a), AC

q (Rj,m

� ) and AT
q (Rj,m

� ) are given
by

AC
q

(
Rj,m

�

) = A cos θ�
j

(
1 + iβ cos θ�

j

)
, (19)

AT
q

(
Rj,m

�

) = A
(
1 + iβ cos θ�

j

)
, (20)

where β ≡ πdt/λ = qdt/2 is the phase of light. When we
consider the phase of the vector potential of the j th B atom,
we multiply a constant factor, exp (i K 1 · r1

A), to that of j th A

FIG. 4. (a) The Jones vector of light that propagates in the
direction of x for (4,2) SWNTs. We put the 0th A atom at
R0,0

A = (dt/2,0,0). The blue and green arrows correspond to y and z

components, respectively, of the Jones vector for the case of q ⊥ T .
(b) The y and (c) z components of the vector potential defined on
unrolled SWNT plane. In the case of q ⊥ T , the Jones vector has
both of eC and eT components. The eC component exists in the y

component where the absolute value and the sign depend on Rj,m

� ,
while the eT component exists in the z component that does not
depend on Rj,m

� .

atom, where r1
A = (a1 + a2)/3 is the nearest neighbor vector

from the j th A atom to the j th B atom.
From Eqs. (19) and (20), the electron-photon matrix

element for the case of q ⊥ T is given as follows (see the
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Appendix, section 2, for the derivation):

M⊥
σ (kc,kv) ≡ 〈�c(kc)|A⊥

σ,q

(
Rj,m

�

) · ∇|�v(kv)〉

= AC(kv,kc) ·
[(

−σ
β

2
eC + eT

)
δ(K )

+ i

2
(σ eC + βeT ){δ(K − K 1) + δ(K + K 1)}

− σ
β

4
eC{δ(K − 2K 1) + δ(K + 2K 1)}

]
,

(21)

where K ≡ kc − kv . It is noted that kc does not depend on σ in
the case of q ⊥ T . In Eq. (21), there are three selection rules for
kc: (a) kc = kv (the same cutting line), (b) kc = kv ± K 1 (the
nearest neighbor cutting lines), (c) kc = kv ± 2K 1 (the second
nearest neighbor cutting lines). The case of (c) appears since
there is a term of cos2 θ�

j = (1 + cos 2θ�
j )/2 in Eq. (19), which

gives twice the angular momentum as the term of cos 2θ�
j . The

phase factor β appears in both directions of eC and eT . The
difference of optical absorption �W⊥

RL is defined by

�W⊥
RL(EL,kv)

≡ (|M⊥
−1(kc,kv)|2 − |M⊥

+1(kc,kv)|2)δ(EL − Ecv)

= A2β[eC · C(kc,kv)][eT · C(kc,kv)]

× [2δ(K ) − δ(K + K 1) − δ(K − K 1)]δ(EL − Ecv),

(22)

where Ecv ≡ Ec(kc) − Ev(kv) is the energy gap between the
initial and final states. The derivation of Eq. (22) is given in
the Appendix, section 2, too. It is clear from Eq. (22) that we
get �W⊥

RL = 0 when β = 0. It is noted that the crossing terms
such as δ(K )δ(K + K 1) disappear because of the product of

different delta functions on K . Further, the term of δ(K ±
2K 2) disappears in Eq. (22) because there is no linear σ term
after taking the square.

The CD intensity as a function of EL is calculated by
integrating Eq. (22) on kv in the 2D Brillouin zone for all
cutting lines as follows:

�W⊥(EL) =
N∑

μ=1

∫ π/T

−π/T

�W⊥
RL(EL,kv)dkv. (23)

III. RESULTS AND DISCUSSION

In Fig. 5, we plot the CD angles of the perpendicular
geometry defined by Eq. (1) as a function of the wavelength
for (a) (6,4), (b) (6,5), (c) (7,6), and (d) (9,6) SWNTs. In
Fig. 5, we also show the experimental data of CD taken from
the published papers [11,12]. Since most of the experimental
CD spectra are given as a function of wavelength λ, we use
a conversion of EL = hc/λ where h and c are the Planck
constant and the velocity of light, respectively. In order to
compare the calculated results with the experimental results
quantitatively, we formulate the relationship between �W and
CD as follows. The intensities of the transmitted light for RCP
and LCP in Eq. (1) are defined by the Beer-Lambert law as
follows:

I (RCP) = I010−AR , (24)

I (LCP) = I010−AL, (25)

where I0 and AR (AL) are the intensity of the incident
light and the absorbance for RCP (LCP), respectively. Using
Eqs. (1), (24), and (25), the CD angle is given as a function of

a (b c d) )(( )()

FIG. 5. In the top row, the calculated CD intensities of the perpendicular [CD⊥(λ)] case for (a) (6,4) (red lines) and (10,−4) (blue) type-I
s-SWNTs, (b) (6,5) (red) and (11,−5) (blue) type-II s-SWNTs, (c) (7,6) (red) and (13,−6) (blue) type-II s-SWNTs, and (d) (9,6) (red)
and (15,−6) (blue) m-SWNTs. Here we adopt x = 1 μg/ml and L = 1 cm. Van Hove singular transitions energies at Eij are shown in the
vertically shaded area. Experimental data taken from Refs. [11] for s-SWNTs and [12] for m-SWNTs are shown in the bottom. The colors in
the experiments do not correspond to the calculated results. As for (9,6) m-SWNT, only one CD spectra is shown and the horizontal axis is
from 300 to 850 nm.
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the difference of the absorbance �A = AR − AL as follows:

CD = θ = 180 000

4π log10 e
× �A (mdeg). (26)

�A is expressed by the product of the difference of the
absorption coefficient �α and the light path length L, that
is, �A = �α × L. The relationship between �A and the
transition probabilities �W (= �W ‖ or �W⊥) which are
defined in Eqs. (16) or (23), respectively is given by

�A = 2πe2h̄2

ε0εrme
2ωc

L

V
�W (EL), (27)

where me, ω, and V are the mass of electron, the angular
frequency of the incident light, and the volume of the sample,
respectively. Since the experimental CD values of SWNTs are
measured in the solution, we use the dielectric constant of
water εr = 80. For evaluating CD values, we need the mass
concentration of the carbon atoms x which is given by

x = 2NMC

V NA

, (28)

where 2N , NA, and MC = 12 are the number of carbon atoms
in the unit cell, Avogadro’s constant, and the mass number
of carbon, respectively. Then the experimantal absorption
coefficient in the solution �Aexp is given by

�Aexp = xexp�A

x

= xexp
πe2h̄2NAL

ε0εrme
2ωcNMC

�W (EL), (29)

where xexp is the mass concentration of the SWNTs in the
solution adopted in the experimental condition. Since we did
not know the experimental values of xexp and the path of
light L, we asked one of the coauthors of Ref. [11] for the
values. Hence we obtained the values of the mass concentration
xexp ∼ 1 (μg/ml) and light path L = 1 (cm) that are needed for
calculating CDs in Fig. 5. Furthermore, we need to consider
the enhancement of the electron-photon matrix element by
the exciton effect that is considered by Jiang et al. [20,21].
Since our calculation and Jiang’s calculation are based on
the same tight-binding method, we can simply adopt the
enhancement factor of Jiang et al. Here we adopt the ratios
of the exciton-photon to the electron-photon matrix element
at the E22 peak as Mex-op/Mel-op = 10.5 for m-SWNT, and
Mex-op/Mel-op = 15.4 for s-SWNTs [20].

By comparing the calculated spectra with experimental
spectra in Fig. 5, we notice that peaks of the calculated CD at
E12 or E13 etc. that are strong for �W ‖ do not appear in the
experiment. To explain this situation, we show �W ‖ ∝ CD‖

and �W⊥ ∝ CD⊥ in the supplemental information. There are
many possible reasons why we do not see CD‖ or �W ‖ in the
experiment, such as (1) the light propagating in the direction
of the nanotube axis may become extinct along the CNT axis,
(2) a depolarization effect for perpendicular polarization to
the cylindrical surface suppresses the absorption [24,25], and
(3) there are relatively weak exciton effects for E12 or E13

compared with E11 [26]. Regarding the extinction of light,
there are carbon atoms that get the in-plane electric field in
any direction of polarization. Thus we expect 2.3% optical

absorption for the carbon atoms. The extinction of light can be
measured by experiment if we align SWNTs, which should be
a future goal. It is beyond the purpose of the present paper to
investigate the exciton effect for CD values.

A pair of (n,m) and (n + m,−m) for each figure in Fig. 5
are enantiomers to each other. The vertically shaded areas in
each figure correspond to the energy regions of the van Hove
singularity of the joint density of states, Eii or Eij , for the
SWNTs. For the optical transition within the same cutting
line, the energy regions of E11, E22, E33, etc. are relevant to
the CD spectra, while for the optical transition between nearest
neighbor cutting lines the regions of E12, E13, E24, and E35

are relevant (see Fig. 6).
The calculated result of Fig. 5(a) [or 5(b), 5(c)] shows that

CD gives the opposite sign with the same absolute values
between (6,4) and (10,−4) [or (6,5) and (11,−5), (7,6), and
(13,−6)]. From the definition of Eq. (5), we get

�W (n,m,EL)

≡ W−1(n,m,EL) − W+1(n,m,EL)

= W+1(n + m,−m,EL) − W−1(n + m,−m,EL)

= −�W (n + m,−m,EL), (30)

where �W (n,m,EL) denotes �W (EL) for (n,m) SWNTs.
From the second line to the third line in Eq. (30), we use
the fact that the physical properties of the optical transition
probability give the same values for (1) L-SWNT for LCP (or
RCP) and (2) R-SWNT for RCP (or LCP) due to the mirror
symmetry between (a) LCP and RCP or (b) L-SWNT and
R-SWNT. It is clear from Eq. (30) that zigzag nanotubes, (n,0)
(m = 0), or armchair nanotubes, (n,n) (n = m), give no CD
spectra (�W = 0), since the enantiomer of (n,0) or (n,n) for
the achiral nanotubes is identical to the original (n,0) or (n,n)
SWNTs [(2n,n) ≡ (n,n) by 60◦ rotation]. Thus from Eq. (30)
we get �W (n,0,EL) = −�W (n,0,EL) for (n,0) which means
�W (n,0,EL) = 0.

In Figs. 6(a), 6(b), and 6(c), we show the cutting lines near
the K point, respectively, for type-I and -II s-SWNTs and
m-SWNTs; we show the optical transition of Eij in which the
cutting lines are numbered from the closest to the K point.
The Eii transition corresponds to the transition within the ith
cutting line measured from the K (K ′) point. According to the
definition of type-I and -II s-SWNTs, the K point is located
at (a) (p + 1/3)K 1, (b) (p + 2/3)K 1, (c) pK 1 for type-I and
-II SWNTs and for m-SWNTs, respectively, where p is an
integer. In this case, we expect that CD values of E11 (E22)
for a type-I SWNT may have the same sign as those of E22

(E11) for a type-II SWNT, since the corresponding kc and kv

positions are on the same side relative to the K point in the
Brillouin zone.

This is the reason why type-I and -II R-SWNTs (or L-
SWNTs) such as (6,4), (6,5), and (7,6) have the opposite
values for a given Eii . In the case of m-SWNT, one cutting
line goes over the K point and two nearest cutting lines 1+
and 1− in Fig. 6(c) contribute to the E11 transition energy. In
this case, because of trigonal warping effect of equi-energy
lines [14], E11 energies are split into E+

11 and E−
11 in which

E+
11 corresponds to the 1+ cutting line inside of the Brillouin

zone, while E−
11 corresponds to the 1− cutting line outside of
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FIG. 6. Cutting lines for (a) type-I s-SWNTs, (b) type-II s-SWNT,
and (c) m-SWNT. The cutting lines are numbered from the closest
one to the K point. Eij denote the two cutting lines that contribute to
the Eij van Hove singularity.

the Brillouin zone. Because of a similar reason for s-SWNTs,
CD values for E+

11 and E−
11 are opposite values to each other.

This is consistent with the fact that the CD value at E−
11 for a

(9,6) m-SWNT and E22 for a (6,4) type-I s-SWNT have the
same signs for q ⊥ T , since these cutting lines are located at
the outside of the Brillouin zone. In the case of q ‖ T , �W ‖
does not change the sign for E−

11 and E+
11 (see Supplemental

TABLE I. Definition of L-SWNT (L) and R-SWNT (R) by sign
of CD values at E22 energy for type-I and type-II s-SWNTs and at
E−

11 energy for m-SWNT.

E22 of s-SWNT

type-I type-II E−
11 of m-SWNT

CD > 0 R L R
CD < 0 L R L

Material [27]). The reason for this is understood by Eq. (12),
in which W ‖

σ = |M‖
σ (kσ

c ,kv)|2 is proportional to the square of
C(kσ

c ,kv), which does not change the sign inside or outside of
the Brillouin zone. In Table I, we list our definition of L-SWNT
and R-SWNT by the sign of CD values at E22 energy for type-I
and type-II s-SWNTs and at E−

11 energy for m-SWNTs. For
a conventional (n,m) SWNT with 0 < m < n, we define it as
L-SWNT. It is noted that the definition of L and R can be
exchanged if we change how we roll up the graphene sheet
into a cylinder in either z or −z sides, depending on the rolled
up 1D unit cell as shown in Fig. 2. Here we adopt the −z side
for the definition.

We note that the peak positions of CD values are not exactly
matched to Eij (Eii) values especially for larger λ (or lower
EL). In the case of CD⊥, the effect of β in Eq. (22) changes
the peak position of CD from Eii (Eij ) values. For smaller
λ (or larger EL), the energy dispersion far from the K point
gradually becomes flat and thus the deviation of CD peaks
from Eii (Eij ) energy becomes smaller. Since this deviation
affects the shape of energy dispersion on the cutting lines, that
depends on the distance from the K point or chiral angle, the
effect should be large for larger dt (smaller |K 1|) for a given λ,
which means small separation between two nearest neighbor
cutting lines or for angles closer to the armchair chiral angle.

The calculated results of CD spectra are similar to the
calculated results by first principles [16,17]. However, if we
adopt the dipole approximation for the conventional theory of
CD, we get zero CD values after taking integration over the
Brillouin zone as discussed in Sec. III A. In Ref. [17], since
the authors did geometrical optimization of the lattice which
makes the symmetry lower, this might be a reason why they
got nonzero results and values similar to the present results
even though they did not consider the exciton effect.

Before finishing the discussion, we point out that CD
values increase with decreasing λ, which is consistent with the
experimental results [5–11,13]. This fact can be understood
that both the τ and β terms in Eqs. (13), (19), and (20) are
inversely proportional to λ. Thus the phase shift effect seems
to be essential for understanding CD for chiral SWNTs. It
should be mentioned that we did not consider the exciton
effect as a function of the wavelength, but we adopt a constant
enhancement factor. Thus further investigation is needed to
take into account the exciton effect as a function of the
wavelength.

In conclusion, we formulate CD values of chiral SWNTs,
in which the phase difference effects expressed by τ or β

are important to understand the λ or type dependence of
CD spectra. In order to discuss the contribution for CD⊥

and CD‖, we should consider many other effects such as
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extinction of light, depolarization effects [24,25], or exciton
effects [20,21,26], which will be a future problem. Although
the present paper does not investigate the detailed effects, the
physics of CD in SWNTs are explained in analytic form.
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APPENDIX

In this appendix, we derive the analytical formula of the
difference of the optical absorption probabilities between RCP
and LCP for light propagating in the direction (q) of parallel
and perpendicular incident light to the SWNT axis (T ). The
matrix elements of the electron-photon interaction are given
by

Mσ (kc,kv) = 〈�c(kc)|Aσ,q(r) · ∇|�v(kv)〉, (A1)

and we evaluate Eq. (A1) for the cases of (1) q ‖ T and
(2) q ⊥ T .

1. Propagation of light parallel to nanotube axis

In the case of q ‖ T , the vector potential defined on unrolled
graphene is given in Eq. (11) and Fig. 2,

A‖
σ,q

(
Rj,m

�

) = A exp
{
i
(
qeT · Rj,m

� − σθ�
j

)}
eC, (A2)

where q = 2π/λ is the wave number of light and θ�
j is the angle

for the position of the �th carbon atom in the j th hexagon as
shown in Fig. 2(a). The lattice vector for the �th carbon atom
in the j th hexagon of the mth unit cell in a SWNT is given by

Rj,m

� = Rj

� + mT (j = 0, . . . ,N − 1). (A3)

By using Eqs. (2), (A1), and (A2), the matrix element of
electron-photon interaction for q ‖ T is given by

M‖
σ (kc,kv) = 〈�c(kc)|A‖

σ,q

(
Rj,m

�

) · ∇|�v(kv)〉
= ACc∗

A (kc)Cv
B(kv)DAB · eC

+ACc∗
B (kc)Cv

A(kv)DBA · eC, (A4)

where we define the dipole vectors from B (A) to A (B) atoms,
DAB (DBA), as follows:

DAB = 〈�A(kc)| exp
{
i
(
qeT · Rj,m

� − σθ�
j

)}∇|�B(kv)〉,
(A5)

DBA = 〈�B(kc)| exp
{
i
(
qeT · Rj,m

� − σθ�
j

)}∇|�A(kv)〉.
(A6)

We note that the diagonal matrix elements of the dipole vectors,
DAA and DBB , vanish because of the symmetry of the pz wave
function, as far as we consider the atomic matrix elements up to
the nearest neighbor atoms. Substituting Eq. (3) into Eq. (A5),

the dipole vector DBA is calculated as follows:

DBA = 1

N

1

U

∑
m,m′

exp {−i(m′kc − mkv) · T }

×
∑
j,j ′

exp
{−i

(
kc · Rj ′

B − kv · Rj

A

)}

× exp
{
i
(
qeT · Rj,m

A − σθA
j

)}
× 〈

ϕ
(
r − Rj ′,m′

B

)|∇|ϕ(
r − Rj,m

A

)〉
� 1

N

1

U

U−1∑
m=0

exp {−i(kc − kv − qeT ) · mT }

×
N−1∑
j=0

exp
{−i(kc − kv − qeT ) · Rj

A − iσ θA
j

}

×
3∑

s=1

exp
{−ikc · rs

A

}
× 〈

ϕ
(
r − Rj,m

A − rs
A

)|∇|ϕ(
r − Rj,m

A

)〉
, (A7)

where we set the optical phases i(qeT · Rj,m

A − σθA
j ) at the

carbon atoms of initial states. We note that we consider the
matrix element for only the nearest neighbor atoms. Using
Eq. (A3), the dipole vector DBA of Eq. (A7) is further
calculated as follows:

DBA = 1

N

1

U

U−1∑
m=0

exp {−i(kc − kv − q) · mT }

×
N−1∑
j=0

exp
{−i(kc − kv − q) · R

j (z)
A

}
× exp

{−i(μc − μv + σ )θA
j

}
×

3∑
s=1

exp
{−ikc · rs

A

}(−
√

3mopt

a
rs

A

)

= −
√

3mopt

a
δ(kc − kv − q)δ(μc − μv + σ )Z∗

A

=
√

3mopt

a
δ(kc − kv + σ K 1 − τ K 2)ZB, (A8)

where R
j (z)
A is the z component of Rj

A and ZA (ZB) is defined
by

ZA =
3∑

s=1

exp
(
ikc · rs

A

)
rs

A

= −
3∑

s=1

exp
(− ikc · rs

B

)
rs

B = −Z∗
B. (A9)

Here K 1, K 2, and σ are defined by Eqs. (4) and (7),
respectively. The labels μv and μc denote the cutting lines
for valence and conduction bands while kv and kc denote the
wave numbers on the cutting line [see Eq. (4)]. τ = T/λ is
the ratio between the absolute value of translational vector
T and the wavelength of the incident light λ. We define
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mopt = 〈ψ(r − r1
B)| ∂

∂x
|ψ(r)〉 [18], using the symmetry of the

pz orbital of carbon atoms in SWNTs. We obtain DAB in the
same way as DBA, as follows:

DAB =
√

3mopt

a
δ(kc − kv + σ K 1 − τ K 2)ZA, (A10)

Using Eqs. (A4), (A8), and (A10), we obtain the formula of
the electron-photon matrix element for q ‖ T as follows:

M‖
σ (kc,kv) = AeC · C(kc,kv)δ

(
kc − kσ

c

)
, (A11)

where kσ
c and C(kc,kv) are, respectively, defined as

kσ
c = kv − σ K 1 + τ K 2. (A12)

C(kc,kv) = 2
√

3mopt

a
Re

[
Cc∗

A (kc)Cv
B(kv)ZA

]
, (A13)

and we use the relationship between the coefficients
{Cc∗

B (kc)Cv
A(kv)}∗ = −Cc∗

A (kc)Cv
B(kv). Noting that k−

c =
kv + K 1 + τ K 2 for RCP (σ = −1) and k+

c = kv + K 1 +
τ K 2 for LCP (σ = +1) [see Eqs. (A12)], we can obtain the
difference of the intensity of optical absorption between RCP
and LCP as follows:

�W
‖
RL(EL,kv)

= |M‖
−1(kc,kv)|2δ(EL − E(k−

c ) + E(kv))

− |M‖
+1(kc,kv)|2δ(EL − E(k+

c ) + E(kv))

= |AeC · C(k−
c ,kv)|2δ(EL − E−

cv)

− |AeC · C(k+
c ,kv)|2δ(EL − E+

cv), (A14)

where we define Eσ
cv = E(kσ

c ) − E(kv). The formula for the
CD is given by integrating Eq. (A14) in the first Brillouin zone
as follows:

�W
‖
RL(EL) =

N−1∑
μ=0

∫ π/T

−π/T

�W
‖
RL(EL,kv)dkv. (A15)

2. Propagation of light perpendicular to nanotube axis

In the case of q ⊥ T , the vector potential of the incident
light for either RCP (σ = −1) or LCP (σ = +1) that is defined
on the unrolled SWNT plane is expressed by [see Fig. 4 and
Eq. (18)]

A⊥
σ,q

(
Rj,m

�

) = iσAC
q

(
Rj,m

�

)
eC + AT

q

(
Rj,m

�

)
eT , (A16)

where the circumference component AC
j and the amplitude of

the axial component AT
j are, respectively, given by Eqs. (19)

and (20),

AC
q

(
Rj,m

�

) = A cos θ�
j

(
1 + iβ cos θ�

j

)
, (A17)

AT
q

(
Rj,m

�

) = A
(
1 + iβ cos θ�

j

)
, (A18)

where β = πdt/λ is the optical phase for q ⊥ T . The matrix
elements of the electron-photon interaction are calculated
analytically by putting Eqs. (2), (3), (A18), and (A17) into (A1)

as follows:

M⊥
σ (kc,kv)

= 〈�c(kc)|A⊥
σ,q

(
Rj,m

�

) · ∇|�v(kv)〉

= A

(
−σ

β

2
eC + eT

)
· 〈�c(kc)|∇|�v(kv)〉

+ A(iσ eC + iβeT ) · 〈�c(kc)| cos θ�
j ∇|�v(kv)〉

− Aσ
β

2
eC · 〈�c(kc)| cos 2θ�

j ∇|�v(kv)〉, (A19)

Noting cos θ�
j = [exp (iθ�

j ) + exp (−iθ�
j )]/2, we can calculate

each matrix element in Eq. (A19) in the same way with
Eq. (A7) and (A8) as follows:

〈�c(kc)|∇|�v(kv)〉 = C(kc,kv)δ(kc − kv), (A20)

〈�c(kc)| cos θ�
j ∇|�v(kv)〉

= 1
2 C(kc,kv){δ(kc − kv − K 1) + δ(kc − kv + K 1)},

(A21)

and

〈�c(kc)| cos 2θ�
j ∇|�v(kv)〉

= 1
2 C(kc,kv){δ(kc − kv − 2K 1) + δ(kc − kv + 2K 1)}.

(A22)

Substituting Eqs. (A20), (A21), and (A22) into (A19), we
obtain the matrix element for perpendicular incident light
M⊥

σ (EL,kv) as follows:

M⊥
σ (kc,kv) = 〈�c(kc)|A⊥

σ,q

(
Rj,m

�

) · ∇|�v(kv)〉

= A

(
−σ

β

2
eC + eT

)
· C(kc,kv)δ(kc − kv)

+A(iσ eC + iβeT ) · 1

2
C(kc,kv)

×{δ(kc − kv − K 1) + δ(kc − kv + K 1)}
−Aσ

β

2
eC · 1

2
C(kc,kv)

×{δ(kc − kv − 2K 1) + δ(kc − kv + 2K 1)}.
(A23)

By defining K = kc − kv , we get Eq. (21). For a given EL,
the difference of optical absorption �W⊥

RL is given by

�W⊥
RL(EL,kv)

≡ (|M⊥
−1(kc,kv)|2 − |M⊥

+1(kc,kv)|2)δ(EL − Ecv)

= A2β[eC · C(kc,kv)][eT · C(kc,kv)]

× [2δ(K ) − δ(K + K 1) − δ(K − K 1)]δ(EL − Ecv),

(A24)

where Ecv = E(kc) − E(kv) is the energy gap between the
initial and final states for q ⊥ T .
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