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We discuss how one-dimensional interacting fermion systems, which in the low-energy approximation are
described by Luttinger liquid theory, can be reformulated as systems of weakly interacting particles with fractional
charge and statistics. Our approach is to use Landau’s phenomenological approach to Fermi liquid theory, where
the quasiparticles are interpreted as adiabatically dressed fermions. In an earlier publication, the local charge
carried by these excitations has been shown to be fractional. We focus here on the statistics of the quasiparticles
and show that by a change of momentum variables the Landau parameters of the generalized Fermi fluid can be
transformed to zero. This change in interaction is compensated by a change of the entropy function, which is
consistent with the interpretation of the quasiparticles as satisfying generalized exclusion statistics.
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I. INTRODUCTION

In one dimension, the perturbative approach to Fermi liquid
theory fails, in the sense that particle interactions generi-
cally give rise to intractable infrared divergences. However,
Luttinger liquid theory, as shown by Haldane [1], can be
viewed as a well functioning replacement. In this formulation
bosonic operators, related to the particle densities, are the
fundamental variables, and in the low-energy approximation,
with linearized dispersion, the Hamiltonian takes a free-field
form with the effects of interactions absorbed in velocity
parameters. Nonlinear corrections to the theory can in principle
be included in the form of bosonic interaction terms.

Even if Luttinger liquid theory is well described in terms
of bosonic variables, elementary charged excitations do exist
in the one-dimensional Fermi system, and there has been
in later years an interest in studying the properties of such
excitations, both theoretically and experimentally [2–10]. The
conclusion is that the excitations will generally carry a fraction
of the fermionic charge. The fractionalization is linked to chiral
separation of charges that are introduced in the system [11,12],
so that fractions of a unit charge move to the right and the left,
respectively. There has in particular been interest in the study
of this effect for edge excitations in quantum Hall systems,
where interactions between edge modes give rise to the charge
fractionalization [7–10].

However, one should note the important difference between
the charge fractionalization effect in the bulk of the quantum
Hall system and at the edges. In the former case, the excitations
have well defined, topologically protected charge values,
whereas in the latter case this is not the case. Instead the
charges will there generally depend on the initial conditions
which are responsible for the creation of the excitations. A
particular way to introduce these excitations is to create them
in the noninteracting system, and then adiabatically turn on
the interaction between the edge modes. This situation was
examined in Refs. [8,9], where it was shown how an integer
charged edge excitation, in a quantum Hall bar with variable
width, can adiabatically evolve into a fractionally charged ex-
citation, with a compensating charge being smoothly absorbed
into the background.

In the present paper, we focus on the statistics of the
adiabatically dressed excitations. Our results are related to

those in Refs. [13–15], where connections between general-
ized exclusion statistics and Luttinger liquids are discussed.
However, our approach, which is based on the use of Landau’s
phenomenological approach to Fermi liquid theory, is differ-
ent. The starting point is the existence of an adiabatic mapping
between the noninteracting and the interacting system of
one-dimensional fermions, which makes the Fermi liquid
theory valid. Since this mapping is known in the low-energy
approximation, the one-particle energy and the two-particle
interactions can be derived from the energy of the system by
functional differentiation with respect to the particle density.
We further show, by use of a functional transformation, that
the interaction terms can be absorbed in such a way that the
quantum statistics of the quasiparticles is effectively changed.
We will use in this paper the convention h̄ = 1.

II. THE LUTTINGER LIQUID FORMULATION

We take as the starting point the following general ex-
pression for the Hamiltonian of a one-dimensional system of
spinless fermions:

H =
∑

k

ε0(k)c†kck + 1

4L

∑
q,k1,k2

V (k1 − k2,q)c†k1
c
†
k2

ck2−qck1+q .

(1)

V is allowed to depend on the momentum variable k1 − k2, in
addition to q, in order to be able to include in this formulation
the one-dimensional description of quantum Hall systems with
interedge interactions [16]. Galilei invariance is not broken by
the interaction, since it only depends on the relative variable
k1 − k2. We shall, however, assume that the dependence on
this variable is weak. This implies that we can disregard the
effect of the k dependence for low-energy particles close to the
same Fermi point, while for the interaction between particles
at opposite Fermi points the effect will generally be significant.
For electrons in the lowest Landau level, the condition of weak
dependence means that the magnetic length is much smaller
than the range of the interaction between the particles [16].

The ground state of the Hamiltonian we assume to have the
form of a filled Fermi sea, with well-defined Fermi points for
negative and positive momenta, k = ±kF . In the low-energy
approximation, the excitations of the system are restricted to
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momenta near the two Fermi points, with the following low-
energy form of the Hamiltonian [1]:

H = v̄F

∑
χ,k

(χk − kF ) : c
†
χ,kcχ,k :

+ 1

4L

∑
χ,q

[V1(q)ρχ,qρχ,−q + V2(q)ρχ,qρ−χ,−q ], (2)

where χ = ±1 is a chirality parameter, associated with the
two Fermi points, and ρχ,q = ∑

k c
†
χ,k+qcχ,k are the Fourier

components of the particle density of chirality χ . The system
is assumed to be confined to an interval of length L, and
with periodic boundary conditions for the fermion fields, the
momentum then takes discrete values k = 2πn/L, with n as
an integer. The interaction has been separated in two parts
with V1(q) = V (0,q) and V2(q) = V (2kF ,q), and the density
operators are normal ordered relative to the filled Fermi sea.
The effective Fermi velocity v̄F has the form

v̄F = vF − 1

4π
(V1(0) − V2(0)) (3)

with vF = ∂ε0
∂k

(kF ) as the Fermi velocity of the noninteracting
Fermi system, and the interaction dependent term is a correc-
tion, created by interactions between the low-energy fermions
and the Fermi sea [16].

Although the k quantum number is in the low-energy
approximation restricted to small deviations from ±kF , this
restriction can be lifted, since the low-energy sector of the
theory is not affected by this extension. Without the restriction,
the model (2) describes in effect two types of fermions,
characterized by different values of χ , both types with linear
dispersion.

The standard way to analyze the system described by the
Hamiltonian (2) is in terms of bosonization. We briefly sum-
marize expressions to be used in the discussion to follow. The
Fourier components of the charge density operators, for q �= 0,
are written as boson annihilation and creation operators,

aq =
√

2π

|q|L
∑

χ

θ (χq) ρχ, q , a†
q =

√
2π

|q|L
∑

χ

θ (χq) ρχ, −q

(4)

with θ (q) as the Heaviside step function. The q = 0
components of the charge densities define the conserved
fermion number and chiral (current) quantum number

N =
∑

χ

Nχ =
∑
k χ

: c
†
χ,k cχ,k : ,

J =
∑
χ

χNχ =
∑
k χ

χ c
†
χ,k cχ,k (5)

with N measuring the deviation of the particle number
from its ground state value N0. The bosonized form of the
Hamiltonian is [1]

H = π

2L
(vNN2 + vJ J 2)

+ 1

2

∑
q �=0

|q|
[(

v̄F + V1(q)

4π

)
(a†

qaq + aqa
†
q)

+ V2(q)

4π
(a†

qa
†
−q + aqa−q)

]
, (6)

which relative to the Hamiltonian (2) has been modified by
adding (nonrelevant) terms that are constant or linear in N .
The two velocity parameters vN and vJ are

vN = v̄F + 1

4π
(V1(0) + V2(0)) = vF + 1

2π
V2(0),

vJ = v̄F + 1

4π
(V1(0) − V2(0)) = vF . (7)

We note in particular that vJ is identical to the original Fermi
velocity vF of the noninteracting fermions, rather than to
the effective Fermi velocity v̄F that appears in the Luttinger
Hamiltonian (2). This can be viewed as a consequence
of Galilei invariance of the original Hamiltonian (1). The
low-energy sector, where (6) is valid, corresponds to situations
where |q|, as well as N/L and |J |/L, are effectively restricted
to values much smaller than kF .

The bosonized Hamiltonian is diagonalized by a Bogoli-
ubov transformation of the form

aq = cosh ξq bq + sinh ξq b
†
−q,

a†
q = cosh ξq b†q + sinh ξq b−q, (8)

where ξq is fixed by the relation

tanh 2ξq = − V2(q)

V1(q) + 4π v̄F

. (9)

In terms of the new bosonic operators, the Hamiltonian gets
the diagonal form

H =
∑
q �=0

ωq b†qbq + π

2L
(vNN2 + vJ J 2) (10)

with the frequency ωq given by

ωq =
√(

v̄F + V1(q)

4π

)2

−
(

V2(q)

4π

)2

|q|. (11)

The bosonized form of the low-energy Hamiltonian (10)
has, for given values of N and J , a free field form, which
makes it straightforward to solve the many-particle problem
and in particular to determine the relevant correlation functions
[1]. However, for our purpose, it will be useful to reintroduce
fermion variables in the expression for the Hamiltonian.

III. ADIABATICALLY DRESSED FERMIONS

The two sets of bosonic operators are unitarily equivalent,

bq = UaqU
† , b†q = Ua†

qU
† (12)

with the unitary transformation given by

U = exp

⎡⎣−
∑
q �=0

ξq

2

(
a2

q − a†2
q

)⎤⎦. (13)

The operator U preserves the particle number of the two
chiralities separately and it maps energy eigenstates of the
linearized, free theory continuously into the eigenstates of
the interacting theory, when the parameters ξq are changed.
The transformation can thus be interpreted as defining an
adiabatic change of the energy eigenstates during a slow
turning on of the interactions V1 and V2.
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For the fermion operators, we introduce the corresponding
transformation

φ(x) = Uψ(x)U † (14)

with ψ(x) = 1√
L

∑
k ck as the original fermion operator. We

refer to the states created by φ†(x) as the dressed fermion
states. In Ref. [8], charged excitations created by the dressed
fermion operator were studied, and it was shown that the
integer fermion charge introduced by φ†(x) was split in a
noninteger, local contribution, equal to

√
g = (vJ /vN )1/4, and

a compensating charge which was evenly distributed over the
background. A further study of this effect in Ref. [9] confirmed
this result numerically, and it showed how a slow change of
the interaction between the edges of a quantum Hall bar would
dynamically separate the total charge of a moving electron into
a sharply defined front pulse with charge

√
g, followed by a

long, extended tail.
The demonstration of the charge fractionalization is in fact

quite easy in the bosonic representation. To show this, we
focus on the Fourier components ρq of the fermion density
operator. For q = 0, this is identical to the total fermion
number, while the limit q → 0 defines what is interpreted
as the local part. The difference between these two is clearly
seen in the case of a filled Fermi sea with N particles, where
ρ0 = N , while ρq = 0 for all q �= 0. With excitations included,
the charge component ρq (for q �= 0) has, in the low-energy
approximation, the following simple relation to the bosonic
creation and annihilation operators:

ρq =
√

L|q|
2π

(aq + a
†
−q)

=
√

L|q|
2π

(cosh ξq + sinh ξq)(bq + b
†
−q), (15)

which gives

U †ρqU = (cosh ξq + sinh ξq)ρq. (16)

In the limit q → 0, we have the following expressions for
cosh ξq and sinh ξq :

cosh ξ0 = g + 1

2
√

g
, sinh ξ0 = g − 1

2
√

g
, (17)

which gives

lim
q→0

U †ρqU = √
g lim

q→0
ρq. (18)

Let us assume that �† adds a local charge Q = 1 to
the Fermi sea of the noninteracting system, with the new
(normalized) state written as

|ψ〉 = �†|F 〉, (19)

|F 〉 represents the filled Fermi sea, and the assumption about
the charge is

lim
q→0

〈F |�ρq�
†|F 〉 = 〈F |�ρ0�

†|F 〉 = 1. (20)

The dressed state is U�†|F 〉, and the corresponding (local)
dressed charge is then

lim
q→0

〈F |�U †ρqU�†|F 〉 = √
g lim

q→0
〈F |�ρq�

†|F 〉 = √
g,

(21)

which shows the result that, with repulsive interaction (g < 1),
only a part of the original fermion charge appears as the local
charge of the dressed fermion, while the remaining part is
distributed evenly as a part of the background.

However, to show the unconventional statistics of the
dressed fermions is not so straightforward. The transformed
field φ(x) clearly satisfies the same anticommutation relations
as the electron field ψ(x), and in this sense is a fermion
field. However, the statistics of the particles is not necessarily
apparent in the commutation relations of the fields alone, since
the form of the Hamiltonian may reveal the presence of a
“statistical interactions” between the particles. For this reason,
we will examine more closely the form of the Hamiltonian,
when it is expressed in fermionic variables.

To proceed, we first make the low-energy approximation

V1(q) ≈ V1(0) , V2(q) ≈ V2(0), (22)

which for the boson frequency implies

ωq ≈ vs |q|, vs = √
vJ vN . (23)

For the transformation U , this gives

U ≈ exp

⎡⎣−
∑
q �=0

ξ0

2

(
a2

q − a†2
q

)⎤⎦, tanh ξ0 = g − 1

g + 1
, (24)

which implies that U , in this approximation, is uniquely
determined by the interaction parameter g = √

vJ /vN .
We now separate the Hamiltonian in two parts in the

following way:

H = Uvs

⎡⎣∑
q �=0

|q|a†
qaq + π

2L
(N2 + J 2)

⎤⎦U †

+ vs

π

2L

[(
1

g
− 1

)
N2 + (g − 1)J 2

]
, (25)

where the first term can be identified as a linearized free-field
Hamiltonian, with vs as Fermi velocity, and with the field
variables transformed by the operator U . This implies that the
Hamiltonian can be expressed in terms of the dressed fermion
field as

H = vs

{∫ L

0
dx :

∑
χ

φ†
χ (x)(−iχ∂x − kF )φχ (x) :

+ π

2L

∑
χ

[(
1

g
+ g − 2

)
N2

χ +
(

1

g
− g

)
NχN−χ

]}
,

(26)

where the chiral fields are defined by

ψχ (x) = 1√
L

∑
k

cχ,ke
ikx , φχ (x) = Uψχ (x)U †. (27)

IV. FERMI LIQUID DESCRIPTION

In the low-energy approximation, we have an explicit
expression (13) for the operator U that adiabatically changes
the energy eigenstates of the noninteracting system into those
of the interacting one. With corrections to this approximation
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included, we may still assume the interacting system to be
adiabatically connected to the noninteracting one, although
there will be corrections to the form of the adiabatic mapping.
This assumption of adiabatic connection between the nonin-
teracting and interaction system forms the basis for Landau’s
Fermi liquid theory, which therefore is applicable in the present
case, beyond the low-energy approximation (26).

The total energy is then given as a functional of the
distribution of occupation numbers n(k), associated with the
noninteracting theory,

E = E[n(k)], (28)

and the quasiparticle energies and interactions can be defined
in terms of functional derivatives to first and second orders in
the particle density [17],

δE =
∑

k

ε(k)δn(k) + 1

2

∑
kk′

f (k,k′)δn(k)δn(k′). (29)

The quasiparticles introduced by Landau in this way we will
here identify with the dressed fermions previously discussed.
For variations about the filled Fermi sea, the expressions for
energy and interactions will be referred to as ε0(k) and f0(k,k′).

In the low-energy approximation, the energy and interaction
terms can be extracted from the Hamiltonian (26). With χ

related to k by χ = sgn k, the corresponding expression for
the variation of the energy is

δE =
∑

k

vs(|k| − kF )δn(k) + vs

π

L

∑
k,k′

(λ1θ (kk′)

+ λ2θ (−kk′))δn(k)δn(k′) (30)

with θ (k) as the Heaviside step function, and with λ1 and λ2

defined by

λ1 = 1

2

(
1

g
+ g − 2

)
, λ2 = 1

2

(
1

g
− g

)
. (31)

From this follows that the single-particle energy and the
interaction terms are

ε0(k) = vs(|k| − kF ),

f0(k,k′) = vs

2π

L
(λ1θ (kk′) + λ2θ (−kk′)). (32)

When corrections to the low-energy Hamiltonian (26) are
included, we interpret the above expression for the interaction
to be valid at the Fermi points, written as

f0(kF ,kF ) = f0(−kF , − kF ) = vs

2π

L
λ1,

f0(kF , − kF ) = f0(−kF ,kF ) = vs

2π

L
λ2. (33)

The symmetric and antisymmetric combinations of the inter-
action terms define the two Landau parameters, which after
normalization with respect to the density of states are

F0 = L

2πvs

(f0(kF ,kF ) + f0(kF , − kF )) = 1

g
− 1,

F1 = L

2πvs

(f0(kF ,kF ) − f0(kF , − kF )) = g − 1. (34)

This gives the following relation [18]:

1 + F1 = 1

1 + F0
= g. (35)

It is of interest to relate this result to the condition
of Galilean invariance, as expressed in the Fermi liquid
formulation. This condition is written as [17]∫

dk k n(k) =
∫

dk m
∂ε(k)

∂k
n(k), (36)

where m is the (bare) mass of the fermions and the occupation
numbers are treated as a continuous function of k. We assume
in the following n(k) to be the particle density normalized
relative to the fully occupied system, which means that it takes
values in the interval 0 � n(k) � 1. The equation above states
that the total momentum is conserved when the interaction is
adiabatically turned on. Variation in the particle density gives∫

dk
k

m
δn(k) =

∫
dk

∂ε(k)

∂k
δn(k)

+ L

2π

∫∫
dkdk′ ∂f (k,k′)

∂k
n(k)δn(k′),

(37)

where the last term is the result of treating ε(k) as a functional
of n(k). Assuming this is valid for arbitrary variations δn(k),
we get the following relation:

k

m
= ∂ε(k)

∂k
− L

2π

∫
dk′ f (k,k′)

∂n(k′)
∂k′ . (38)

For a filled Fermi sea, the derivative of the particle density is

∂n0(k′)
∂k′ = δ(k′ + kF ) − δ(k′ − kF ) (39)

and with k = kF , Eq. (38) gets the form

kF

m
= ∂ε0(k)

∂k

∣∣∣∣
kF

+ L

2π
(f0(kF ,kF ) − f0(kF , − kF )). (40)

We make the following identifications:

vF = kF

m
, vs = ∂ε0(k)

∂k

∣∣∣∣
kF

≡ kF

m∗ (41)

with vF as the Fermi velocity of the noninteracting fermions,
vs as the Fermi quasiparticle velocity, and m∗ as the effective
mass of the quasiparticles. This gives

m∗

m
= vF

vs

= 1 + F1 = g. (42)

If we further apply the identities

vs = √
vJ vN , g =

√
vJ /vN, (43)

we find

vJ = vF , (44)

which is consistent with the earlier result (7). Here it follows
as consequence of Galilei invariance in Landau’s Fermi liquid
formulation, whereas the result in (7) is a consequence of
the corresponding symmetry of the two-particle interaction
V (k1 − k2,q). The equality between 1 + F1 and (1 + F0)−1 in
Eq. (35) can be seen as a consequence of the equality in the one
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dimensional system between the velocity of the quasiparticle
excitations and the velocity of sound vs .

V. QUANTUM STATISTICS

A central element in the Fermi liquid theory is the
assumption that the elementary excitations (quasiparticles) of
the theory obey Fermi-Dirac statistics. This means that the
entropy function has the same form as for the noninteracting
(bare) particles,

S = −
∑

k

[n(k) ln n(k) + (1 − n(k)) ln (1 − n(k))]. (45)

In the case discussed in the previous sections, this follows since
the dressed particle field φ(x) is related to the original fermion
field ψ(x) by a unitary transformation. However, a further
change of variable will now be introduced, which changes this
relation. This is not done in the form of a transformation of
the field operators, but rather by introducing a new momentum
variable, with a stronger repulsion between neighboring values
than demanded by the Pauli exclusion.

To this end, assume ki = 2πni/L to be the coordinates
in k-space of a set of particles, with ni as integers that
increase monotonically with i. The transformation to the new
momentum coordinates κi is then defined by

κi = ki + λ
π

L

∑
j �=i

sgn(ki − kj ) , i = 1,2, . . . , (46)

where λ is a new, real parameter. Transformations of this
form, known as Bethe ansatz equations, are used to solve
certain types of one-dimensional many-body problems. Here
we focus, however, on the transformation’s relation to gen-
eralization of the Pauli exclusion between fermions. Thus the
equation leads to the following effective repulsion between the
κ values:

κi+1 = κi + 2π

L
(�ni + λ) (47)

with �ni as a positive integer. The equation can be interpreted
as expressing that each new particle introduced in the system
will occupy a one-dimensional volume 2π (1 + λ)/L, as
compared to 2π/L for fermions. This can be expressed more
directly by the formula

�d = −(1 + λ)�N, (48)

where �d is the change in the number of available single-
particle states within a fixed, finite interval in κ space, when
�N particles are introduced in the interval. This formulation
corresponds to Haldane’s defining relation of generalized
exclusion statistics [19], with d interpreted as the dimension of
the Hilbert space, which is available for a new particle that is
added to the system, and with 1 + λ as the exclusion statistics
parameter.

In the thermodynamic limit, the relation (46) between ki and
κi defines a mapping between the corresponding continuous
variables k and κ , which depend on the particle density n(k)
in the following way:

κ = k + 1

2
λ

∫
dk′ n(k′) sgn(k − k′). (49)

The density ν(κ) corresponding to the new variable κ is defined
by

ν(κ) dκ = n(k) dk, (50)

which simply states that the number of occupied states is
conserved (locally) under the mapping k → κ . It follows
directly that the two densities are related by

ν(κ) = n(k)

1 + λn(k)
, n(k) = ν(κ)

1 − λν(κ)
(51)

with k and κ related as shown in (49). With n(k) limited
by 0 � n(k) � 1, the corresponding restriction on ν(κ) is
0 � ν(κ) � 1/(1 + λ).

The fermion entropy (45), in the continuum form is

S = − L

2π

∫ ∞

−∞
dk[n(k) ln n(k) + (1 − n(k)) ln (1 − n(k))]

(52)

and as follows from (50) and (51), it takes the following form
when expressed in terms of the new variables,

S = − L

2π

∫ ∞

−∞
dκ[ν(κ) ln ν(κ) − (1 − λν(κ)) ln (1 − λν(κ))

+ (1 − (1 + λ)ν(κ)) ln (1 − (1 + λ)ν(κ))]. (53)

This expression agrees with expressions earlier found in
Refs. [20,21] for the entropy of exclusion statistics particles.

However, one should note that at in our case the
transformation introduced above is at this point only a
change of variables. We cannot make any conclusion about
the true quantum statistics of the particles without considering
what the transformation makes to the energy functional of the
system. The point to show is that by choosing a particular
value for the parameter λ, the leading part of the quasiparticle
interaction, defined in the previous section by the Landau
parameters F0 and F1, is transformed to zero. This implies
that the statistics defined by the new form of the entropy is not
modified by a statistical interaction term.

In order to show this, we consider (49) as introducing a
change of variables for the total energy, E[n(k)] → E[ν(κ)].
This redefines the quasiparticle energy and interaction

ε̃(κ) = 2π

L

δE

δν(κ)
, f̃ (κ,κ ′) = 4π2

L2

δ2E

δν(κ)δν(κ ′)
, (54)

and the idea is to express these in terms of the previous
functionals ε(k) and f (k,k′). For the single-particle energy
the transformation gives

ε̃(κ ′) = 2π

L

∫
dk

δn(k)

δν(κ ′)
δE

δn(k)
=
∫

dk
δn(k)

δν(κ ′)
ε(k) (55)

and for the interaction

f̃ (κ ′′,κ ′) = 4π2

L2

δ

δν(κ ′′)

∫
dk

δn(k)

δν(κ ′)
δE

δn(k)

= 2π

L

∫
dk

δ2n(k)

δν(κ ′′)δν(κ ′)
ε(k)

+
∫∫

dk̄ dk
δn(k̄)

δν(κ ′′)
δn(k)

δν(κ ′)
f (k̄,k). (56)
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After some tedious manipulations (see the Appendix), the
following rather simple expressions are found for the trans-
formation matrices:

δn(k)

δν(κ ′)
= 1

2

d

dk
[(1 + λn(k))sgn(k − k′)],

δ2n(k)

δν(κ ′′)δν(κ ′)
= 1

4
λ

d2

dk2
[(1 + λn(k))sgn(k − k′)sgn(k − k′′)],

(57)

where the pairs of variables k′,κ ′ and k′′,κ ′′ are related by the
transformation (49).

The expression obtained for the energy is then the
following:

ε̃(κ ′) = 1

2

∫
dk ε(k)

d

dk
[(1 + λn(k))sgn(k − k′)]

= (1 + λn(k′))ε(k′) + 1

2
λ

∫
dk ε(k)n′(k)sgn(k − k′)

(58)

with n′(k) = dn/dk.
In the case of a filled Fermi sea, the particle density and its

derivative are

n0(k) = 1
2 (sgn(k + kF ) − sgn(k − kF )),

n′
0(k) = δ(k + kF ) − δ(k − kF ). (59)

This gives for the pseudomomentum

κ = k + 1

2
λ

∫ kF

−kF

dk̄ sgn(k − k̄)

=

⎧⎪⎨⎪⎩
k + λkF k > kF

k(1 + λ) −kF < k < kF

k − λkF k < −kF

, (60)

and in particular κF = (1 + λ)kF . The transformed particle
density then is

ν0(κ) = 1

2(1 + λ)
(sgn(κ + κF ) − sgn(κ − κF )). (61)

Introducing this in the expression for the quasiparticle energy
gives

ε̃0(κ) =

⎧⎪⎪⎨⎪⎪⎩
ε0
(
κ − λ

1+λ
κF

)
κ > κF

(1 + λ)ε0
(

κ
1+λ

)− λεF |κ| < κF

ε0
(
κ + λ

1+λ
κF

)
κ < −κF

(62)

with εF ≡ ε0(kF ) = ε̃0(κF ).

For the interaction, we cite here only the results for variations around the filled Fermi sea, and refer to Appendix for more
details,

f̃0(κ ′′,κ ′) = −π

L
λ[ε′

0(k′)(1 + λn0(k′)) − ε′
0(k′′)(1 + λn0(k′′))]sgn(k′ − k′′)

+ π

2L
λ2ε′

0(kF )[sgn(k′′ + kF )sgn(k′ + kF ) + sgn(k′′ − kF )sgn(k′ − kF )]

+ (1 + λn0(k′))(1 + λn0(k′′))f0(k′′,k′)

− 1

2
λ(1 + λn0(k′))[f0(−kF ,k′)sgn(k′′ + kF ) − f0(kF ,k′)sgn(k′′ − kF )]

− 1

2
λ(1 + λn0(k′′))[f0(k′′, − kF )sgn(k′ + kF ) − f0(k′′,kF )sgn(k′ − kF )]

+ 1

4
λ2[(sgn(k′′ + kF )sgn(k′ + kF ) + sgn(k′′ − kF )sgn(k′ − kF )f0(kF ,kF ))

− (sgn(k′′ + kF )sgn(k′ − kF ) + sgn(k′′ − kF ) + sgn(k′ − kF ))f0(kF , − kF )]. (63)

In spite of the discontinuous behavior of the particle density n(k) at the Fermi points, the function f̃0(κ ′′,κ ′) is continuous at
these points, as one can check from the above expression. The values at the Fermi points are

f̃0(κF ,κF ) = f0(kF ,kF ) +
(

λ + 1

2
λ2

)
(f0(kF ,kF ) − f0(kF , − kF )) + π

L
λ2vs,

f̃0(κF , − κF ) = f0(kF , − kF ) −
(

λ + 1

2
λ2

)(
f0(kF ,kF ) − f0(kF , − kF ) + 2π

L
vs

)
. (64)

If the new Landau parameters F̃0 and F̃1 are normalized as in
(34), this gives the following relation between these and the
original Landau parameters:

F̃0 = F0 − λ,

F̃1 = (1 + λ)2

(
F1 + λ

1 + λ

)
. (65)

Furthermore, the relation (35) between F0 and F1 gives the
following relation between F̃0 and F̃1:

(
1 + F̃0

1 + λ

)
=
(

1 + F̃1

1 + λ

)−1

. (66)
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Assuming now that the value of the parameter λ is specified
as

λ = λ1 + λ2 = 1

g
− 1 (67)

and using the values earlier found for F0 and F1 in (35), we
find that both the new Landau parameters vanish,

F̃0 = F̃1 = 0. (68)

This means that both f̃0(κF ,κF ) and f̃0(κF , − κF ) vanish, and
therefore that the interaction in the low-energy regime is weak,
in the sense

lim
|κ ′′|→kF

lim
|κ ′|→kF

f̃0(κ ′′,κ ′) = 0. (69)

The conclusion is thus that the interactions of the one-
dimensional fermion system effectively change the particle
statistics, and make the system appear as a weakly inter-
acting system of (quasi)particles with generalized statistics.
The modified exclusion parameter is given by 1 + λ = 1/g,
which agrees with the value of the statistics parameter
in Refs. [13–15].

VI. THE LOW-ENERGY LIMIT

As a consistency check we briefly return to the linearized
low-energy approximation, with the Hamiltonian described
by (10). In this approximation, the interaction terms f̃ (κ ′′,κ ′)
are negligible, and the energy function ε̃(κ) is essentially
independent of the particle density and can be approxi-
mated by ε̃0(κ). The point to check is whether the energies
E = ∫

dκ ν(κ) ε̃0(κ), with the particle distributions specified
by (46), coincide with the eigenvalues of the Hamiltonian (10).

We first assume the particle distribution to be without holes,
where all momentum states ki are filled between a minimum
value kmin, close to the Fermi point −kF , and a maximum value
kmax, close to kF . kmin and kmax are then related to the particle
numbers N and J in the following way:

kmax = kF + π

L
(N + J ) , kmin = −kF − π

L
(N − J ), (70)

and the relation (49) between κ and k now simplifies to

κ = (1 + λ)k − π

L
λJ. (71)

The integrated energy of the system is

E = L

2π

∫ κmax

κmin

ε̃0(κ)ν0(κ)dκ = L

2π

1

1 + λ

(∫ κF

−κF

ε̃0(κ)dκ +
∫ −κF

κmin

ε̃0(κ)dκ +
∫ κmax

κF

ε̃0(κ)dκ

)
= E0 + L

2π

1

1 + λ

[∫ −κF

κmin

(εF − vs(κ + κF ))dκ +
∫ κmax

κF

(εF + vs(κ − κF ))dκ

]
= E0 + εF N + π

2L
vs

(
(1 + λ)N2 + 1

1 + λ
J 2

)
, (72)

where E0 is the energy of the filled Fermi sea, and where
ε̃0(κ) has been expanded to linear order in κ in the intervals
close to the Fermi points. The quadratic terms in N and J

agree with those of the Hamiltonian (10), while the two first
terms in (72) can be absorbed in a redefinition of the zero
point of the energy and by introducing a chemical potential,
which effectively makes the Fermi sea the ground state of the
system. The bosonic excitation term in (10) corresponds to the
particle-hole excitations of the fermionic system, which so far
has not been included.

In Fig. 1, the situation is illustrated for a small system
with quadratic dispersion, ε̃0 = 1

2aκ2, a = vs/κF , and with
statistics parameter λ = 0.5. The single-particle energies ε̃0

are shown as functions of k in two cases, the first one with a
filled Fermi sea, with N0 = 23 particles and N = J = 0. In
the second case, two particles have been added in the lowest
available states close to the Fermi point kF , so that N = J = 2.
The figure demonstrates how the effects of the modified Pauli
exclusion are transmitted through the Fermi sea. This produces
effectively a shift of the energy curve along the k axis. Thus the
insertion of new particles near the Fermi point kF will affect
the values of κ , and thus of ε̃0, not only near the Fermi point
kF , but also near −kF . It is straightforward to to show that this
will effectively move a part of any new fermion charge inserted
at kF , so that the fraction (1 + g)/2 of the charge remains at
kF , while the fraction (1 − g)/2 is moved to −kF .

Particle-hole excitations can be introduced by changing the
(discrete) momenta ki of the occupied states in the following
way:

ki = k0
i + �ki = (2π/L)(i + ni) ,

i = imin,imin + 1, . . . ,imax, (73)

where k0
i gives the momentum values of the occupied states

without holes, and ni are integers, which introduce holes in
the distribution. We assume ni+1 � ni to make the ordering
of ki with respect to i to be unchanged when introducing the
holes. For the pseudomomenta κi , we get a similar change in
the values. This is a direct consequence of the transformation
formula (46)

κi = ki + λ
π

L

imax∑
j=imin

sgn(ki − kj )

= (2π/L)

⎛⎝i + ni + 1

2
λ

imax∑
j=imin

sgn(i − j )

⎞⎠
≡ κ0

i + �ki (74)

with �ki = (2π/L)ni . The shifts are thus the same as for the
momenta ki , which means that they are independent of the
statistics parameter λ.
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FIG. 1. The single-particle energy ε̃0, shown as function of the
momentum variable k, with quadratic dispersion and with statistics
parameter λ = 0.5. Filled circles correspond to occupied states and
open circles to unoccupied states. Two cases are shown. The first case
(red circles, long dashed curve) corresponds to a filled Fermi sea,
representing the ground state with N0 = 23 particles. In the second
case (blue circles, short dashed curve), two particles are added in the
lowest available momentum states close to the Fermi point kF . This
corresponds to the case N = J = 2. The generalized Pauli exclusion
between the particles gives rise to a relative shift of the two curves
along the k axis.

With the excitations restricted to the neighborhoods of
the Fermi points, linearization of the energy as function of
momentum can be made, which gives∑

i

ε̃0(κi) =
∑

i

ε̃0(κ0
i ) + vs

∑
i

|�ki |. (75)

The excitation term is the same as for free fermions, although
with vs as the effective Fermi velocity. It corresponds precisely
to the bosonic excitation term in (10), when the boson
frequency is linearized in q, ωq ≈ vs |q|. Thus the expression
for the full energy, given as a sum over single-particle energies
ε̃0(κi) reproduces precisely the energy eigenvalues of the
Hamiltonian (10) within this approximation.

VII. CONCLUDING REMARKS

The standard approach to study the interacting one-
dimensional Fermi system is based on the use of the bosoniza-
tion technique. However, to study properties of the elementary
charged excitations, other methods may be more convenient.
We have here applied the Fermi liquid theory of Landau to
study the quantum statistics of the “dressed fermions” of
the interacting theory. These particles are identified as the
Landau type of quasiparticles, and they are well defined due to
the adiabatic mapping which exists between the (low-energy
sector of the) noninteracting and the interacting theory.

For excitations close to the Fermi points, the unitary
transformation between the noninteracting and the interacting
system is explicitly known and has a simple form when
expressed in the bosonized variables. We have used this
to rewrite the low-energy Hamiltonian in terms of dressed
fermion fields, and to show that the corresponding excitations
are fractionally charged. A more detailed study of this

effect has been performed in a previous publication [8]. The
Hamiltonian, in this form, has furthermore been used to
determine the quasiparticle energy and two-body interaction,
defined as functional derivatives of the full energy of the
system. By a change of momentum variables in the functional
derivatives, the interaction terms have been shown to vanish
for momenta close to the Fermi points. This formally gives the
description the form of a free theory. However, as shown by the
transformed form of the entropy function, the quasiparticles
obey a generalized type of Pauli exclusion.

The two-body interaction, after the momentum transforma-
tion, vanishes at the Fermi points. Away from these points,
however there are nonvanishing corrections, as shown by the
derived expressions. Since the main part of the interaction has
been absorbed in the change of statistics, these contributions
are small and can in principle be treated perturbatively.
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APPENDIX: EVALUATING THE
FUNCTIONAL DERIVATIVES

In order to determine ε̃ and f̃ , we need to evaluate the
functional derivatives

δn(k)

δν(κ ′)
,

δ2n(k)

δν(κ ′′)δν(κ ′)
(A1)

as shown in Eqs. (55) and (56). n(k) can be viewed as a
functional of ν (and a function of k), as specified in Eq. (51),

n(k) = ν(κ)

1 − λν(κ)
≡ F [ν(κ)]. (A2)

One should note that in the functional derivatives (A1), k as
well as κ ′ and κ ′′ should be considered as fixed during the
variation of the density ν. However, when k is replaced by
κ , as in (A2), the condition that k is fixed implies that the
corresponding variable κ will be a functional of ν. This is
shown by the relation between the two [as earlier expressed
in (49)]:

κ = k + 1

2
λ

∫
dκ̄ ν(κ̄)sgn(κ − κ̄). (A3)

As a consequence of this, F [ν(κ)] has both an explicit depen-
dence of ν, as shown by (A2), and an implicit dependence of ν,
which follows from the fact that κ depends on ν. To take care
of both these effects, we write the variation of the functional
F , in the following way:

δF [ν(κ)]k = F [ν(κ + δκ) + δν(κ + δκ)] − F [ν(κ)], (A4)

where the label k indicates that k is kept fixed under the
variation of ν. We are interested in determining the variation
δF [ν(κ)]k under a change in ν of the following form:

δν(κ) = ε1δ(κ − κ ′) + ε2δ(κ − κ ′′), (A5)

here with κ regarded as a free variable. With δF valuated to
second order in ε1 and ε2, the term proportional to ε1 will then
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give the functional derivative with respect to ν(κ ′) and the second-order term proportional to ε1ε2 will give the double derivative
with respect to ν(κ ′) and ν(κ ′′).

We begin by evaluating (to second order in ε1 and ε2) the variation in κ induced by the variation in ν with k fixed,

δκ = 1

2
λ

∫
dκ̄[(ν(κ̄) + δν(κ̄))sgn(κ + δκ − κ̄) − ν(κ̄)sgn(κ − κ̄)]. (A6)

We have

sgn(κ + δκ − κ̄) = sgn(κ − κ̄) + 2(θ (κ + δκ − κ̄) − θ (κ − κ̄)) (A7)

with θ (κ − κ̄) as the Heaviside step function, and using the expansion

ν(κ̄) = ν(κ) + ν ′(κ)(κ̄ − κ) . . . , (A8)

we find the following implicit expression for δκ ,

δκ = 1

2
λ

[∫
dκ̄ δν(κ̄)sgn(κ − κ̄) + 2(ν(κ) + δν(κ))δκ + ν ′(κ)δκ2

]
+ higher order. (A9)

From this, the first-order contribution to δκ is found to be

δκ1 = λ/2

1 − λν(κ)

∫
dκ̄δν(κ̄)sgn(κ − κ̄) = λ/2

1 − λν(κ)
(ε1sgn(κ − κ ′) + ε2sgn(κ − κ ′′)) (A10)

and including explicitly only the term proportional to ε1ε2 we find for the second-order term:

δκ2 = 2ε1ε2

[(
λ/2

1 − λν(κ)

)2

(δ(κ − κ ′)sgn(κ − κ ′′) + δ(κ − κ ′′)sgn(κ − κ ′)) +
(

λ/2

1 − λν(κ)

)3

ν ′(κ)sgn(κ − κ ′)sgn(κ − κ ′′)

]
+ . . . . (A11)

We consider now the expansion of δF in powers of ε1 and ε2, starting with the expression

δF [ν(κ)]k = 1

λ

[
1

1 − λ(ν(κ + δκ) + δν(κ + δκ))
− 1

1 − λν(κ)

]
. (A12)

We leave out the intermediate steps in deriving the expansion and give the expression for the coefficient proportional to ε1, which
determines the functional derivative of n(k) with respect to ν(κ ′),

δn(k)

δν(κ ′)
= 1

(1 − λν(κ))2

(
δ(κ − κ ′) + λ/2

(1 − λν(κ))
ν ′(κ)sgn(κ − κ ′)

)
. (A13)

From the term proportional to ε1ε2 we derive the following expression:

δ2n(k)

δν(κ ′′)δν(κ ′)
= 1

4

(
λ2

(1 − λν(κ))4 ν ′′(κ) + 3
λ3

(1 − λν(κ))5
ν(κ)′2

)
sgn(κ − κ ′)sgn(κ − κ ′′)

+ 3

2

λ2

(1 − λν(κ))4 ν ′(κ)(sgn(κ − κ ′)δ(κ − κ ′′) + δ(κ − κ ′)sgn(κ − κ ′′))

+ 1

2

λ

(1 − λν(κ))3 (sgn(κ − κ ′)δ′(κ − κ ′′) + δ′(κ − κ ′)sgn(κ − κ ′′)) + 2
λ

(1 − λν(κ))3 δ(κ − κ ′)δ(κ − κ ′′).

(A14)

Finally, we rewrite these in terms of the variable n(k), by use of the identity

1

1 − λν(κ)
= 1 + λn(k). (A15)

Leaving out also here the intermediate steps we find the following expressions:

δn(k)

δν(κ ′)
= (1 + λn(k))2

[
1

1 + λn(k)
δ(k − k′) + λ/2

(1 + λn(k))2 n′(k)sgn(k − k′)
]

= 1

2

d

dk
[(1 + λn(k))sgn(k − k′)] (A16)

and

δ2n(k)

δν(κ ′′)δν(κ ′)
= 1

4
λ2n′′(k)sgn(k − k′)sgn(k − k′′) + λ2n′(k)(sgn(k − k′)δ(k − k′′) + δ(k − k′)sgn(k − k′′))

+ 1

2
λ(1 + λn(k))(sgn(k − k′)δ′(k − k′′) + δ′(k − k′)sgn(k − k′′)) + 2λ(1 + λn(k))δ(k − k′)δ′(k − k′′)

= 1

4
λ

d2

dk2
[(1 + λn(k))sgn(k − k′)sgn(k − k′′)]. (A17)
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The continuum form of the expression for the variation in the total energy (A18) we write as

δE = L

2π

∫
dkε(k)δn(k) + L2

8π2

∫∫
dkdk′f (k,k′)δn(k)δn(k′), (A18)

which gives

ε(k) = 2π

L

δE

δn(k)
, f (k,k′) = 4π2

L2

δ2E

δn(k)δn(k′)
. (A19)

The energy function after the change of variables then is

ε̃(κ ′) = 2π

L

δE

δν(κ ′)
=
∫

dk
δn(k)

δν(κ ′)
ε(k)

= 1

2

∫
dkε(k)

d

dk
[(1 + λn(k))sgn(k − k′)]

= (1 + λn(k′))ε(k′) + 1

2
λ

∫
dkε(k)n′(k)sgn(k − k′). (A20)

It is convenient to separate the interaction function into two parts:

f̃ (κ ′′,κ) = 4π2

L2

δ2E

δν(κ)δν(κ ′)

= 2π

L

∫
dk

δ2n(k)

δν(κ ′′)δν(κ ′)
ε(k) +

∫∫
dk̄dk

δn(k)

δν(κ ′)
δn(k)

δν(κ ′′)
f (k̄,k)

= f̃A(κ ′′,κ ′) + f̃B(κ ′′,κ ′). (A21)

For the first term, we find

f̃A(κ ′′,κ ′) = π

2L
λ

∫
dkε(k)

d2

dk2
[(1 + λn(k))sgn(k − k′)sgn(k − k′′)]

= −π

L
λ[ε′(k′)(1 + λn(k′)) − ε′(k′′)(1 + λn(k′′))]sgn(k′ − k′′)

− π

2L
λ2
∫

dk ε′(k) n′(k) sgn(k − k′)sgn(k − k′′) (A22)

and for the second term

f̃B(κ ′′,κ ′) = 1

4

∫∫
dk̄ dk

d

dk̄
[(1 + λn(k̄))sgn(k̄ − k′′)]

d

dk
[(1 + λn(k))sgn(k − k′)]f (k̄,k)

= (1 + λn(k′′))(1 + λn(k′))f (k′′,k′) + 1

2
λ
(
1 + λn(k′′)

) ∫
dk n′(k) sgn(k − k′)f (k′′,k)

+ 1

2
λ(1 + λn(k′))

∫
dk n′(k) sgn(k − k′′)f (k,k′) + 1

4
λ2
∫∫

dk̄dkn′(k̄)n′(k)sgn(k̄ − k′′)sgn(k − k′)f (k̄,k).

(A23)

In the expressions given above the pair k′ and κ ′, as well as k′′ and κ ′′, are related by Eq. (A3).
The expressions for the energy ε̃0(κ) and for the interaction f̃0(κ ′′,κ ′) are finally found by introducing the density n0(k) and

its derivative n′
0(k), as given by Eq. (59), in the above expressions (A20), (A22), and (A23). The results are displayed in Eqs. (62)

and (63) in the main text.
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