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Transport properties of a hybrid Majorana wire-quantum dot system with ferromagnetic contacts
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The transport properties of a quantum dot coupled to ferromagnetic contacts and attached to a topological
superconductor wire hosting Majorana zero-energy modes at its ends are studied theoretically in the Kondo
regime. By using the numerical renormalization group method, the temperature and dot level dependence of
the spectral function, the conductance, and its spin polarization are studied for different coupling strengths
to a topological superconductor. It is shown that the transport characteristics are generally determined by the
interplay of three competing energy scales, resulting from Kondo correlations, a ferromagnetic-lead-induced
exchange field, and topological-wire-induced splitting. These two splittings are found to have opposite signs.
Moreover, they can compensate for each other in an appropriate parameter regime.

DOI: 10.1103/PhysRevB.95.155427

I. INTRODUCTION

Topologically protected states of matter are now at the
forefront of condensed matter physics [1,2]. This is because
such states are protected against many noise sources by
symmetry, and they are thus naturally suited for operations
in which decoherence is one of the main issues. One such
prominent example is topological quantum computation [3,4],
for which Majorana zero-energy modes [5], exhibiting non-
Abelian statistics, are expected to play an important role. In
fact, the signatures of Majorana fermions in solid-state devices
have recently been observed experimentally [6–9].

In particular, much attention has been paid to hybrid Majo-
rana quantum-dot systems, which typically consist of a quan-
tum dot coupled to external leads and additionally attached to
topological superconductor (TS) wire, which hosts Majorana
zero-energy modes at its ends (Majorana wire). This is because
such hybrid quantum-dot devices reveal some unique features
related to the presence of Majorana quasiparticles [10–24].
For example, it was predicted [15] that the well-established
Kondo effect in quantum dots [26–29] becomes modified by
the presence of coupling to Majorana zero-energy modes in
such a way that the low-temperature conductance reaches a
fractional value of 3e2/2h instead of 2e2/h. Moreover, out
of the Kondo regime the conductance was shown to reach a
value of e2/2h due to the coupling to Majorana wire [16].
Interestingly, very recently a hybrid Majorana wire-quantum
dot device was realized experimentally, and the emergence
of Majorana bound states was confirmed. It was achieved by
performing bias spectroscopy, in which a quantum dot served
as a spectrometer of Majorana zero-energy modes [25]. This
exciting experiment undoubtedly paves the way toward more
elaborate experimental realizations involving quantum dots
and topological wires with Majorana quasiparticles. From
this perspective, providing further theoretical modeling and
understanding of Majorana quantum-dot systems is desirable.

In this paper, therefore, we undertake further studies on
quantum dots side-coupled to Majorana wires in the Kondo
regime, focusing on the case of ferromagnetic (FM) contacts;
see Fig. 1 for a schematic of the considered system. We note
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that the transport properties of strongly correlated quantum
dots coupled to magnetic leads have been a subject of
intensive theoretical and experimental research for more than
a decade [30–39]. In particular, it was demonstrated that the
Kondo effect can be suppressed by the presence of an exchange
field generated by spin-dependent couplings, which results in
spin-splitting of the dot level [30,37]. Here, we show that in the
presence of additional coupling to Majorana wire, the transport
behavior becomes greatly modified. First of all, this coupling
results in a splitting of the dot level, which has an opposite
sign to the splitting caused by the exchange field coming
from ferromagnetic leads. Consequently, we demonstrate that,
depending on the device parameters, one can reinstate the
Kondo effect, which was initially suppressed. Moreover, it is
shown that the interplay between the exchange field, coupling
to Majorana wire, and Kondo correlations results in highly
nontrivial spectral features that are revealed in the dot’s
local density of states, linear conductance, and current spin
polarization. The calculations are performed with the aid of the
numerical renormalization group (NRG) method [40], which is
well-suited to address the strongly correlated regime of various
complex quantum impurity systems. Using the NRG, we de-
termine the transport characteristics as a function of dot-level
position for different temperatures, couplings to Majorana wire
and considering the cases of both infinite- and finite-length
nanowire. The case of ferromagnetic contacts is contrasted

FIG. 1. The schematic of the considered system. It consists of a
quantum dot (QD), with energy level ε and Coulomb correlations U ,
coupled to two ferromagnetic (FM) leads with coupling strengths �σ

L

and �σ
R for the left and right junction, and side-coupled (with matrix

element VM ) to a topological superconductor (TS) wire hosting two
Majorana zero-energy modes described by the operators γ1 and γ2.
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with the case of nonmagnetic leads, which helps in elucidating
the role of spin-dependent tunneling on transport behavior.

II. THEORETICAL DESCRIPTION
AND PERTURBATIVE ANALYSIS

A. Model

The considered system consists of a single-level quantum
dot (QD) coupled to the left and right ferromagnetic (FM)
leads, and side-coupled to a topological superconductor (TS)
wire hosting Majorana zero-energy modes (Majorana wire)
(see Fig. 1). The total Hamiltonian of the system has the
following form:

H = Hleads + HDM + Htun, (1)

where Hleads = ∑
rkσ εrkσ c

†
rkσ crkσ describes the noninteract-

ing electrons in the left (r = L) and right (r = R) lead,
with crkσ annihilating an electron of spin σ , momentum
k, and energy εrkσ in the lead r . The second term of H,
HDM, represents the quantum dot coupled to a topological
superconductor hosting Majorana zero-energy modes at its
ends. Assuming the superconducting energy gap to be the
largest energy scale, the QD-TS subsystem can be modeled by
the following effective Hamiltonian [10,12,15]:

HDM = ε
∑

σ

d†
σ dσ + Ud

†
↑d↑d

†
↓d↓

+ 2iεMγ1γ2 + VM (d†
↓γ1 + γ1d↓). (2)

Here, dσ is the annihilation operator of a spin-σ electron of
energy ε in the dot, while U denotes the Coulomb interaction
between two electrons of opposite spin occupying the dot.
The operators γ1 and γ2 are related to the two Majorana
fermions at the ends of the topological superconductor wire
(see Fig. 1). These self-adjoint operators fulfill the anticom-
mutation rule {γi,γj } = δij and can be expressed in terms of
an auxiliary fermionic operator f as γ1 = (f † + f )/

√
2 and

γ2 = i(f † − f )/
√

2. The coupling between the topological
superconductor and the quantum dot is described by the last
term of HDM, where VM is the respective tunnel matrix element.
On the other hand, εM describes the overlap between the two
Majorana fermions. In the limit of infinitely long topological
superconductor wire, the two Majorana quasiparticles do not
overlap, and εM = 0 [9]. Otherwise, εM > 0 can be assumed
without a loss of generality. Finally, the last term of the total
Hamiltonian (1) takes into account the coupling between the
quantum dot and the leads,

Htun =
∑
rkσ

Vrσ (d†
σ crkσ + c

†
rkσ dσ ), (3)

where the tunnel matrix elements Vrσ are assumed to be
momentum-independent. Hybridization with the leads gives
rise to a finite width of the dot level, � = ∑

rσ �σ
r , where

�σ
r = πρσ

r V 2
rσ , with ρσ

r denoting the spin-dependent density
of states of lead r . The spin-dependent coupling strength can be
written as �σ

r = (1 + σpr )�r , with �r = (�↑
r + �

↓
r )/2 and pr

denoting the spin polarization of lead r . We assume a left-right
symmetric system, �L = �R = �/2 and pL = pR = p. We
also assume a flat density of states of the leads and use its
half-width as the energy unit. Moreover, it is important to

notice that in general the magnetic moments of the leads and
the spin in the quantum dot need not be collinear. However,
in the present work we assume that they are aligned along the
same quantization axis.

B. Isolated Majorana quantum-dot system

To begin with, let us discuss the properties of a quantum-
dot–topological-wire subsystem decoupled from the normal
leads. By noting that the Hamiltonian (2) commutes with the
charge-parity operator PQ and n↑ = d

†
↑d↑, one can easily find

its eigenspectrum [15,24]. In the singly occupied dot regime,
−U � ε � �, the ground state for ε > −U/2 and εM > 0 is

|⇓〉 = −α+(x⇓)f †|0〉 + α−(x⇓)d†
↓|0〉, (4)

where |0〉 denotes the vacuum state, x⇓ = ε/2 − εM , and the
coefficients α±(x) are given by

α±(x) = 1√
2

√√√√1 ± x√
x2 + V 2

M/2
. (5)

The corresponding eigenenergy equals ε⇓ = [ε −√
(ε − 2εM )2 + 2V 2

M ]/2. On the other hand, for ε < −U/2,
the ground state becomes

|⇑〉 = −α+(x⇑)d†
↑|0〉 + α−(x⇑)d†

↑d
†
↓f †|0〉, (6)

where x⇑ = ε/2 + U/2 + εM , and the eigenenergy is given

by ε⇑ = [3ε + U −
√

(ε + U + 2εM )2 + 2V 2
M ]/2. These two

states are degenerate for ε = −U/2, otherwise the dot level
becomes split due to the coupling to the Majorana zero-energy
mode by δεM ≡ ε⇑ − ε⇓, which is explicitly given by [15]

δεM = ε + U

2
+ 1

2

√
(ε − 2εM )2 + 2V 2

M

− 1

2

√
(ε + U + 2εM )2 + 2V 2

M. (7)

This splitting is plotted in Fig. 2(a) [Fig. 2(b)] against the
quantum-dot energy level for different values of VM and εM

(εM > 0), respectively. Clearly, the dependence of δεM on ε

is monotonic, except for the case of VM = 0, when obviously
δεM = 0. In agreement with intuition, the splitting is enhanced
by the growing coupling to the topological superconductor.
Generally, δεM can be quite well approximated as directly
proportional to ε − U/2 close to the particle-hole symmetry
point. For εM = 0 and in the leading order in VM , it may be
written as

δεM ≈ 4V 2
M

U 2

(
ε + U

2

)
. (8)

Moreover, it barely depends on εM for εM � U [compare
Figs. 2(a) and 2(b)].

In the limit of infinite-length Majorana wire (εM → 0), the
(spin-split) ground state described so far becomes degenerate.
We note that the next relevant pair of states is

|⇑∗〉 = −α+(x⇑∗)d†
↑f †|0〉 + α−(x⇑∗)d†

↑d
†
↓|0〉, (9)

|⇓∗〉 = −α+(x⇓∗)|0〉 + α−(x⇓∗)d†
↓f †|0〉, (10)
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FIG. 2. Different contributions to the ground-state splitting

εtot

exch as a function of the quantum-dot energy level ε for different
couplings to the Majorana wire VM . The other parameters are
U = 5�, � = 0.015 in units of band half-width, p = 0.5, and
εM = 0 (left panel) or εM = 0.05U (right panel). The first row
presents the splitting for an isolated Majorana quantum-dot system,
δεM , the second row shows the splitting due to the interaction
with nonmagnetic leads, 
ε

Maj
exch, while the third row presents the

contribution coming from finite spin polarization of the leads. Note
that the curves in the right column overlap for small values of VM .

with x⇑∗ = ε/2 + U/2 − εM and x⇓∗ = ε/2 + εM . The cor-
responding splitting of those excited states, denoted by δε∗

M ,
differs from δεM given by Eq. (7) only in the signs of εM .
In particular, δε∗

M = δεM for εM = 0, and δε∗
M ≈ δεM for

relatively small εM .

C. The exchange field

Now we move to the discussion of the full system. In
general, the coupling of a QD to metallic leads causes renor-
malization of its energy levels. In the absence of coupling to
Majorana wire, this renormalization results in the spin-splitting
of the dot level only in the presence of ferromagnetic leads.
Such splitting is then referred to as the ferromagnet-induced
exchange field, 
εFM

exch [30,32,35,37,38]. However, in the case
of attached Majorana wire, nonmagnetic leads can also cause
spin-dependent renormalization, which can be understood as a
renormalization of the splitting, δεM . We denote it by 
ε

Maj
exch.

Consequently, the total effective splitting of the ground state
can be written in the form


εtot
exch ≡ ε̃⇑ − ε̃⇓ = δεM + 
ε

Maj
exch + 
εFM

exch, (11)

where ε̃⇑ and ε̃⇓ denote the respective renormalized spin-
resolved energy levels of the dot. The splitting caused by the
coupling to Majorana wire, renormalized by the interaction
with metallic leads, will be denoted by 
εM ≡ δεM + 
ε

Maj
exch.

For small detunings from the particle-hole symmetry point,
small VM , and T = 0, one can expect the FM-induced
exchange field to be of the same order as in the single quantum
dots coupled to ferromagnetic leads [30],


εFM
exch ≈ −8p�

πU

(
ε + U

2

)
, (12)

up to terms linear in (ε + U/2). On the other hand, neglecting

ε

Maj
exch, the splitting caused by the coupling to the Majorana

wire can be approximated by Eq. (8). Thus, the two splittings
are expected to possess different signs. In particular, they can
be tuned to compensate for each other.

To get an intuitive understanding of the transport behavior
and the interplay between different contributions to the ex-
change field, we estimate the spin-dependent renormalization
of the quantum-dot levels by treating HTun as a perturbation.
In the second order with respect to Vrσ (first order in �σ ), the
correction to the energy Eχ of the HDM eigenstate |χ〉 can be
written as [41]

δEχ =
∑
χ ′σ

�

π
(1 + σp)[�(Eχ ′ − Eχ )|〈χ ′|dσ |χ〉|2

+�(Eχ − Eχ ′)|〈χ ′|d†
σ |χ〉|2], (13)

where the summation over χ ′ runs through all the HDM

eigenstates except for |χ〉. The function �(ε) is given by
�(ε) = ∫

dωf (ω)/(ω − ε), which after using a Lorentzian
cutoff can be expressed in terms of the digamma function
�(ε) as

�(ε) = Re

[
�

(
1

2
+ i

ε

2πT

)]
− ln

(
W

2πT

)
. (14)

The second term in Eq. (14) comes from the Lorentzian
regularization of the finite-temperature integral. In practice,
the contributions from such terms cancel out, so that the final
expression does not depend on the cutoff parameter W for
W � U . In the numerical calculations, we used W = 5U .

The results concerning the nonmagnetic contribution to the
exchange field for εM = 0 based on Eq. (13) are presented in
Fig. 2(c). Clearly, 
ε

Maj
exch has the same sign and character as

δεM presented in Fig. 2(a). On the contrary, for εM = 0.05U

the signs of δεM and 
ε
Maj
exch may become opposite around the

symmetry point [compare Figs. 2(b) and 2(d)]. More precisely,

ε

Maj
exch as a function of ε exhibits sharp peaks (divergences

at T → 0), which occur at the degeneracy points between
the states |⇓〉 and |⇑∗〉 (for ε > −U/2) or the states |⇑〉 and
|⇓∗〉 (for ε > −U/2). For εM = 0 these peaks are not present,
because for all values of VM the degeneracy point corresponds
to ε = −U/2, where 
ε

Maj
exch = 0 due to symmetry.

Importantly, the perturbative results near the degeneracy
points need to be treated with particular care since to describe
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the renormalization properly one would need to include higher-
order terms. By presenting it, we only intend to demonstrate the
mechanism that can lead to the sign change of 
ε

Maj
exch for certain

ε �= −U/2. This will be clearly reflected in the transport
properties obtained with nonperturbative NRG calculations
presented and discussed in the next section. Finally, we would
also like to note a strong dependence of the magnitude of

ε

Maj
exch on VM , both for vanishing and finite εM .
The contribution to the exchange field coming from the spin

polarization of the leads for different values of VM is plotted in
Figs. 2(e) and 2(f) for εM = 0 and 0.05U , respectively. As in
the case of 
ε

Maj
exch, for εM = 0, 
εFM

exch behaves monotonically
as a function of ε. It has, however, the opposite sign. One
can also see that 
εFM

exch depends only relatively weakly on
VM , so the latter can be used for tuning the system toward the
compensation 
εM + 
εFM

exch = 0. A similar situation holds
for finite εM . The peaks corresponding to the degeneracy points
occur, but the sign of 
εFM

exch near the symmetry point remains
unchanged [see Fig. 2(f)]. Thus, in this case compensation of

εtot

exch by fine-tuning the parameters should be possible.
We note that a more intuitive understanding of the fact

that the two splittings have opposite sign can be obtained by
inspecting the coupling strengths to spin-up and spin-down
dot levels. In the case of a QD-TS system, only the spin-down
level is coupled to the topological superconductor. On the other
hand, although both dot levels are coupled to ferromagnetic
leads, the spin-up coupling is determined by the majority-spin
subband and is thus larger than the spin-down coupling. This
difference in coupling strengths results in opposite signs of
the two induced spin splittings, and in fact it gives rise to their
competing nature.

III. NUMERICAL RESULTS AND DISCUSSION

To grasp all the subtle effects resulting from the
many-body electronic correlations in the linear-response
regime, we use the numerical renormalization group (NRG)
method [40,42,43]. In the NRG, the leads are modeled by
a semi-infinite chain with exponentially decreasing hopping
amplitudes, the zeroth site of which couples to the quantum
dot-Majorana wire subsystem. Such a Hamiltonian can be
solved in an iterative fashion by exploiting the Z2 and
U (1) symmetries. With the aid of the NRG, we determine
the dot-level spectral function Aσ (ω) = −(1/π )Im〈〈dσ |d†

σ 〉〉Rω ,
where 〈〈dσ |d†

σ 〉〉Rω is the Fourier transform of the corresponding
retarded Green’s function. The relevant correlation functions
are calculated using the complete many-body eigenbasis of
the NRG Hamiltonian [43–45]. Assuming that the topological
superconductor is floating and the voltage drop is applied
symmetrically between the ferromagnets, one can determine
the linear-response conductance between the left and right
leads from the following formula [46]:

G = e2

h
π�

∫
dω

(
− ∂f

∂ω

)
[(1 + p)A↑(ω) + (1 − p)A↓(ω)],

where f denotes the Fermi-Dirac distribution function.
As follows from the discussion in the previous section, the

spin-resolved transport properties will be determined by the
interplay between the Kondo temperature TK , the exchange

field 
εFM
exch, and the splitting 
εM caused by the coupling

to Majorana wire, �M = πρQDV 2
M , where ρQD is the density

of states of the dot. In the Kondo regime, the latter can be
estimated from �M ≈ 2V 2

M/� [15]. On the other hand, the
Kondo temperature in the case of VM = 0 and p = 0 for
assumed parameters (U = 0.2 and � = 0.015 in units of band
half-width [42]) and ε = −U/2 is approximately equal to [47]
T 0

K/U ≈ 0.001.
In the following, we first study the spectral properties of

the system and then analyze the conductance, together with
its spin polarization, in the full parameter space for arbitrary
temperatures and couplings to the topological superconduc-
tor. For comparison, we present and discuss the transport
characteristics in the case of both nonmagnetic (NM) and
ferromagnetic (FM) leads.

A. Spectral properties

The zero-temperature normalized spectral function, A ≡∑
σ π�σAσ (ω), in the case of FM leads with spin polarization

p = 0.5 is shown in Fig. 3 for different values of the dot-level
position ε and coupling to the topological superconductor VM .
The left column corresponds to the case of the infinitely long
Majorana wire (εM = 0), while the right column shows the
results for a finite-length nanowire, assuming εM/U = 0.05.
To resolve different energy scales playing an important role in
the transport properties, the spectral function is plotted on a
logarithmic scale.

Let us start the discussion with the case of εM = 0. When
the system is tuned to the particle-hole symmetry point,
ε = −U/2, both 
εFM

exch and 
εM are then equal to zero. In
this situation, the system behaves as if coupled to nonmagnetic
leads with slightly modified Kondo temperature [15,20]. When
VM = 0, the system exhibits the Kondo effect with AFM = 2
for ω → 0. On the other hand, for finite VM , the normalized
spectral function in the spin-down channel for ω → 0 equals
π�↓A↓(0) = 1/2, as a consequence of the Kondo effect and
the destructive interference caused by the interaction with
the Majorana zero-energy mode [12,15]. For the spin-up
channel, which is not directly coupled to the topological
superconductor, one simply has π�↑A↑(0) = 1 due to the
Kondo effect. As a consequence, one then finds AFM = 3/2
for ω → 0 [see Fig. 3(a)]. The normalized spectral function
exhibits a plateau of width proportional to TK as long as �M �
TK , otherwise AFM exhibits a local maximum with AFM → 2
for �M � |ω| � TK ; see, e.g., the curve for VM/U = 0.0005
in Fig. 3(a). When �M � TK , a further increase of VM leads
in turn to an enhancement of the Kondo temperature, which
is clearly visible as a broadening of the Kondo peak in AFM

(see Fig. 3).
Out of the particle-hole symmetry point, the behavior of

the spectral function is definitely more complex. First of all,
we recall that there are now more energy scales determining
the transport properties, because both the exchange field and
the splitting caused by the coupling to Majorana wire are
finite once ε �= −U/2. Moreover, in the considered parameter
range, 
εFM

exch is typically much larger (in terms of the absolute
value) than 
εM , due to � > �M . This situation is presented
in Fig. 3(c), which shows the spectral function calculated for
ε = −0.49U . For VM = 0, AFM(0) is suppressed due to the
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FIG. 3. The zero-temperature normalized spectral function, A ≡∑
σ π�σ Aσ (ω), calculated for different couplings to Majorana wire

VM , as indicated. The left (right) column corresponds to the case of
εM = 0 (εM/U = 0.05), while the consecutive rows show the results
for ε = −0.5U , ε = −0.49U , ε = −0.48U , and ε = −0.33U , re-
spectively. The vertical arrows indicate the magnitude of the exchange
field. The curves for finite εM start to overlap when VM/U � 0.005.
The other parameters are the same as in Fig. 2.

spin-splitting of the dot level by 
εFM
exch. Note that in this case

|
εFM
exch| ≈ T 0

K ; see the vertical arrow in Fig. 3(c).
When VM increases, a small peak (dip) occurs in the

spectral function for ω ≈ �M (ω ≈ −�M ). Moreover, once
�M � |
εFM

exch|, a plateau in AFM develops with AFM = 3/2
[see Fig. 3(c)]. This results from the fact that increasing
VM leads to an enhancement of TK and, additionally, to
an increase of 
εM . Consequently, when TK � |
εtot

exch|, the
exchange-field-generated splitting does not play an important
role, and the spectral function behaves similarly to the case of
ε = −U/2 for �M � TK .

For larger detunings, the above-described effects become
even more pronounced. The suppression of AFM at ω = 0
due to the exchange field gets enhanced. Because of that,
larger coupling to Majorana wire is necessary to restore the
Kondo peak of height AFM = 3/2. Furthermore, it can be
seen for ε/U = −0.33 that the dependence of the spectral
function for ω = 0 is not monotonic when changing VM .
Increasing the coupling to the topological superconductor
leads to an enhancement of AFM to the value of 3/2 [see

the curve for VM/U = 0.1 in Fig. 3(g)], however larger values
of VM bring about the suppression of the spectral function
again. This is associated with an increase of 
εM , such that
|
εM | > |
εFM

exch|.
When the length of the topological superconductor wire

is smaller than the corresponding superconducting phase
coherence length, a considerable overlap between the two
Majorana zero-energy modes located at the ends of the wire is
present [9]. The normalized spectral function of the dot level
calculated for different VM and ε in the case of εM/U = 0.05
is presented in the right column of Fig. 3. As can be seen for
ε = −U/2, only relatively large coupling to the topological
superconductor affects the behavior of the spectral function,
and its influence is rather qualitative, as it only increases TK

[see Fig. 3(b)]. This is because the splitting of Majorana zero-
energy modes, described by γ1 and γ2 operators, blocks the
interference effects, and the Kondo effect is not influenced by
the coupling �M [15]. Consequently, in the case of ε = −U/2
the Kondo peak is present for any value of VM [see Fig. 3(b)].
When the dot level is detuned from the particle-hole symmetry,
the situation changes since the spectral function for VM = 0 is
already suppressed by the exchange field. Now, with increasing
VM , TK increases and the Kondo effect can be restored for large
VM such that TK � |
εtot

exch|; see the case of ε/U = −0.49
shown in Fig. 3(d). This restoration happens only partially
for larger detunings since then the exchange field is much
larger and it is not possible to fully reinstate the Kondo peak
[see Figs. 3(f) and 3(h)].

The interplay between the respective energy scales can be
nicely revealed by studying the density plots of the normalized
spectral function as a function of energy ω and dot-level posi-
tion calculated for different values of VM . The corresponding
plots in the case of εM = 0 are presented in Fig. 4. The right
column shows the spectral function for ferromagnetic contacts,
AFM, while the left column displays the spectral function
for nonmagnetic leads, ANM, for comparison. In the case of
nonmagnetic leads, for VM = 0, the spectral function exhibits
the Kondo resonance in the singly occupied regime, −U �
ε � �, with ANM = 2 at the Fermi level [see Fig. 4(a)]. When
the coupling to the topological superconductor increases, the
maximum value of ANM drops to 3/2 in the Kondo regime
and 1/2 in the even occupation dot regime. This is due to
the fact that the interference with the Majorana zero-energy
mode results in π�A↓(0) = 1/2 irrespective of ε, while A↑(0)
shows the Kondo peak in the singly occupied dot regime
and is suppressed out of the Kondo regime, since then only
elastic cotunneling processes are possible. Note also that with
increasing VM , the width of the Kondo plateau decreases; see,
e.g., the case of VM/U = 0.25 in Fig. 4(i).

In the case of ferromagnetic leads, the splitting of the
Kondo resonance is clearly visible [see Fig. 4(b)]. When
increasing VM , the characteristic x-like split-Kondo-resonance
feature becomes modified. The coupling to the Majorana mode
increases the value of the spin-down spectral function at
the Fermi level to 1/(2π�↓), while the spin-up component
is suppressed by the exchange field. As a result, a narrow
resonance at ω = 0 in the whole range of ε develops with
increasing VM [see Figs. 4(d) and 4(f)]. In addition, finite VM

also modifies the side peaks of the split Kondo resonance.
This is associated with (i) the coupling �M , which leads to
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FIG. 4. The energy and dot-level position dependence of the zero-
temperature normalized spectral function in the case of NM,ANM (left
column), and FM, AFM (right column), leads calculated for different
strengths of coupling to Majorana wire, as indicated. The parameters
are the same as in Fig. 3. This figure corresponds to the case of infinite
Majorana wire, εM = 0. The dashed lines indicate the splitting of the
ground state, 
εtot

exch, estimated according to Eq. (11).

an enhancement of TK , and (ii) 
εM , which tends to decrease
the splitting caused by the exchange field (recall that these
two splittings have different signs). For VM/U � 0.1, the
exchange-field-induced splitting is already suppressed and the
spectral function displays a pronounced Kondo resonance with
AFM = 3/2 [see Figs. 4(h) and 4(j)].

The density plots for the normalized spectral function in
the case when the overlap between the two Majorana fermions
is finite are shown in Fig. 5. As can be seen, in the case of
both nonmagnetic and ferromagnetic leads, the coupling to
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FIG. 5. The same as in Fig. 4 calculated in the case of εM/U =
0.05. The dashed lines indicate the splitting of the ground state, as
described by Eq. (11).

the topological superconductor starts modifying the behavior
of the spectral function for relatively large couplings, VM/U �
0.05. In the case of nonmagnetic leads, a pronounced splitting
of the Kondo resonance develops. This is associated with 
εM ,
which now can surpass the Kondo temperature. Note that at the
particle-hole symmetry point, ANM = 2 for all values of VM

considered since at this point 
εM = 0; see the left column of
Fig. 5. In the case of ferromagnetic leads, one can notice the
interplay of the splittings caused by 
εFM

exch and 
εM ; see the
right column of Fig. 5. When the coupling to the topological
superconductor increases, the splitting due to 
εFM

exch starts
decreasing until it becomes roughly compensated for VM/U =
0.25. In turn, a further increase of VM generates the splitting
again, due to |
εM | > |
εFM

exch| [see Fig. 5(j)].
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FIG. 6. The zero-temperature linear conductance (first row) and
the corresponding conductance spin polarization (second row) as
a function of the dot-level position calculated in the case of
nonmagnetic leads (p = 0) for different couplings to topological
superconductor VM . The left (right) column corresponds to the case
of εM = 0 (εM/U = 0.05). Note that the curves for finite εM start to
overlap when VM/U � 0.01. The other parameters are the same as
in Fig. 3.

B. Linear conductance and spin polarization

The different behavior of the spectral function is clearly
revealed in the linear-response conductance, the behavior of
which is presented and discussed in this section. First, we
analyze the conductance as a function of dot-level position
for different couplings VM and different overlaps between
Majorana zero-energy modes εM , and then we study the
temperature dependence of G. In addition, we also discuss
the behavior of the spin polarization of conductance P , which
is defined as P = (G↑ − G↓)/(G↑ + G↓), where Gσ is the
linear conductance in spin channel σ .

1. Dot-level position dependence

The dot-level position dependence of the linear conductance
GNM in the case of nonmagnetic leads is shown in the first row
of Fig. 6, while the second row presents the corresponding spin
polarization PNM. The left (right) column presents the case of
εM = 0 (εM/U = 0.05). In the Kondo regime, the interference
effects with the Majorana zero-energy mode in the case of
εM = 0 immediately lead to a decrease of GNM from 2e2/h

to 3e2/2h. On the other hand, out of the Kondo regime, the
conductance reaches a value of e2/2h. The effect of increasing
VM is seen as a gradual narrowing of the Kondo plateau, until
a single peak remains for large values of VM [see Fig. 6(a)].
The conductance spin polarization in the Kondo regime takes
a constant value of PNM = 1/3 because G↑ = 2G↓, while
in the even-occupation dot regime it reaches PNM = −1 due
to G↓ � G↑ [see Fig. 6(b)]. This is direct evidence that
transport results mainly from the spin-down channel, in which
G↓ = e2/2h.
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FIG. 7. The same as in Fig. 6 calculated in the case of ferromag-
netic leads with p = 0.5. For εM/U = 0.05, the curves overlap when
VM/U � 0.01.

In the case of finite εM , the behavior of conductance is
completely different. In fact, it resembles that of quantum
dots with ferromagnetic contacts [38]. This is not surprising
because the coupling to Majorana wire results in spin-splitting
of the dot level, which grows upon increasing the detuning
from the particle-hole symmetry point, while for ε = −U/2,

εM = 0. This can be clearly seen in Fig. 6(c): when VM

grows, the conductance develops two local minima for ε

around ε = −U/2, while at the particle-hole symmetry point
GNM = 2e2/h. Note also that due to large εM , the conductance
in the even dot occupation regime is also suppressed. The be-
havior of the conductance is reflected in the spin polarization,
which is mainly negative except for the values of ε around
ε = −U/2 for large VM [see Fig. 6(d)]. Moreover, now the spin
polarization is determined only by finite spin splitting 
εM ,
and because of that, PNM = 0 at the particle-hole symmetry
point since G↑ = G↓ = e2/h.

The linear conductance and spin polarization as a function
of ε in the case of ferromagnetic leads are shown in Fig. 7. Let
us first discuss the case of εM = 0. In the absence of coupling to
the topological superconductor, GFM is generally suppressed
except for resonances and ε = −U/2. At the particle-hole
symmetry point, 
εtot

exch = 0 and GFM = 2e2/h due to the
Kondo effect. When the coupling to Majorana wire becomes
finite, a general observation is that GFM becomes enhanced
by a factor of e2/2h (this is the constant contribution coming
from the spin-down channel), apart from ε = −U/2, where
the conductance is suppressed by the same amount. For larger
couplings to the topological superconductor, the exchange-
field-induced suppression of GFM becomes diminished and the
conductance eventually exhibits a plateau for VM/U ≈ 0.1,
which turns into a peak for larger VM [see Fig. 7(a)]. The spin
polarization of the conductance also changes drastically when
the coupling to Majorana wire is finite. In the case of VM = 0,
PFM = 0 for ε = −U/2 and then grows when detuning the
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dot level to reach the value of PFM = 2p/(1 + p2) in the even
dot occupation regime [38]. When VM > 0, PFM equals −1
out of the Kondo regime and reaches 1/3 in the Kondo regime
for such values of VM that the Kondo plateau is restored.
On the other hand, for smaller couplings to Majorana wire,
PFM first drops and becomes negative when detuning the level
from the particle-hole symmetry point to reach PFM = 1/3 at
resonance, and then decreases again to −1 for ε � −U or
ε � � [see Fig. 7(b)].

The dot-level dependence of GFM in the case of finite εM is
presented in Fig. 7(c). For low values of VM , the ε dependence
of conductance is the same as in the absence of the topological
superconductor. This dependence starts changing when
VM/U � 0.05. With increasing VM , the conductance first
becomes enhanced for VM/U = 0.25, but then it drops again
for larger VM [see Fig. 7(c)]. As was already discussed in the
previous section, this is associated with the interplay of the two
splittings. In fact, by fine-tuning VM , one could compensate
for the ferromagnetic-lead-induced splitting and restore the
Kondo plateau completely. The associated dependence of the
spin polarization is shown in Fig. 7(d). It can be seen that
PFM is generally positive except for resonances and large
values of VM , where PFM can change sign. This indicates
that the spin-up (majority) channel is giving the dominant
contribution to the conductance. Note that it is just opposite
to the case of εM = 0 [cf. Figs. 6(d) and 7(d)].

Because in reality the length of the topological supercon-
ductor wire is always finite, which results in a finite overlap εM

between the two Majorana zero-energy modes, we now study
the dependence of the conductance and the spin polarization on
both ε and εM . Figure 8 displays the ε and εM dependence of the
conductance for different values of VM , where the left (right)
column corresponds to the nonmagnetic (ferromagnetic) lead
case. When the coupling to Majorana wire is relatively weak,
a finite overlap between the two Majorana fermions blocks
the interference effects, and the half-fermionic nature of the
Majorana mode, leading to a fractional value of conductance, is
not revealed. In this case, the dot-level dependence of the linear
conductance resembles that in the case of VM = 0. For larger
values of the coupling VM , the conductance starts depending
on εM (see Fig. 8). One can observe that for small values
of the overlap εM , the conductance in the nonmagnetic case
reveals the features discussed earlier. GNM is suppressed in
the Kondo regime due to the spin-splitting 
εM , apart from
ε = −U/2, where GNM exhibits a peak. On the other hand,
in the even occupation dot regime, GNM = e2/2h. When the
value of εM increases, these features start gradually changing:
the Kondo plateau develops in the Coulomb blockade regime
with GNM = 2e2/h, while the conductance in the even dot
occupation regime becomes suppressed for large εM . Note
that if the coupling to topological wire is sufficiently strong,
the behavior of GNM depends only weakly on εM . The
suppression of the Kondo resonance except for ε = −U/2 is
still present, while the main change can be seen for the empty
and doubly occupied dot regimes, where the universal value
of GNM = e2/2h is no longer retained and GNM decreases
with εM .

When the leads are ferromagnetic, the conductance out
of the Kondo regime is generally suppressed for all values
of εM and VM considered; see the right column of Fig. 8.

FIG. 8. The linear conductance as a function of the dot-level
position ε and the overlap between the two Majorana fermions εM

calculated for different couplings VM , as indicated. The left (right)
column corresponds to the nonmagnetic (ferromagnetic) lead case.
The parameters are the same as in Fig. 3.

Moreover, the suppression of GFM in the Kondo regime due to
the spin splitting caused by the ferromagnetic-contact-induced
exchange field and the splitting induced by the coupling to
the topological superconductor also takes place. In fact, the
interplay of those splittings and their competing nature can lead
to the restoration of the Kondo plateau for some parameters.
This can be clearly seen in Fig. 8(h). We note that the Kondo
effect for ε = −U/2 is present for all values of εM and VM ,
since then 
εFM

exch = 
εM = 0.
The ε and εM dependence of the associated spin polarization

in the case of both nonmagnetic and ferromagnetic leads is
shown in Fig. 9. Let us first discuss P in the nonmagnetic
case. One can see that with increasing VM , the absolute value
of the spin polarization increases. This is quite natural since
for larger couplings the spin splitting of the dot level triggered
by the presence of Majorana modes becomes enhanced,
consequently |PNM| increases; see the left column of Fig. 9.
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FIG. 9. The spin polarization of the conductance in the case
of nonmagnetic (PNM, left column) and ferromagnetic (PFM, right
column) leads as a function of the dot-level position and the overlap
between the two Majorana modes calculated for different couplings
VM . The parameters are the same as in Fig. 3.

For VM/U � 0.1, an extra feature with positive PNM develops
in the Coulomb blockade regime. This happens when the
conductance suppression due to the spin-splitting 
εM is most
effective [see Figs. 9(g) and 9(i)]. On the other hand, in the
case of ferromagnetic leads, the spin polarization is generally
positive when the Majorana-related effects are relatively weak.
Their presence is revealed, among others, as a gradual sign
change of PFM. This indicates that the spin-down channel
becomes dominant due to the Majorana-induced interference
effects; see the right column of Fig. 9.

2. Temperature dependence

We turn now to an analysis of the temperature dependence
of the linear conductance in all the considered cases. Figure 10
presents GNM as a function of T calculated for different VM

and two selected values of εM and ε. Consider now the case
of εM = 0. The dependence GNM(T ) for VM = 0 presents the
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FIG. 10. The temperature dependence of the linear conductance
GNM in the case of nonmagnetic leads calculated for different
couplings to the Majorana mode VM , as indicated. The first (second)
row shows the results for ε = −0.5U (ε = −0.33U ), while the first
(second) column presents the data for εM = 0 (εM/U = 0.05). Note
that in the case of finite εM , the curves overlap when VM/U � 0.01.
The other parameters are the same as in Fig. 3.

usual conductance curve with GNM approaching 2e2/h for
T � TK , with the maximum value slightly lower for ε out
of the particle-hole symmetry point. When the coupling to
Majorana wire becomes finite, the zero-temperature value of
conductance drops to a fractional value of 3e2/2h. If �M �
TK , then GNM exhibits a local maximum for �M � T � TK

[see Figs. 10(a) and 10(c)]. When, however, �M � TK , the
conductance equals 3e2/2h for the particle-hole symmetry
point and starts decreasing out of this point. This decrease
is a direct indication of the splitting 
εM . We also note that
upon raising VM , the Kondo temperature becomes enhanced.

When the overlap between the two Majorana zero-energy
modes is finite, the energy of the Majorana states becomes
split. This results in the suppression of interference effects
between the dot and the topological superconductor, such that
the dot exhibits the usual Kondo effect with GNM = 2e2/h.
Only when the coupling VM becomes sufficiently strong can
one observe the influence of this coupling on the transport
behavior. In the case of ε = −U/2, it results in an enhancement
of TK [see Fig. 10(b)], while for ε/U = −0.33 the maximum
value of conductance becomes suppressed with VM due to the
development of 
εM [see Fig. 10(d)].

The temperature dependence in the case of ferromagnetic
leads is presented in Fig. 11, with the left (right) column
corresponding to the infinite (finite) Majorana wire case.
When the dot is tuned to the particle-hole symmetry point,
the dependence of GFM on temperature is qualitatively the
same as in the nonmagnetic case, irrespective of εM . This is
because at this point the exchange field does not play any
role and the system behaves as if coupled to nonmagnetic
leads with slightly modified TK [see Figs. 11(a) and 11(b)].
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FIG. 11. The temperature dependence of the linear conductance
GFM in the case of ferromagnetic leads calculated for different
couplings to the Majorana mode VM , as indicated. The left (right)
column corresponds to the case of εM = 0 (εM/U = 0.05), while
the consecutive rows show the data for ε = −0.5U , −0.48U , and
−0.33U , respectively. Note that in the case of finite εM , the curves
overlap when VM/U � 0.01. The other parameters are the same as
in Fig. 3.

For small detunings from the particle-hole symmetry point
[see the second row of Fig. 11, which shows GFM(T ) for
ε = −0.48U ], the exchange field is already larger than TK

and the Kondo effect is suppressed. Enhancing the coupling to
the topological superconductor gradually restores the Kondo
effect, and the conductance becomes enhanced to 3e2/2h in
the case of εM = 0 and 2e2/h for finite εM . When the detuning

from ε = −U/2 is increased, the conductance suppression at
low temperatures is even larger. It can also be clearly seen that
when the coupling to Majorana wire grows, the conductance
becomes enhanced for certain values of VM , but then it drops
again [see Figs. 11(e) and 11(f)]. This is due to the interplay
between the two splittings, as discussed in the previous section.

IV. SUMMARY

In this paper, we have analyzed the spin-resolved transport
properties of a quantum dot coupled to both nonmagnetic and
ferromagnetic leads and additionally attached to topological
superconductor wire hosting Majorana zero-energy modes at
its ends. The analysis was performed in the linear-response
regime with the aid of the numerical renormalization group
method. We determined the behavior of the dot-level spectral
function, the conductance and its spin polarization on the
position of the dot level, the temperature, and the strength
of coupling to Majorana wire. Our results revealed that the
transport behavior in the case of ferromagnetic leads results
from the interplay between the Kondo correlations, exchange-
field-induced splitting, and the coupling to the topological
superconductor with associated splitting of the dot level. We
demonstrated that these two splittings compete, and for some
parameters they can counterbalance each other, restoring the
Kondo effect. These distinct features of transport properties
may serve as another indication of the presence of Majorana
zero-energy modes in considered nanoscale devices.

Finally, we note that although we considered a three-
terminal device, at equilibrium our system can be mapped
to a two-terminal setup, with one ferromagnetic lead having
an effective spin polarization. In this regard, the results
presented in this paper may be applicable to two-terminal
hybrid Majorana devices, the spectral properties of which
could be probed with a weakly attached probe, such as a tip of
a scanning tunneling microscope.
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[33] R. Świrkowicz, M. Wilczyński, M. Wawrzyniak, and J. Barnaś,
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[36] I. Weymann and J. Barnaś, Phys. Rev. B 81, 035331 (2010);
I. Weymann and L. Borda, ibid. 81, 115445 (2010).

[37] M. Gaass, A. K. Hüttel, K. Kang, I. Weymann, J. von Delft, and
C. Strunk, Phys. Rev. Lett. 107, 176808 (2011).

[38] I. Weymann, Phys. Rev. B 83, 113306 (2011).
[39] M. Misiorny, I. Weymann, and J. Barnaś, Phys. Rev. Lett. 106,
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