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Manipulating topological inner-edge states in hybrid silicene nanoribbons
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Edge states in quantum spin Hall insulators have important applications in low-dissipation devices. However,
the breaking of the valley degree of freedom for finite-sized nanoribbons violates the formation of gapless valley
edge states. In this work, we investigate the topological and transport properties in a hybrid silicene nanoribbon,
two halves of which are in different topological phases modulated by external perpendicular electric fields and
antiferromagnetic exchange fields independently. By observing the inner-edge states, different band insulators,
especially the quantum spin and valley Hall insulators, can be distinguished. Special inner-edge states, such as
single valley or spin-valley channels, cause the valley thermal rectification effect, which can be used to design
topological thermal diodes. Furthermore, we calculate the thermoelectric performance of inner-edge states with a
dual scattering time model and find an enhancement compared with the original topological edge states at a higher
temperature. These spin- and valley-resolved inner-edge states may facilitate more applications in topological
valley electronics and thermoelectronics.
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I. INTRODUCTION

As a member of the same group as carbon, just like
graphene, silicon was also fabricated successfully into one-
atom-thick sheet on some metal substrates [1–3]. It is the
so-called silicene, which attracts lots of attention for its band
topology and unique transport properties [4–11]. Silicene has
more merits than graphene; for example, it has a relatively large
spin-orbit coupling [6] and better compatibility with current
silicon-based technology. It has been found that under the
modulation of different external fields, such as electric [4],
magnetic [7], and light [8] fields, silicene undergoes various
topological phases. In Ref. [12], Ezawa has summarized a
table which lists all the possible topological phases and the
corresponding Chern numbers.

In conventional semiconductors, the two degrees of free-
dom, spin and charge, play prominent roles in fundamental
physics and real applications. With the advent of graphene
which has two nonequivalent sublattices, another intrinsic
degree of freedom, i.e., valley, makes valleytronics a new
subject [13]. As more two-dimensional (2D) materials emerge,
such as silicene and transition metal dichalcogenides [14],
valleytronics has developed rapidly. Valley is a good degree of
freedom for a large sheet of material, where the valley Chern
number and spin-valley Chern number can be well described.

It can be understood that helical edge states in silicene
nanoribbons have potential applications in low-loss devices.
However, the valley degree of freedom is destroyed due to size
limitation. Hence, it is difficult to characterize the quantum
valley Hall insulator and quantum spin-valley Hall insulator
by observing the topological edge states. Especially, for
the quantum spin-valley Hall insulator (CK ′

↑ ,CK ′
↓ ,CK

↑ ,CK
↓ ) =

±(−1/2,1/2,1/2,−1/2,), it cannot even be distinguished by
the commonly used Hall-bar equipment [15,16], because each
valley (CK(K ′) = C

K(K ′)
↑ + C

K(K ′)
↓ ) and spin (C↑(↓) = CK

↑(↓) +
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CK ′
↑(↓)) Chern number is zero. How to realize the topological

valley edge states and manipulate them to achieve good perfor-
mance in device applications is an important and interesting is-
sue. It has been indicated that by constructing a hybrid silicene
nanoribbon with different topological phases, the topological
valley edge states can appear on the inner-edge [12].

In this work, we investigate a hybrid silicene nanoribbon,
composed of two adjacent topological insulators determined
by different electric fields and antiferromagnetic exchange
fields. We propose to distinguish the band insulators with
nontrivial spin and valley Chern numbers by using a convenient
method to observe their inner-edge states. We obtain a spin-
and valley-dependent single channel by tuning external fields
and utilize it to reach a topological thermal rectification
diode. Furthermore, we calculate the thermal power and
figure of merit of spin- and valley-dependent topological
edge states and show an enhancement in the thermoelectric
performance at a higher temperature, compared with the con-
tribution from the original helical topological edge of natural
silicene.

The rest of the paper is organized as follows. In Sec. II,
we present the model and formalism with emphasizing the
Chern numbers to describe corresponding topological phases.
In Sec. III, an approach is proposed for characterizing the band
insulators with spin- and valley-resolved inner-edge states. A
thermal rectification diode based on the topological inner-edge
states is designed and described in Sec. IV. In Sec. V, we
calculate the thermoelectric performance of inner-edge states
and compare the results with the original helical edge states
of quantum spin Hall insulators. Finally, the conclusion of this
work is given in Sec. VI.

II. MODEL AND FORMALISM

A hybrid silicene nanoribbon is shown in Fig. 1. The
upper and bottom half-nanoribbons are modulated by different
perpendicular electric fields and antiferromagnetic exchange
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FIG. 1. Schematic of a hybrid silicene nanoribbon. Two different
perpendicular electric fields and antiferromagnetic exchange fields
are applied in the upper and lower half-nanoribbons. In the side view,
the buckled distance of A and B sublattices is 2l = 0.46 Å.

fields. The exchange field can arise by proximity coupling
to a honeycomb-lattice antiferromagnet [17,18], which acts
on two sublattices separately. In the tight-binding model, the
Hamiltonian of the system is described by [4,8]

H = −t
∑
〈i,j〉α

c
†
iαcjα + i

λSO

3
√

3

∑
〈〈i,j〉〉αβ

νij c
†
iαsz

αβcjβ + Hf(y),

(1)

where ciα (c†iα) annihilates (creates) an electron with spin α

at site i; the sum is taken over all the nearest-neighboring
〈i,j 〉 and next-nearest-neighboring 〈〈i,j 〉〉 sites; sz

αβ is the z

component Pauli matrix of spin and α and β are the spin
indices; λso = 3.9 meV is the spin-orbit coupling strength;
when the next-nearest-neighboring hopping is clockwise,
νij = −1, otherwise, νij = 1; the term Hf(y) represents the
Hamiltonian of the external field contributions, where the
fields are spatially different in the upper and bottom half-
nanoribbons along the y direction.

We denote the electric field as Ez1 (Ez2) and antiferromag-
netic exchange field M1 (M2) in the upper (lower) half-ribbon.
The term Hf(y) can be written in a uniform form,

Hf(y) = − [�(y)lEz1 + �(−y)lEz2]
∑
iα

μic
†
iαciα

+ [�(y)M1 + �(−y)M2]
∑
iαβ

μic
†
iαsz

αβciβ, (2)

where μi = 1 (−1) corresponds to the A (B) sublattice, and
�(y) is the Heaviside function.

In the low-energy approximation, the Hamiltonian of the
hybrid nanoribbon can be written in momentum space as

H = h̄vF(ησxkx + σyky) + ησzszλso + Fextσz, (3)

where η = ±1 are for K and K ′ valleys, sz = ±1 are the spin
indexes, and

Fext = −[�(y)lEz1 + �(−y)lEz2]

+ [�(y)M1 + �(−y)M2]sz. (4)
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FIG. 2. Phase diagram of a silicene nanoribbon with homoge-
neous perpendicular electric field and antiferromagnetic exchange
field. Each region is labeled by a set of spin- and valley-dependent
Chern numbers (CK ′

↑ ,CK ′
↓ ,CK

↑ ,CK
↓ ). The topological phases are

spin quantum anomalous Hall (SQAH), quantum spin-valley Hall
(QSVH), quantum valley Hall (QVH), and quantum spin Hall (QSH)
insulators, respectively.

By diagonalizing Eq. (3), the band structure of the system can
be obtained as

Eηsz
= ±

√
(h̄vFk)2 + (ηszλso + Fext)2. (5)

For each half of the nanoribbon, the phase transition is
determined by the gap of the band structure. The gap is given
as

	1(2) = 2(ηszλso − lEz1(2) + szM1(2)). (6)

Because the Rashba spin-orbit interactions are small and
neglected [8], the spin index sz is a good quantum number,
then Chern number can be used to characterize the topological
quantum properties. It is explicitly written as

C1(2)ηsz
= η

2
sgn(ηszλso − lEz1(2) + szM1(2)). (7)

The charge, spin, valley, and spin-valley Chern numbers
are defined as C = ∑

η,sz
Cη,sz

, Cs = 1
2

∑
η (Cη,+1 − Cη,+1),

Cv = ∑
sz

(C+1,sz
− C−1,sz

), and Csv = 1
2 (C+1,+1 − C−1,+1 −

C−1,+1 + C−1,−1), respectively. In order to understand the
results below more clearly, we review the phase diagram of
a nanoribbon with perpendicular electric field and antifer-
romagnetic exchange field [18]. In Fig. 2, each topological
phase is indexed by a set of spin- and valley-dependent
topological Chern numbers (CK ′

↑ ,CK ′
↓ ,CK

↑ ,CK
↓ ). The energies

at the intersections of phase boundaries equal ±λSO.
As has been known, the integrity of valley is violated

at the edge of a finite-sized nanoribbon, there does not
exist a topological valley edge state. However, for a hybrid
nanoribbon, there exists an interface between two different
topological insulator phases, and the valley degree of freedom
at the interface is maintained. The topological edge states at
the interface are called inner-edge states [12,19]. Due to the
counteraction of Hall currents from two topological insulators,
the Chern number of an inner-edge state is equal to the
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TABLE I. Charge, spin, valley, and spin-valley Chern numbers
of several band insulators.

C Cs Cv Csv

QVH1 0 0 2 0
QVH2 0 0 −2 0
QSVH1 0 0 0 1
QSVH2 0 0 0 −1

difference between the topological quantum numbers of two
adjacent regions [12]. Specifically, 	C, 	Cs, 	Cv, and 	Csv

are the charge, spin, valley, and spin-valley Chern numbers of
an inner state, respectively. For such a hybrid nanoribbon with
different external fields, the spin- and valley-dependent Chern
numbers of inner-edge states can be described as

	Cηsz
= C1ηsz

− C2ηsz
. (8)

III. BAND INSULATORS WITH INNER-EDGE STATES

A large perpendicular electric field, as well as an anti-
ferromagnetic exchange field can turn silicene into a band
insulator [18]. The former breaks the spatial symmetry, and the
latter breaks the time-reversal symmetry. In fact, in the phase
diagram of Fig. 2, QVH1, QVH2, QSVH1, and QSVH2 are all
band insulators. In these insulators, the charge Chern number
and spin Chern number are zero. There are no topological edge
states appearing in the band structures. However, the valley or
spin-valley Chern number is not zero, which can be seen in
Table I.

In general, the most straightforward method to distinguish
band insulator from topological insulator is to calculate the
band structure of a finite-width nanoribbon and observe if
topological edge states exist. Different topological phases can
also be differentiated by some transport measurements [11,20].
However, for a QSVH insulator, whose Chern numbers are
(CK ′

↑ ,CK ′
↓ ,CK

↑ ,CK
↓ ) = ±(−1/2,1/2,1/2,−1/2), both methods

are unavailable. In order to characterize the band insulator with
nontrivial topological quantum numbers, for simplification, we
consider two specific hybrid nanoribbons in this section.

In the first case, the hybrid nanoribbon has two independent
electric fields, while the exchange field M1 = M2 = 0. The
spin and valley dependent Chern numbers of inner-edge states
can be described as

	Cηsz
= η

2
sgn(ηszλso − lEz1) − η

2
sgn(ηszλso − lEz2). (9)

The phase boundaries are determined by lEz1 = ±λso and
lEz2 = ±λso, as shown by the red thick lines in Fig. 3(a).
In previous researches, the criterion for topological phase
transition is the gap closing and reopening. In the present
case, once phase transition happens in one half-nanoribbon,
the inner-edge states will change. In order to see the edge
states, the band structures at several marked points of phase
diagram are shown in Fig. 3(b). It should be noted that, in the
numerical calculation, we adopt a zigzag silicene nanoribbon
with the width W = 128 atoms. Silicene is a quantum spin Hall
insulator in the absence of external fields. The band structure
can be seen in Fig. 3(b)(1). When both electric fields Ez1

and Ez2 are larger than the critical electric field, the system
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FIG. 3. Phase diagram of a hybrid silicene nanoribbon with
independent perpendicular electric fields Ez1 and Ez2, while M1 =
M2 = 0. The indexes in each region are the spin and valley Chern
numbers of inner-edge states. (b) The band structure of a hybrid
silicene nanoribbon at marked points in the phase diagram (a).

is in the band insulator phase, shown by the band structure
in Fig. 3(b)(2), but it has nontrivial valley Chern numbers,
which are (CK ′

↑ ,CK ′
↓ ,CK

↑ ,CK
↓ ) = (−1/2,−1/2,1/2,1/2). If the

hybrid nanoribbon is constructed by QSH and QVH1, for
example the white dot (3) in Fig. 3(a), the band structure
can be seen in Fig. 3(b)(3). The inner-edge states appear.
At the interface, the electrons in K ′ valley with spin down
move to the right and electrons in K valley with spin up
move to the left. The channels can be seen in the inset,
where red (green) arrows denote the K ′ (K) valley inner-edge
channels, yellow arrows represent the outer-edge channels,
and solid (dashed) lines denote the spin up (down) channels.
In this case, the domain wall can be used as a spin-valley
filter. We then change the direction of the electric field in
one half-nanoribbon; the band structure of the QVH1/QVH2
nanoribbon is shown in Fig. 3(b)(4). The outer-edge states
disappear and only inner-edge states exist, just as shown in the
inset of Fig. 3(b)(4). The inner-edge states are valley resolved
but spin degenerate. By observing the edge states, the quantum
valley Hall insulator can be detected.
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FIG. 4. Phase diagram of a hybrid silicene nanoribbon with
independent antiferromagnetic exchange fields M1 and M2, while
Ez1 = Ez2 = 0. The indexes in each region are the spin and valley
Chern numbers of inner-edge states. (b) The band structures of the
hybrid silicene nanoribbon at the marked points in the phase diagram
(a).

In the second case, the hybrid nanoribbon is applied by two
independent antiferromagnetic exchange fields, while electric
fields Ez1 = Ez2 = 0, and the spin- and valley-dependent
Chern number of an inner-edge state is given as

	Cηsz
= η

2
sgn(ηszλso + szM1) − η

2
sgn(ηszλso + szM2),

(10)
The phase boundaries are determined by M1 = ±λso and M2 =
±λso, which are shown by the red thick lines in Fig. 4(a). When
both exchange fields are larger than λso, i.e., |M1|, |M2| > λso,
the silicene is also a band insulator, but its topological
numbers are (CK ′

↑ ,CK ′
↓ ,CK

↑ ,CK
↓ ) = (−1/2,1/2,1/2,−1/2). It

can also be called a quantum spin-valley Hall insulator. The
band structure with the tight-binding calculations is shown in
Fig. 4(b)(1), and no edge states appear. If we try to utilize
the commonly used Hall-Bar equipment to distinguish the
quantum spin-valley Hall insulator, because each valley Chern
number CK = CK ′ = 0 and spin Chern number C↑ = C↓ = 0,
there is no signal to be detected. When the exchange field in
one half-nanoribbon is less than the spin-orbit coupling, i.e.,

TABLE II. Chern numbers of two hybrid nanoribbons.

QVH1 QVH2 Inner edge state

( 1
2 , 1

2 ,− 1
2 ,− 1

2 ) (− 1
2 ,− 1

2 , 1
2 , 1

2 ) (1,1,−1,−1)

QSVH1 QSVH2 Inner edge state

(− 1
2 , 1

2 , 1
2 ,− 1

2 ) ( 1
2 ,− 1

2 ,− 1
2 , 1

2 ) (−1,1,1,−1)

the hybrid nanoribbon is constructed by QSVH1 and QSH
insulators, the band structure is as shown in Fig. 4(b)(2).
Only K valley edge states appears on the inner edge, and
the edge states are helical. Certainly, the selection of valley
can be achieved by modulating the antiferromagnetic order in
different regions, as shown in Fig. 4(b)(3). When both M1 and
M2 are larger than λso but with different signs, the upper and
lower half-nanoribbons are band insulators, but edge states
appear and can be seen in Fig. 4(b)(4). The inner-edge states
are spin and valley resolved.

The topological numbers of inner-edge states constructed
with two band insulators are shown in Table II. These Chern
numbers of the inner-edge states just correspond to the four
edge states in Figs. 3(b)(4) and 4(b)(4), and the valley edge
state can be demonstrated. Next, we give an analysis to the
inner-edge states. Taking into account of the interface at y = 0,
the wave vector kx is uniform. In the gap, the energy |E| <

|	1| and |E| < |	2|, the wave function in the upper half-
nanoribbon (y > 0) can be written as


(y > 0) = c1

( h̄vF(ηkx+iky1)
E+	1/2

1

)
eikxx+iky1y, (11)

and in the lower half-nanoribbon (y < 0),


(y < 0) = c2

( h̄vF(ηkx−iky2)
E+	2/2

1

)
eikxx−iky2y. (12)

Obviously, the wave vector ky1(2) is imaginary, as
expressed from the dispersion in Eq. (5), ky1(2) =
i
√

(	1(2)/2)2 + h̄2v2
Fk

2
x − E2 . According to the continuity

condition, the dispersion of the edge state can be obtained.
However, it is an implicit function, the solution of which could
be obtained by numerical calculations. In the simplified case,
taking M1 = M2 = 0, and ηszλso − lEz1 = lEz2 − ηszλso, the
edge states can be determined as E = ηh̄vFkx . They just
correspond to the edge states in Fig. 3(b)(4). In the other case,
considering Ez1 = Ez2 = 0 and ηλso + M1 = −M2 − ηλso,
the edge states are determined by E = ηszh̄vFkx , which can
be seen in Fig. 4(d)(4).

IV. TOPOLOGICAL THERMAL RECTIFICATION DIODE

By modulating the external parameters independently in
the upper and lower half-nanoribbons, we can manipulate the
spin and valley topological edge states. Further, we consider
a more general situation where electric and antiferromagnetic
fields coexist in the hybrid nanoribbon. It is found that if we
construct the hybrid nanoribbon by selecting two topological
phases which are adjacent in the phase diagram in Fig. 2, the
inner-edge states are spin-valley resolved and the channels are
unidirectional. There are 12 kinds of construction methods
in total to achieve the single spin-valley channel, but certain
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TABLE III. Chern numbers of four hybrid nanoribbons with
single spin-valley channel.

QSVH(1-2) SQAH(1-4) Inner edge states

(− 1
2 , 1

2 , 1
2 ,− 1

2 ) ( 1
2 , 1

2 , 1
2 ,− 1

2 ) (−1,0,0,0)

(− 1
2 ,− 1

2 , 1
2 ,− 1

2 ) (0,1,0,0)

( 1
2 ,− 1

2 ,− 1
2 , 1

2 ) ( 1
2 ,− 1

2 ,− 1
2 ,− 1

2 ) (0,0,0,1)

( 1
2 ,− 1

2 , 1
2 , 1

2 ) (0,0,−1,0)

results are degenerate. Four hybrid nanoribbons are listed in
Table III, in which the first column corresponds to QSVH1
and QSVH2 and the second column corresponds to SQAH1–
SQAH4, successively. If we construct a hybrid nanoribbon
with separated topological phases in the phase diagram of
Fig. 2, we can obtain a unidirectional valley channel, and there
are only two construction methods, which is shown in Table IV.
In order to see the inner-edge states clearly, we plot the band
structures in Figs. 5(a) and 5(b). In Fig. 5(a), the inner-edge
states appear in the K ′ valley and they are spin resolved; the
other edge states connecting two valleys in the band structures
are the outer edge states. In Fig. 5(b), the inner-edge state are
spin degenerate.

When the incident energy is in the gap, the conductivity
is quantized. For a single channel, the quantized conductivity
equals e2/h. We attach the hot and cold electrodes at the
two sides of inner-edge states, as shown in Fig. 6(a). For the
band structure in Fig. 5(a), the measured thermal conductivity
equals κe = π2k2

BT/3h, which obeys the Wiedemann-Franz
law [21]. The phonon thermal conductivity is small and
neglected. Due to the channel being unidirectional, if we
change the direction of the temperature bias, the thermal
currents are cut off, and the thermal conductivity is zero.
The temperature difference is defined as 	T = Th − Tc, and
the thermal conductivities are shown in Fig. 6(b). For the
inner-edge state in Fig. 5(b), due to spin degeneracy, there
are two-channel contributions. The thermal conductivity is
double, as can be seen in Fig. 6(b). By the way, if we attach
two electrodes with electric bias at the interface of the hybrid
nanoribbon, the conductivity is also unidirectional.

V. THERMOELECTRIC PERFORMANCE OF
INNER-EDGE STATES

Now, we calculate the thermoelectric performance of inner-
edge channels. The Seebeck coefficient is defined as the ratio
of voltage difference to the temperature gradient and is written
as S = ∇μ/∇T . In the linear response approximation, the
electrical current j and thermal current jQ can be expressed

TABLE IV. Chern numbers of two hybrid nanoribbons with
unidirectional valley channel.

SQAH1 SQAH2 Inner edge state

( 1
2 , 1

2 , 1
2 ,− 1

2 ) (− 1
2 ,− 1

2 , 1
2 ,− 1

2 ) (1,1,0,0)

SQAH4 SQAH3 Inner edge state
( 1

2 ,− 1
2 , 1

2 , 1
2 ) ( 1

2 ,− 1
2 ,− 1

2 ,− 1
2 ) (0,0,1,1)

(a) (b)

K' K K K'

E/
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o
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o
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FIG. 5. Band structures of hybrid nanoribbons with (a) QSVH1
(lEz1 = 0,M1 = 1.5λso) and SQAH2 (lEz2 = −λso,M2 = λso),
(b) SQAH1 (lEz1 = λso,M1 = λso) and SQAH2 (lEz2 = −λso,M2 =
λso).

as (
j/(−e)

jQ

)
=

(
L0 L1

L1 L2

)( −∇μ

−∇T/T

)
. (13)

With the Onsager coefficients Lα (α = 0,1,2), the thermal
power, i.e., the Seebeck coefficient, can be given as

S = − 1

eT

L1

L0
. (14)

To explore the effect of topological edge states on the
thermoelectrical transport, we use the Landauer transport
formula. The integral Lα is written as

Lα =
∫

dE T (E)(E − μ)α
(

− ∂f

∂E

)
, (15)

in which T (E) is the electron transmission function and f the
Fermi distribution function. By integral transformation, Lα

can be rewritten as

Lα = (kBT )α
∫

T (x)xα ex

(ex + 1)2
dx, (16)

with x = (E − μ)/(kBT ). The figure of merit can be written
as

ZT = L2
1

L0L2 − L2
1 + κpT L0

, (17)
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FIG. 6. (a) Schematics of thermal rectification diodes. Th and
Tc denote the hot and cold electrodes, respectively. (b) Quantum
thermal conductivity of inner-edge states. The parameters of black
solid and red dashed lines correspond to those in Figs. 4(a) and 4(b),
respectively.
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where κp is the phonon thermal conductivity. Due to the
edge states being often imperfect but topologically protected,
the thermal conductivity from electrons is robust, while the
thermal conductivity from phonons is suppressed significantly
[22,23]. In a suitable case, the phonon thermal conductivity
κp at room temperature can be reduced to 0.01 W m−1K−1

[23,24], which is smaller by about one order of magnitude
than the electron thermal conductivity κe. In the calculation,
for simplification, we assume that the defects or disorders
are strong enough, and only consider the contribution of
electrons to the thermal conductivity. In fact, the real figure of
merit could be renormalized by the factor κe/(κe + κp), and is
lowered slightly, but no fundamental change occurs.

The total transmission function is given as T (E) =
M(E)T1(E) with M(E) being the density of modes, and
T1(E) the transmission probability of each mode [25]. For
the topological edge states, M(E) = N counts the forward
propagation channels. For a conductor of length L, neglecting
the quantum interference effect, the transmission coefficient
is obtained as T1(E) = λ(E)/(λ(E) + L), where λ(E) is the
mean free path for backscattering [24]. In the ballistic limit,
T1(E) equals 1, and in the diffusive limit, T1(E) = λ(E)/L.
We adopt the dual scattering time model to calculate the
thermoelectric performance [24]. Within and outside the
gap, there exist two different scattering times τ1 and τ2,
corresponding to the two different mean free paths λ1 and λ2.
The scattering time ratio is defined as τr = τ1/τ2. We choose
the bottom of conduction band as the energy reference point.
For the edge state, the integral is given as

Lα = (kBT )α
(∫ −(|	|+μ)/kBT

−∞

λ2(x)

λ2(x) + L

+
∫ −μ/kBT

−(|	|+μ)/kBT

λ1(x)

λ1(x) + L
+

∫ ∞

−μ/kBT

λ2(x)

λ2(x) + L

)

×M(x)xα ex

(ex + 1)2
dx (18)

As a function of temperature, the Seebeck coefficient S and
figure of merit ZT are calculated numerically, and the results
are shown in Figs. 7(a) and 7(b). It can be seen that S and
ZT are reduced at high temperatures. In order to see the the
effect of scattering time on the thermoelectric coefficients, we
choose three different τr as the modulation parameter. The
larger τr is, the better the thermoelectric performance will be.
In experiment, the scattering time can be tuned by introducing
defects. Moreover, we plot S and ZT versus chemical potential
μ at a relatively low temperature T = 60 K in Figs. 7(c) and
7(d). We can give a discussion about the shape of the ZT

in Fig. 7(d). The states of energy within about 5kBT around
μ = 0 make a dominating contribution to the figure of merit,
which approaches zero for large μ. From Eq. (17), according
to the Onsager coefficient L1, the ZT is mainly determined by
the factor of [(E − μ)∂f/∂E]2, therefore, the ZT has peaks
symmetrically at the two sides of μ = −	/2.

In general, group velocity of electrons is described by
1
h̄

∂E
∂k

. For the inner-edge states such as those in Figs. 3(b)(4)
and 4(b)(4), 	 > 2λso, they appear on one certain valley.
Their velocity approximates the constant vF = √

3at/2 ≈
5.5 × 105 m/s, with a = 3.86 Å being the lattice con-
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FIG. 7. Temperature dependence of (a) the Seebeck coefficient
and (b) the figure of merit ZT of inner-edge states with different
time ratios τr. The other parameters are μ = 0, L/λ1 = 1, and 	 =
25 meV. (c) The Seebeck coefficients and (d) the figure of merit ZT

of inner-edge sates as a function of chemical potential. The other
parameters are T = 60 K, τr = 103, and 	 = 20 meV.

stant, and t = 1.6 eV the nearest-neighbor hopping energy.
For the conventional helical edge states such as that in
Fig. 3(b)(1), they connect two valleys which locate at K ′(K) =
−(+)4π/3a x̂ [6]. The velocity nearly equals the gap divided
by the distance of two valleys, i.e., 3a	/8π . In this case,
in order to ensure the quantum spin Hall phase, the gap
is smaller than 2λso. Hence, the velocity of the inner-edge
states is roughly four orders of magnitude higher than that of
conventional edge states. Due to λ = vτ , for simplification,
we set L/λ1 = 1 for inner-edge states and L/λ1 = 104 for the
conventional edge states in the calculation.

To make clear the relation between the ZT and gap,
and compare the thermoelectric performance of inner and
conventional edge states, we present the numerical results
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∆ (eV)

30

0

10

20

ZT

T=60 K
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FIG. 8. The ZT of edge states as a function of the gap. The other
parameters are τr = 103 and μ = −3/2kBT .
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plotted in Fig. 8. The phase transition at 	 = 2λso results
in a break of the ZT in Fig. 8, but the variation tendency of
the ZT with gap maintains. When the gap is zero, there is no
edge state, and the figure of merit is zero naturally. As the gap
is large enough, in view of the Mott relation and the reason
explained in Ref. [26], ZT is inversely proportional to the gap,
and tends to zero also. Hence, ZT does not vary uniformly, but
first increases and then decreases with gap. It is obvious that
at low temperatures the maximum of ZT locates in the region
of 	 < 2λso, but the small gap, as well as the topological edge
states, are easily affected by thermal fluctuations. With the
temperature increasing, the maximum moves to the region
of 	 > 2λso, and the gap correspondingly can be larger.
For possible practical applications at higher temperatures,
the inner-edge states have advantages in thermoelectrical
performance.

VI. CONCLUSION

In summary, we have investigated the spin- and valley-
dependent inner-edge states in a hybrid silicene nanoribbon,
two halves of which are in different topological phases,

and each half is modulated by an independent perpendicular
electric field and antiferromagnetic exchange field. It has been
proposed that by observing the inner-edge states, different
band insulators with nontrivial topological valley Chern
number, especially the quantum spin and valley Hall insulators,
can be distinguished. By manipulating the external parameters,
several special edge states, such as single channel with valley
or spin-valley, can be achieved. They cause the thermal
rectification effect which can be used to design topological
valley diodes. Also, we have calculated the thermoelectric
performance of the inner-edge states and found an enhance-
ment compared with that of the conventional edge states at
higher temperatures. Based on these results, more possible
applications can be expected in topological valley electronics
and thermoelectronics.
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