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We study the interface physics of bipartite magnetic materials deposited on a topological insulator. Our study
comprises antiferromagnets as well as ferrimagnets and ferromagnets with multiple magnetic moments per unit
cell. If an energy gap is induced in the Dirac states on the topological surface, a topological magnetoelectric effect
has been predicted. Here, we show that this effect can act in opposite directions on the two components of the
magnet in a certain parameter region. Consequently, an electric field will mainly generate a staggered field rather
than a net magnetization in the plane. This result is relevant for current attempts to detect the magnetoelectric
effect experimentally, as well as for possible applications. We take a field-theoretic approach that includes the
quantum fluctuations of both the Dirac fermions on the topological surface and the fermions in the surface layer
of the magnet in an analytically solvable model. The effective Lagrangian and the Landau-Lifshitz equation
describing the interfacial magnetization dynamics are derived.
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I. INTRODUCTION

Since their discovery, topological insulators (TIs) [1,2]
have attracted much attention due to their unique surface
properties. In three-dimensional TIs, every surface exhibits
linearly dispersing conducting states inside the bulk band
gap. These can be described as Dirac fermions and exhibit
spin-momentum locking. If time-reversal symmetry (TRS) at
the surface is broken by an orthogonal net magnetization, the
Dirac states become massive; that is, a gap opens in their
energy dispersion. It has been shown that this generates a
Chern-Simons (CS) term in the effective field theory which
imposes a topological magnetoelectric (TME) effect [3,4] on
the surface, where an electric field induces a net in-plane
magnetization. This distinct response to an electromagnetic
field is a hallmark of the TI phase.

Magnetic order on the TI surface can be established by
doping with 3d transition metals [5–11], proximity coupling
to a magnetic insulator in bilayer structures [12–16], or a
combination of both [17]. In [15], a magnetization orthogonal
to the surface was realized even at room temperature in EuS-
Bi2Se3 bilayers. In theoretical works, a broad range of potential
applications of such heterojunctions combining ferromagnetic
insulators (FMIs) and TIs has been suggested, e.g., related to
spintronics [18–28], and several further implications of the
TME effect have been discussed, including the formation of
magnetic monopoles [29] and the interplay with long-range
Coulomb interaction [28,30,31].

So far, not much focus has been directed at more general
classes of magnetic materials. Mostly, it is assumed that the
TME effect will occur in the same way as long as a net
magnetization is present. However, several technologically
relevant materials do not have a simple ferromagnetic (FM)
structure and are instead ferrimagnets (FiMs) or antiferro-
magnets (AFMs). For instance, one of the most prominent
materials for spintronics devices is yttrium iron garnet (YIG),
a FiM with a complicated crystal structure [32,33]. In YIG, an
enhancement of the magnetization has recently been observed
in a bilayer structure YIG-Bi2Se3, where Bi2Se3 is doped with

Cr [16]. It is thus natural to ask if and how the topological
effects will manifest in multicomponent FMIs, FiMs, or AFM
insulators. In AFMs, there is no net magnetization (except in
some cases for special surface orientations [34]). However, a
gap can still be opened at the Dirac points, as in the FM and
FiM cases, by means of magnetic doping in the TI. Such a
system has recently been realized experimentally [35].

In the present paper, we study a bilayer heterostructure
consisting of a bipartite magnetic insulator (BMI) and a TI.
We show that, depending on the microscopic parameters of
the BMI, the TME effect can take the opposite sign on the two
sublattices, turning the overall electric-field response from a
TME effect into a topological staggered-field-electric (TSE)
effect. Our calculation is to be understood as a proof of
principle, as the model we employ is simplified and may
not suffice to make quantitative predictions. On the other
hand, we are able to obtain fully analytic solutions within
a field-theoretic approach that accounts for the fermionic
quantum fluctuations on both the BMI and TI surfaces. We will
derive the effective Lagrangian, revealing the structure of the
magnetoelectric response, and the Landau-Lifshitz equation
(LLE) of the interfacial magnetization dynamics. We work in
Gaussian units and set h̄ = 1. All calculations are done at zero
temperature. This is justified as long as the Fermi level is tuned
to lie in the induced energy gap, for instance. by gating of the
interface.

The model we use is described in the following section. We
discuss the nontopological fluctuation effects originating with
the electrons on the BMI surface in Sec. III, and then we move
on to the topological effects that are revealed upon integrating
out the Dirac states in Sec. IV. We summarize our results in
Sec. V.

II. MODEL SYSTEM

Describing the heterostructure, one has to account for the
contributions from the bulk of the BMI, the surfaces of the
BMI and the TI, hopping across the interface due to proximity,
and Coulomb interactions between the Dirac electrons at the
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FIG. 1. The model system: (a) Bilayer heterostructure consisting
of a bipartite magnetic insulator (BMI) deposited on a topological
insulator (TI). (b) By means of the parameter μ = m2/m1, the magnet
can be tuned to be in an antiferromagnetic (AFM), ferrimagnetic
(FiM), or ferromagnetic (FM) configuration at mean field. (c) The
model involves fermionic fields � and χ1,2 on the surfaces of both
the TI (blue plane) and the BMI (gray plane), respectively, which
are coupled by the amplitudes h (hopping across the interface) and t

(local coupling of the two sublattices).

interface. The bulk of the TI is required to guarantee the
existence of the topological surface states but does not appear
explicitly. The model system is illustrated in Fig. 1.

We start with the surface of the TI which is chosen to be
the (x,y) plane and is described by the Dirac Lagrangian,

LD = �†[i∂t − ivF (σy∂x − σx∂y) + e(ϕ + φ)]�, (1)

where � = [ψ↑ψ↓]T are the surface Dirac fermions, vF is
the Fermi velocity, ϕ is the fluctuating potential of Coulomb
interactions among the Dirac fermions, and φ is any externally
applied electric potential. A term quadratic in ϕ describes the
Coulomb interaction in the plane [28,30,31]:

LCou(r) = − 1

8π2
[∇‖ϕ(r)] ·

∫
d2r ′ ∇′

‖ϕ(r′)

|r − r′| , (2)

where ∇‖ = (∂x,∂y) denotes the in-plane gradient operator.
We model the bulk bipartite magnetic material as two

interpenetrating FMs (denoted by indices i = 1,2) that are
coupled by an exchange interaction, Lbulk = L1 + L2 + Lex,
where

Li = −b(mi) · ∂tmi − κ

2
(∇mi)

2 (3)

and

Lex(r) = −λm1(r) · m2(r). (4)

Here, b is the Berry connection, which satisfies ∇mi
×

b(mi) = mi/m2
i , κ > 0 is the FM exchange energy, and λ > 0

(< 0) for AFM (FM) coupling of the two components. In the
bulk model, we ignore anisotropy terms. It turns out that the
system intrinsically contains anisotropy, and additional bulk
contributions would not qualitatively alter the physics.

In order to describe the surface Berry phases associated
with the two sublattices, we introduce fermionic fields χi =
[χi↑χi↓]T , i = 1,2, representing sublattice indices, which
when integrated out generate the desired surface Berry phases.
This procedure to generate Berry phases is well known in

the literature [36,37] and is very useful in our case because
it permits coupling the underlying sublattice fermions to the
Dirac surface states. The surface layer of the bipartite magnetic
insulator is thus described by the Hamiltonian,

Hsurf = −t(χ †
1χ2 + χ

†
2χ1) − J

∑
i=1,2

mi · χ
†
i σχi, (5)

where J is the strength of the exchange coupling to the
respective magnetization mi(z = 0), σ are the Pauli matrices,
and t is a parameter coupling the surface fermions of the BMI
on different sublattices. It will be crucial in obtaining a TSE
effect and also leads to mixed Berry phase terms originating
on the different sublattices. When t = 0, the surface Berry
phases decouple and just correspond to a shift of the Berry
phases already present in Eq. (3). Note that the Lagrangian
accounts only for coupling of fermions χ1 and χ2 within one
unit cell, thus being momentum independent in the continuum
limit. Further electron dynamics (gradient terms) is neglected.
This rough approximation is valid as long as the magnet is a
strong insulator and the gap is much larger than the induced
gap in the Dirac states. It does not spoil the generation of
the surface Berry phases, however. Furthermore, the lattice
model of the surface of the magnet does not explicitly include
nearest-neighbor exchange interactions, which are already
captured by the Lagrangian of the magnetic bulk. The chemical
potential is set to zero for the electrons on both surfaces
because the Fermi level is assumed to be tuned to lie in the
gap.

If the surfaces of the TI and the AFM or FiM are in
proximity to each other, there is also an amplitude h that
couples the surface fermions of the magnetic insulator to the
surface fermions of the topological insulator,

Lint = h[�†(χ1 + χ2) + (χ †
1 + χ

†
2 )�]. (6)

Our calculation amounts to integrating out all fermionic fields
in order to obtain an effective theory of the magnetization.

III. QUANTUM FLUCTUATIONS OF THE
SUBLATTICE FERMIONS

We start by integrating out the fermions χi of the BMI
surface to obtain an effective model for the Dirac fermions �.
We assume that the mean-field direction of the magnetization
is orthogonal to the interface, such that a mass in the Dirac
states can be induced. We write mmf

i = mi êz and define the
dimensionless parameter μ = m2/m1, where without loss of
generality |μ| � 1. Then, μ > 0 describes a FM, −1 < μ < 0
describes a FiM, and μ = −1 describes an AFM [Fig. 1(b)].
We also introduce τ = t2/J 2m2

1, which will be useful later.
From Eq. (5), we define a matrix

A =
(

i∂t + Jm1 · σ t

t i∂t + Jm2 · σ

)
, (7)

such that the action of the surface of the magnetic insulator is
symbolically written as Ssurf = χ †Aχ , where χ † = (χ †

1 ,χ
†
2 ).

The integral over space-time is implicit in this symbolic
representation. We use a spinor �̃† = (�†,�†) that contains
the same Dirac fermion twice to write Lint = hχ †�̃ + H.c.
We next proceed by integrating out the magnetic surface
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fermions χ ,

Z =
∫

D [χ,χ ] ei
∫

dt
∫

d2r(Lsurf+Lint)

=
∫

D [χ,χ ] ei(χ †Aχ−hχ †�̃−h�̃†χ)

= exp(iTr ln A + ih2�̃†A−1�̃). (8)

Note that the notation Tr contains the integration over the
quantum numbers in addition to the matrix trace. We will
discuss the two terms in the last line separately in the following
sections.

A. Surface corrections to the bulk terms

The term Tr ln A in Eq. (8) is independent of the topological
Dirac states. It leads to the Berry phases mentioned previously
and renormalizes the magnetic bulk terms at the surface.
Details of the calculation and complete analytical expressions
can be found in Appendix A. We finally obtain

δLmag(r,t)

= −2J 2m1 · diag(T 00 − T zz,T 00 − T zz,T 00 + T zz) · m2

+ 2J 2
∑
i=1,2

{[(
D00

i + Dzz
i

)
mi + (T 00 + T zz)m3−i

]
miz

−Dzz
i m2

iz + D0z
i êz · [mi(r,t) × ∂tmi(r,t)]

}
+ 2J 2T 0zêz · [m1(r,t) × ∂tm2(r,t)

+ m2(r,t) × ∂tm1(r,t)], (9)

where D00
i ,Dzz

i ,D0z
i ,T 00,T 0z, and T zz are functions of t,J,mi ,

and the lattice spacing a. The Berry phases are represented by
the cross-product terms. The terms proportional toD0z

i shift the
Berry phases introduced in Eq. (3), while the term proportional
to T 0z is a mixed Berry phase term. We remark that T 0z ∝ t ;
thus, no mixed Berry phase appears if t = 0.

Furthermore, the coupling of m1 and m2 given by Eq. (4)
is renormalized by the first line in Eq. (9) and becomes
anisotropic. This leads to in-plane and out-of-plane effective
exchange couplings given by

λ
‖
eff = λ + 2J 2(T 00 − T zz), (10)

λ⊥
eff = λ + 2J 2(T 00 + T zz). (11)

An evaluation of our analytic expressions (Appendix A)
reveals that the dynamically generated coupling favors AFM
alignment of the two magnetic components. Indeed, using
Eqs. (A19) and (A21) of Appendix A, we obtain

T 00 − T zz = t2
[
2|t2 − J 2m1m2| + 2t2 + J 2

(
m2

1 + m2
2

)]
2a2|t2 − J 2m1m2|(M+ + M−)3

,

(12)

T 00 + T zz = t2[1 + sgn(t2 − J 2m1m2)]

a2(M+ + M−)3
, (13)

FIG. 2. The anisotropic fluctuation-induced antiferromagnetic
exchange coupling of m1 and m2 at the surface, which renormalizes
the exchange coupling induced from the bulk. (a) In the component
along the mean-field direction, the coupling constant is given by
T 00 + T zz (see main text) and shows a finite discontinuity at μ = τ

(dashed line). (b) In the component orthogonal to the mean-field
direction, the AFM coupling T 00 − T zz diverges at the discontinuity.
The color scale is identical in both plots. (c) The quantities T 00 (thin
solid blue line), T zz (dash-dotted blue line), T 00 + T zz (bold solid
red line), and T 00 − T zz (dashed red line) as a function of μ for a
specific value of τ (τ = 0.45), which is indicated by the thin white
dotted lines in (a) and (b). (d) The anisotropy terms Dzz

1 (thin solid
blue line), Dzz

2 (dashed blue line), and D00
i + Dzz

i (bold solid red line,
identical for i = 1,2) behave similarly, showing a discontinuity at
τ = μ. The vicinity of this line is excluded from the further analysis.

where

M2
± = J 2

2

(
m2

1 + m2
2

) + t2

±J 2

2
|m1 + m2|

√
(m1 − m2)2 +

(
2t

J

)2

. (14)

The coupling constants show a discontinuity at t2 = J 2m1m2

or, equivalently, τ = μ, as shown in Fig. 2. Indeed, we see
that Eq. (12) diverges for t2 = J 2m1m2, while (13) vanishes
when t2 < J 2m1m2. This divergence obviously does not occur
when m1m2 < 0, corresponding to the AFM case, further
corroborating the favoring of the AFM alignment. Physically,
the divergence for τ = μ implies the vanishing of the in-plane
susceptibility.

The remaining terms in Eq. (9) describe a z-axis anisotropy
in both magnetizations. As we mentioned in Sec. II, our
model does not account for possible anisotropy contributions
originating with the bulk of the magnet. Such terms would
simply be renormalized by the corresponding coefficients in
Eq. (9) without changing the physical picture.

Our view of the dynamically generated surface terms as
corrections to the bulk values will hold as long as the surface
effects are not too large. As can be seen from Fig. 2, within our
model some surface terms are divergent at the discontinuity at
μ = τ . Therefore, the vicinity of this line in parameter space
will be excluded in our further analysis.

As a side remark, the fluctuation effects discussed in this
section can easily be generalized to account for magnetizations
that are, at mean field, tilted relative to the surface. We have
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checked that Eq. (9) remains valid when the z components are
replaced by mean-field components in an arbitrary direction.

B. Effective Dirac Lagrangian

The term h2�̃†A−1�̃ in Eq. (8) may now be added to Eq. (1)
to yield an effective action for the Dirac fermions,

Seff =
∫

dt

∫
d2rLeff =

∫
dt

∫
d2r

(
LD + h2�̃†A−1�̃

)
.

(15)
Multiplying out �̃†A−1�̃ into single-fermion operators again,
we find the effective Lagrangian of the Dirac electrons at the
coupled surfaces,

Leff = LD + γ�†
(

t2

J 2
− m1 · m2

)
�

+�†(J1m1 · σ + J2m2 · σ )�, (16)

where we have defined the constant

γ = 2th2J 2

det A
(17)

and the effective magnetic coupling constants for the two
sublattices

Ji = h2J

det A

(
J 2m2

3−i − t2
)
, (18)

where

det A = ( − ∂2
t − t2

)2 + J 2∂2
t

(
m2

1 + m2
2

)
+ J 2(J 2m2

1m2
2 − 2t2m1 · m2

)
. (19)

In det A, the fluctuations in m1,2 are not of leading or-
der. Therefore, we will approximate the determinant in the
Dirac Lagrangian by its mean-field value det Amf = t4 +
J 2[J 2m2

1m
2
2 − 2t2m1m2], whereby we also neglected higher-

order time derivatives in the low-frequency limit. Furthermore,
we assume that the coupling h of the surface fermions χ and �

at the interface is small compared to the internal energy scales
of the magnet, t and Jmi . Otherwise, one obtains a renormal-
ization of the time scale. It is interesting to note that the term
∝ γ in Eq. (16) contributes to the chemical potential of �.
The chemical potential may be tuned by adjusting φ appearing
in Eq. (1), and the mean-field part of the second term in Eq. (16)
may thus always be adjusted away. We will keep the remainder
only to linear order in the fluctuations.

Note that the sign of Ji in Eq. (18) depends on the parameter
t appearing in Eq. (5), as well as the magnitude of the magnetic
moments. This is a key observation that we will return to when
discussing the topological effects in the next section.

IV. TOPOLOGICAL MAGNETOELECTRIC EFFECTS

Now, we express the effective Lagrangian equation (16) as

Leff = �(i∂/ + m�)� + �(σ̃ − a/)�, (20)

where the first term is the mean-field part, with ∂ = (∂t ,vF ∇‖)
and m� = J1m1 + J2m2, whereas the second term contains

the fluctuating fields σ̃ = J1m̃1z + J2m̃2z and

a =
⎛
⎝−e(ϕ + φ) + γ (m1m̃2z + m2m̃1z)

J1m̃1y + J2m̃2y

−J1m̃1x − J2m̃2x

⎞
⎠. (21)

From this representation, one can see that the out-of-plane
fluctuations of the magnetization contribute to the effective
electric potential at the interface. This is a result of the
fluctuations in the chemical potential that we have observed
in Eq. (16). To obtain an effective field theory for the
magnetizations that contains the proximity effects induced by
the topological insulator, we also have to integrate out the re-
maining fermions � and the fluctuating Coulomb potential ϕ.
Equation (20) is formally equivalent to the field theory studied
in Refs. [30,31], given that the mass term m� is nonzero. This
is naturally the case for FMs and FiMs (except at μ = τ , which
we already excluded), while it might be enforced by doping in
the case of an AFM.

Integrating out � yields the fluctuation-induced Lagrangian
to one-loop order in the vacuum polarization diagrams [30,31],

δLeff = εμνλa
μ∂νaλ

8π
− (εμνλ∂

νaλ)2

24πm�

− m�σ̃ 2

2π
+ (∂σ̃ )2

24πm�

.

(22)

The first term is the CS term that is responsible for all
topologically protected contributions to the Lagrangian. The
other terms correspond to a Maxwell term and out-of-plane
anisotropy.

Besides these dynamical terms, a term describing the energy
at mean field is produced after all fermionic fields have been
integrated out. This term can be expanded into a Landau theory
for the mean-field magnetizations at the BMI-TI interface. The
Landau expansion can be found in Appendix B, where we find
that the quadratic term is always negative. This serves as a
check that our model, where we treated m1,2 as parameters, is
consistent with the existence of a magnetic phase.

Reinserting a, we can separate δLeff into a Coulomb-
interaction (ϕ-dependent) part Lϕ and the remaining dy-
namically generated terms Ldyn. After integrating out ϕ, the
Coulomb contributions become

Lϕ(r,t) = 2ρ(r,t)
∫

d2r ′ ρ(r′,t)
|r − r′| , (23)

with the charge density

ρ = e

8πvF

∇‖ · (J1m1 + J2m2) + e2

24πm�

∇‖Eext

− e

24πm�vF

[∇‖ × ∂t (J1m1 + J2m2)] · êz

+ γ e

24πm�

(∇‖)2(m1m2z + m2m1z), (24)

where Eext = −∇φ is the externally applied electric field. We
also define the Coulomb field induced by the charge density,

ECou(r) = −
∫

d2r ′ r − r′

|r − r′|3 ρ(r′). (25)

For low frequency and momentum, the last two terms in
Eq. (24) will be negligible compared to the first two terms.
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The part of the Lagrangian that is due to the nontrivial
topology (i.e., stemming from the CS term), where we write
M = J1m1 + J2m2 for brevity, can be expressed explicitly as

Ltopol = e

4πvF

M‖ · (Eext + ECou) − 1

8πv2
F

(M × ∂tM) · êz

+ γ

4πvF

M · ∇‖(m1m2z + m2m1z). (26)

The first term represents the magnetoelectric coupling, in-
volving both the external field and the fluctuation-induced
Coulomb field. The second term is a Berry phase. Unlike the
Berry phase generated by the fluctuations of χ , this expression
always includes mixed terms, regardless of the parameter t .
Finally, we also obtain a topological coupling of the magnetic
in-plane and out-of-plane fluctuations.

At this point, we can discuss how the system will respond to
an electric field. This is the main result of our paper. As we can
see from Eq. (26), the electric field is coupled to M in the same
way as it couples to the magnetic polarization in the usual TME
effect. Now, let us write M in terms of the net magnetization
m = m1 + m2 and the staggered field l = m1 − m2,

M = 1
2 (J1 + J2)m + 1

2 (J1 − J2)l. (27)

Obviously, if J1 and J2 have the same sign, an electric field
will mainly generate a net in-plane magnetization, while the
coupling to the staggered field is small. Overall, the system
will behave as one would expect for a simple FM. However, if
J1 and J2 have opposite signs, an electric field will mainly
induce a staggered field in the plane, while the response
in the net magnetization will be weak. This is because the
usual TME effect takes place on both sublattices, but with
opposite direction. Going back to Eq. (18), it is easy to find
the parameter region where this TSE effect can be found. In
terms of the dimensionless model parameters, the condition
for J1 and J2 having opposite signs is μ2 < τ < 1 (see Fig. 3).
A purely TSE response is expected if J1 = −J2, which is the
case if τ = 1

2 (1 + μ2). Remarkably, the predominantly TSE
response can appear even in a FM material (μ > 0) if it consists
of multiple magnetic components per unit cell with different
magnitudes and a suitable parameter t . Thus, it is possible that
experiments fail to detect the usual TME effect even when a
decent gap opening occurs. In contrast, a purely AFM material
(μ = −1) would not show any coupling to the staggered field,
even in the presence of a mass term m� by magnetic doping,
because J1 = J2 for equally strong magnetic moments on the
two sublattices. Our model of the BMI is quite simple, and for
a real material it might be much harder to find the parameter
regions that allow for the observation of the TME or TSE
effect. However, it is a remarkable finding that the overall
topological response in a BMI-TI heterostructure can depend
dramatically on microscopic details of the magnet.

A restriction on our findings is imposed by the discontinuity
discussed in the previous section. Due to divergent terms, our
results on the TSE effect will not be applicable for parameters
in the vicinity of the line μ = τ in Fig. 3.

Previous work has found a Coulomb-mediated magnetic
dipolar interaction [28]. The Coulomb interaction in the
present work will lead to the same effect within each sublattice.
Moreover, there will be a dipolar interaction between the

FIG. 3. Left: parameter regions of the bipartite magnet where the
topological response to an electric field has the same (white area) or
opposite (gray area) direction on the two sublattices, corresponding
to a predominantly magnetoelectric (TME) or staggered field electric
(TSE) effect, respectively. Here, τ is the dimensionless amplitude
of the coupling of the fermions on the two sublattices, and μ is
the ratio of the mean-field values of the magnetizations on the
sublattices. Close to the dashed line at μ = τ , our results may not
be applicable. Right: illustration of the topological effects for a FiM.
(a) Both magnetizations m1 and m2 (black) pointing in their mean-
field directions. (b) TME effect: if the topological response to the
electric field E (red) has the same sign on both sublattices, an in-plane
net magnetization m‖ (blue) is generated, while the induced in-plane
staggered field l‖ (orange) is small. (c) TSE effect: if the topological
response to e has opposite signs for m1 and m2, an in-plane staggered
field is generated, while m‖ is small. The overall sign of these effects
depends on the sign of the mass term m� .

sublattices. Again, for a system in the TSE regime, we will get
an effect in the opposite direction. Thus, the intercomponent
dipolar interaction will favor counteralignment instead of
alignment of m1,‖ and m2,‖.

Our model also reveals a topological coupling of the in-
plane components of the magnetic moments and the gradient
in the out-of-plane component as described by the last term
in Eq. (26), which can be understood as an anomalous spin-
stiffness term. This term has not been considered in previous
studies and can lead to a spin canting effect if the magnetization
is not homogeneous, as in the presence of spin waves or domain
walls. For the observation of the electromagnetic response it
will, however, not be important.

The full Lagrangian describing the magnetic moments in
the system is now given by

Ltot = Lbulk + Lϕ + Ldyn + δLmag, (28)

from which the coupled LLEs for the motion of m1 and m2 at
the interface can be derived. The LLE takes the form takes the
form

∂t

(
m1

m2

)
= �−1

(
m1 × d1

m2 × d2

)
. (29)

For details, we refer to Appendix C. The (6 × 6) matrix
� contains all Berry phase terms. In particular, there are
off-diagonal terms that stem from the fluctuation-induced
mixed Berry phases. Such terms are generated by the fermions
χi (if t �= 0) as well as the Dirac fermions �. The contribution
by the fluctuations of � is of topological origin, as it
stems from the CS term. The effective fields di contain, in
addition to spin-stiffness and anisotropy terms, a topological
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part,

di
topol = eJi

4πvF

ECou + eJi

4πvF

Eext − γm3−i

4πvF

(∇‖ · M)êz

− γ Ji

4πvF

∇‖(m1m2z + m2m1z), (30)

corresponding to Eq. (26). The first two terms show explicitly
how the external electric field and the Coulomb field affect
the magnetization dynamics as a consequence of the magne-
toelectric effects discussed above.

V. CONCLUSION

We have studied the topological effects at the interface
of a TI and a BMI within an analytically accessible model
that accounts for the fermionic quantum fluctuations at the
surfaces of both materials. We have demonstrated that the TME
effect that is known for magnetic TI surfaces can take
the opposite sign for the different magnetic components,
depending on microscopic details of the material. This leads
to an overall TSE response to an electric field, while the
induced net magnetization in the plane can be weak even in
the presence of a stable energy gap in the Dirac dispersion.
Thus, experiments that aim at detecting the TME effect might
also look for a response in the staggered field. A response in
the magnetization can be absent even when a FM insulator is
used if there are multiple magnetic components with different
magnitudes. In addition to the TSE effect, we have derived
several dynamically generated Berry phases, including terms
mixing m1 and m2. We also found a topological coupling
of in-plane and out-of-plane magnetic components which is
present for nonhomogeneous magnetization. The fluctuations
of the fermions on the magnets’ surface cause discontinuity in
our model, close to which our results are not applicable.
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APPENDIX A: DERIVATION OF THE SURFACE
CORRECTIONS

Here, we derive the magnetic surface terms discussed in
Sec. III A that are generated by Tr ln A in the Gaussian integral,
Eq. (8). Splitting A = Amf + Afl into the mean-field part and
the quantum fluctuations,

Amf =
(

i∂t + Jm1σz t

t i∂t + Jm2σz

)
, (A1)

Afl =
(

J m̃1 · σ 0
0 J m̃2 · σ

)
, (A2)

we obtain the usual expansion

Tr ln A = Tr ln Amf − 1
2 Tr(GAfl)2, (A3)

where the first term is a constant corresponding to the ground-
state energy that will be dealt with in Appendix B, while
the second term describes the dynamics close to equilibrium

to leading order. The propagator G is given by (Amf)
−1

. In
reciprocal space and imaginary time, G depends only on the
frequency ω and not on momentum because the hopping terms
in our model are momentum independent. For all momentum
integrals, we use π/a as a cutoff value, where a is the lattice
spacing. The propagator can be written in the form

G = 1

det Amf

(
D0

1 + Dz
1σz T 0 + T zσz

T 0 + T zσz D0
2 + Dz

2σz

)
, (A4)

where the components are

D0
1(ω) = iω3 + iωJ 2m2

2 + iωt2, (A5)

D0
2(ω) = iω3 + iωJ 2m2

1 + iωt2, (A6)

Dz
1(ω) = Jm1ω

2 + J 3m2
2m1 − t2Jm2, (A7)

Dz
2(ω) = Jm2ω

2 + J 3m2
1m2 − t2Jm1, (A8)

T 0(ω) = tω2 + t3 − tJ 2m1m2, (A9)

T z(ω) = −itωJ (m1 + m2), (A10)

and the determinant is

det Amf(ω) =
[
ω2 + J 2

2

(
m2

1 + m2
2

) + t2

]2

− J 4

4

(
m2

1 − m2
2

)2 − t2J 2(m1 + m2)2. (A11)

Performing the trace in Eq. (A3) at T = 0 then leads to the
Lagrangian

δLmag(�) = −J 2
∑
i=1,2

{[
D00

i (�) − Dzz
i (�)

]
m̃i(�) · m̃i(−�)

+ 2Dzz
i (�)m̃i,z(�)m̃i,z(−�)

+ i
[
Dz0

i (�) − D0z
i (�)

]
êz · [m̃i(�) × m̃i(−�)]

}
− J 2[T 00(�) − T zz(�)][m̃1(�) · m̃2(−�)

+ m̃1(−�) · m̃2(�)] − iJ 2[T z0(�) − T 0z(�)]

× êz · [m̃1(�) × m̃2(−�) + m̃2(�) × m̃1(−�)]

− 2J 2T zz(�)[m̃1z(�)m̃2z(−�)

+ m̃1z(−�)m̃2z(�)], (A12)

with frequency �, containing the integrals

D
αβ

i (�) = 1

a2

∫
dω

2π

Dα
i (ω)Dβ

i (ω − �)

[det Amf(ω)][det Amf(ω − �)]
(A13)

and

T αβ(�) = 1

a2

∫
dω

2π

T α(ω)T β(ω − �)

[det Amf(ω)][det Amf(ω − �)]
, (A14)

with α,β ∈ {0,z} and i = 1,2. These integrals can be solved
exactly by partial fraction decomposition since the zeros of the
denominator are known: det Amf(ω) = 0 if ω2 = N±, with

N± = ±J

√
J 2

4

(
m2

1 − m2
2

)2 + t2(m1 + m2)2

− 1

2
J 2

(
m2

1 + m2
2

) − t2, (A15)
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where N− < 0 and N+ � 0. Namely, N+ = 0 if t2 =
J 2m1m2, i.e., in terms of the dimensionless parameters, if
τ = μ. This is where the discontinuity which is discussed in
Sec. III A is located. In the integrals, we neglect terms of order
�2 or higher in the long-wavelength limit and obtain

D00
1 (�) = 1

4a2
√−N+(N+ − N−)3

{ − (N+)3 + 5(N+)2N−

+ 2
(
J 2m2

2 + t2)[(N+)2 + 3N+N−]

+ (
J 2m2

2 + t2
)2

(3N+ + N−)
}

+ (same with N+ ↔ N−) + O(�2), (A16)

D0z
i (�) = i�

16a2N+√−N+(N− − N+)3

× [
Jm1(N+)2

(
2N+ + 9N−)

+ Jm1
(
J 2m2

2 + t2
)
N+(N+ − 5N−)

+ Jm2
(
J 2m2

2 + t2)(J 2m1m2 − t2)

× (10N+ − 2N−)
]

+ (same with N+ ↔ N−) + O(�3), (A17)

Dzz
1 (�) = −J 2

4a2N+√−N+(N+ − N−)3

×[
m2

1(N+)2(N+ + 3N−)

+ 2m1m2(J 2m1m2 − t2)N+(3N+ + N−)

+ m2
2(J 2m1m2 − t2)2(5N+ − N−)

]
+ (same with N+ ↔ N−) + O(�2), (A18)

T 00(�) = −t2(J 2m1m2 − t2 − N+)

a2
√−N+(N+ − N−)2

×
[

1 + (5N+ − N−)(J 2m1m2 − t2 − N+)

4N+(N+ − N−)

]

+ (same with N+ ↔ N−) + O(�2), (A19)

T 0z(�) = i�t2(m1 + m2)

16a2N+√−N+(N− − N+)3

× [(t2 − J 2m1m2)(10N+ + 2N−)

− 7(N+)2 + N+N−]

+ (same with N+ ↔ N−) + O(�3), (A20)

T zz(�) = t2J 2(m1 + m2)2(3N+ + N−)

4a2
√−N+(N+ − N−)3

+ (same with N+ ↔ N−) + O(�2). (A21)

Expressions for D00
2 (�),D0z(�), and Dzz

2 (�) can be ob-
tained from Eqs. (A16), (A17), and (A18), respectively, by
exchanging m1 ↔ m2. It turns out that D00

1 + Dzz
1 = D00

2 +
Dzz

2 = −(T 00 + T zz). Furthermore, Dz0
i (�) = D0z

i (−�) =
−D0z

i (�) and T z0(�) = T 0z(−�) = −T 0z(�). These rela-
tions follow by substituting ω → (ω + �) in Eqs. (A13)
and (A14) and from the fact that only odd powers of �

appear in Eqs. (A17) and (A20). For ease of notation, we
write D0z

i (�) = i�D0z
i and T 0z(�) = i�T 0z, where D0z

i and
T 0z

i are frequency independent.
The effective magnetic surface Lagrangian that is evoked

by the fermionic fluctuations, Eq. (A12), is, in real space and
time, given by

δLmag(r,t) = −J 2
∑
i=1,2

{(
D00

i − Dzz
i

)
m̃2

i (r,t) + 2Dzz
i m̃2

i,z(r,t)

− 2D0z
i êz · [m̃i(r,t) × ∂tm̃i(r,t)]

}
− 2J 2(T 00 − T zz)m̃1(r,t) · m̃2(r,t)

+ 2J 2T 0zêz · [m̃1(r,t) × ∂tm̃2(r,t) + m̃2(r,t)

× ∂tm̃1(r,t)] − 4J 2T zzm̃1z(r,t)m̃2z(r,t).

(A22)

Equation (9) in Sec. III A follows by writing the Lagrangian
in terms of mi = mi êz + m̃i again, where constant terms
are discarded. The meaning of the different contributions is
discussed in the main text.

In the special case of a pure AFM, where m1 = −m2, a
mathematical subtlety arises. Namely, the solution of the in-
tegrals D

αβ

i (�) and T αβ(�) by partial fraction decomposition
requires a different ansatz because the zeros of the denominator
are degenerate: N+ = N− = −J 2m2

1 − t2. The integrals are
notably easier as a consequence of multiple cancellations, and
we find, again to leading order in � in the low-frequency
regime,

D00
1,AFM(�) = D00

2,AFM(�) = − 1

4a2
√

J 2m2
1 + t2

+ O(�2),

(A23)

D0z
1,AFM(�) =−D0z

2,AFM(�)= i�Jm1

8a2
(
J 2m2

1 + t2
)3/2 + O(�3),

(A24)

Dzz
1,AFM(�) = Dzz

2,AFM(�) = J 2m2
1

4a2
(
J 2m2

1 + t2
)3/2 + O(�2),

(A25)

T 00
AFM(�) = t2

4a2
(
J 2m2

1 + t2
)3/2 + O(�2), (A26)

T 0z
AFM(�) = T zz

AFM(�) = 0. (A27)

We have checked that these expressions are identical to the con-
tinuous limit m2 → −m1 of the integrals in the general case.
Notably, no mixed Berry phase term is generated for the AFM.
The fluctuation-induced Lagrangian takes the simplified form

δLAFM
mag

= J 2
[
t2m1 · m2 + 2t2m1(m1z − m2z) + J 2m2

1

(
m2

1z + m2
2z

)]
−2a2

(
J 2m2

1 + t2
)3/2

+ J 3m1

4a2
(
J 2m2

1 + t2
) êz · (m1 × ∂tm1 − m2 × ∂tm2).

(A28)
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APPENDIX B: FLUCTUATION-INDUCED
LANDAU THEORY

In this appendix, we present the Landau expansion of
the energy in terms of the mean-field magnetizations at
the interface. Here, we allow arbitrary directions of the
magnetizations. Thus, the Landau theory is still valid if m1

and m2 are not aligned with each other or the z axis at mean
field. For simplicity, we drop the overline notation indicating
mean-field values in this appendix.

The energy contains two contributions, namely, (i) one
from the term det A in Eq. (A3) originating with the quantum
fluctuations of the sublattice fermions and (ii) one from a
similar term det B generated by the quantum fluctuations of
the Dirac fermions, where B is defined such that Eq. (16) can be
written as Leff = �†B�. The energy density is then given by

E = −
∫

dω

2π

∫
d2k

2π
(ln det A + ln det B), (B1)

where we use the cutoff value π/a in divergent momentum in-
tegrals. We did not include Landau terms for the bulk in Eq. (3);
however, any bulk contributions would simply add up with the
interface terms shown here. We obtain the following expansion
to fourth order, where ⊥ indicates the component orthogonal
to the interface and ‖ indicates the in-plane component:

E = J 2

[ −1

4a2|t | (m1 − m2)2 − t2K2(m1 + m2)2
⊥

−
(

t2K2
(
1 − v2

F

) + 5h4

128πv2
F |t |3

)
(m1 + m2)2

‖

]

+ J 4
[
c1

(
m4

1 + m4
2

) + c2m
2
1m

2
2 + c3

(
m1 · m2

)2

+ c4
(
m2

1 + m2
2

)
m1 · m2 + c5

(
m2

1m
2
1‖ + m2

2m
2
2‖

)
+ c6

(
m2

1m
2
2‖ + m2

2m
2
1‖

) + c7
(
m2

1 + m2
2

)
(m1‖ · m2‖)

+ c8
(
m2

1‖ + m2
2‖

)
m1 · m2 + K1(m1‖ + m2‖)4

+ 2c8(m1‖ · m2‖)(m1 · m2)
]
. (B2)

The coefficients of the fourth-order terms are

c1 = 1

64a2|t |3 + K1 + K3 − K4, (B3)

c2 = −7

64a2|t |3 + K1 + K2 + K3 − K4, (B4)

c3 = 5

16a2|t |3 + 4K1 − 4K4, (B5)

c4 = −1

16a2|t |3 + 4K1 + K2 + 2K3 − 4K4, (B6)

c5 = 7h4

1024πv2
F |t |5 − 2K1 − v2

F (K3 − K4), (B7)

c6 = 237h4

1024πv2
F |t |5 − 2K1 − v2

F (K2 + K3 − K4), (B8)

c7 = 47h4

512πv2
F |t |5 − 4K1 − v2

F (K2 + 2K3 − 2K4), (B9)

c8 = −63h4

512πv2
F |t |5 − 4K1 + 2v2

F K4, (B10)

and we have used the constants

K1 = 6435h8

215πv2
F |t |9 , (B11)

K2 = h4 92π2v2
F + 108πvF a|t | + 33a2t2

48vF |t |5(2πvF + a|t |)3
+

5h4 ln
(
1 + 2πvF

a|t |
)

64πv2
F |t |5 , (B12)

K3 = h4 1408π3v3
F + 2396π2v2

F a|t | + 1392πvF a2t2 + 279a3|t |3
384vF |t |5(2πvF + a|t |)4

+
35h4 ln

(
1 + 2πvF

a|t |
)

512πv2
F |t |5 , (B13)

K4 = h4 9008π4v4
F + 20000π3v3

F a|t | + 16920π2v2
F a2t2 + 6500πvF a3|t |3 + 965a4t4

1280vF |t |5(2πvF + a|t |)5
+

63h4 ln
(
1 + 2πvF

a|t |
)

1024πv2
F |t |5 . (B14)

It turns out that the second-order term is always negative, indicating a stable magnetic phase at the interface.
For the special cases of a FM, with m1 = m2 = n, and an AFM, with m1 = −m2 = n, the Landau theory can be simplified:

EFM = −4J 2

[
t2K2n

2
⊥ +

(
t2K2

(
1 − v2

F

) + 5h4

128πv2
F |t |3

)
n2

‖

]
+ J 4

[
(16c1 + c2 + c3 + 2c4)n4

+ 2(c5 + c6 + c7 + 2c8)n2
‖n

2 + 16K1n
4
‖
]
, (B15)

EAFM = −J 2n2

a2|t | + J 4
[
(16c1 + c2 + c3 − 2c4)n4 + 2(c5 + c6 − c7)n2

‖n
2 + 16K1n

4
‖
]
. (B16)
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APPENDIX C: LANDAU-LIFSHITZ EQUATION

Applying the Euler-Lagrange formalism in the total Lagrangian equation (28) leads to the two equations of motion (with
i = 1,2 and j = 3 − i),

− mi

m2
i

× ∂tmi + bêz × ∂tmi + cêz × ∂tmj = di , (C1)

with the coefficients

b = 4J 2D0z
i − J 2

i

4πv2
F

, (C2)

c = 4J 2T 0z − J1J2

4πv2
F

(C3)

and the effective field di = di
topol + di

non-top, which consists of a part generated by the CS term,

di
topol = eJi

4πvF

ECou + eJi

4πvF

Eext − γmj

4πvF

(∇‖ · M)êz − γ Ji

4πvF

∇‖(m1m2z + m2m1z), (C4)

and the remainder containing various spin-stiffness and anisotropy terms in addition to the renormalized magnetic coupling of
the sublattices,

di
non-top = −κ

(∇‖
)2

mi − λmj − 4J 2Dzz
1 m1zêz − 2J 2diag(T 00 − T zz,T 00 − T zz,T 00 + T zz) · mj

+ 2J 2
[(

D00
i + Dzz

i

)
mi + (T 00 + T zz)mj

]
êz + m�Ji

πv2
F

(J1m1 + J2m2 − Mz)êz − Ji

12πm�v2
F

∂2
t M

− Ji

12πm�vF

∂t

[
γ∇‖(m1m2z + m2m1z) − eEext

] × êz − Ji

12πm�

∇‖
(∇‖ · M

) − γmj

12πm�vF

[
∂t (∇‖ × M) · êz

]
êz

+ γ 2

12πm�

(∇‖
)2(

m2
2m1z + m2

1m2z

)
êz + γ e

12πm�

(∇‖ · Eext)êz − Ji

12πm�

(∇‖
)2

Mzêz, (C5)

with the shorthand notation M = J1m1 + J2m2. The second and third terms in Eq. (C1) are due to the fluctuation-induced Berry
phases. Taking the cross product with mi in Eq. (C1), using ∂tm2

i = 0, one obtains

(1 − bmiz)∂tmi − cmiz∂tmj + c(mi · ∂tmj )êz = mi × di . (C6)

The equations of motion can now be rewritten in matrix form,

� ·
(

∂tm1

∂tm2

)
=

(
m1 × d1

m2 × d2

)
, (C7)

where the entries of the (6 × 6) matrix � follow from Eq. (C6):

� = 1(6×6) +

⎛
⎜⎜⎜⎜⎜⎝

−bm1z 0 0 −cm1z 0 0
0 −bm1z 0 0 −cm1z 0
0 0 −bm1z cm1x cm1y 0

−cm2z 0 0 −bm2z 0 0
0 −cm2z 0 0 −bm2z 0

cm1x cm2y 0 0 0 −bm2z

⎞
⎟⎟⎟⎟⎟⎠. (C8)
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