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Fermi-edge singularity and related interaction induced phenomena in multilevel quantum dots
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We study the manifestation of the nonperturbative effects of interaction in sequential tunneling between a
quasi-one-dimensional system of chiral quantum Hall edge channels and a multilevel quantum dot (QD). We use
the formal scattering theory approach to the bosonization technique to present an alternative derivation of the
Fermi-edge singularity effect and demonstrate the origin of its universality. This approach allows us to address,
within the same framework, plasmon-assisted sequential tunneling to relatively large dots and investigate the
interaction-induced level broadening. The results are generalized by taking into account the dispersion in the
spectrum of plasmons in the QD. We then discuss their modification in the presence of neutral modes, which can
be realized either in a QD with two chiral strongly interacting edge channels or in a three-dimensional QD in the
Coulomb blockade regime. In the former case a universal behavior of the tunneling rate is discovered.
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I. INTRODUCTION

The Fermi-edge singularity (FES), originally discovered
[1] in the x-ray absorption spectra of metals, describes a
divergence in the transition rate at low energies, which has
a power-law dependence. There are two contributions to it,
described by Mahan [2] and Anderson [3]. On one hand,
the interaction between an electron and a hole in the final
states increases the rate; on the other hand, the orthogonality
catastrophe leads to its suppression. These results were
confirmed [4] and the exact solution for the strong interaction
case was provided. Since then this phenomenon has been
extensively studied both experimentally [5,6] and theoretically
[7–11] in various configurations.

Notably, the exact solution [4] demonstrates the universality
of FES exponents and the nonperturbative character of this
effect. Such bright manifestations of interactions also occur in
one-dimensional (1D) Fermi systems, known as the Luttinger
liquids [12]. Among experimentally accessible configurations
the quantum Hall (QH) effect systems deserve special atten-
tion. In this regime, the edge states of the two-dimensional
electron gases can be viewed as chiral 1D channels, whose
direction of propagation is defined by the sign of the magnetic
field. A convenient method to describe these states is to use
the bosonization technique [13], which allows one to address
the interactions nonperturbatively. Interestingly, this approach
enables us to find the FES power law in a QH system, endowing
it with a clear physical meaning. Namely, its manifestation
was studied in tunneling to a single-level quantum dot (QD)
[14], surrounded by a number of edge channels (see Fig. 1).
In the low-energy limit, the tunneling rate dependence on the
bias between the QD and the mth channel, where the electron
tunnels from, acquires a form

� ∝ �μα, α = 2qm +
∑

q2
n, (1)

where qn < 0 denotes the charge induced in the nth channel.
In this paper we would like to complete this picture, by
considering the tunneling rate at biases that reveal the structure
of the energy levels of the QD.

To describe a QH system we apply the bosonization
approach that provides means of depicting its physics in terms
of the scattering bosons [15]. Being widely used [16–19]

for its clarity and relative simplicity, this formalism remains
relatively new. This novelty enables us to look at the FES from
another point of view by studying it in the tunneling to the
dot in the QH regime—an object extensively explored [20].
The benefit of such an approach is that in the low-energy limit
the effect is universal and the theory can also be applied to a
3D QD. Therefore, we develop a formalism of the scattering
theory of bosons in Sec. II and demonstrate its potential in the
application to the FES phenomenon. On the other hand, we
explain that the theory has a clear physical meaning. Namely,
the scattering states, constituting the basis for the boson fields,
can be expressed in terms of certain positive charges in the
low-energy limit. Surprisingly, these turn out to be the charges
(with a negative sign) induced in the channels around the QD
when it is charged. Hence, the scattering problem of bosons
becomes deeply connected to the electrostatic one, which
explains the universality of the FES phenomenon. Then, in
Sec. III, we go beyond the low-energy limit for the QD in
QH regime, so that the scattering of the incoming wave
in the channel leads to an excitation of collective modes in
the QD.

The nature of these excitations is fully governed by
two parameters: the coupling constant σ = ∑

n q2
n and the

dispersion of plasmons in the dot. We first concentrate on
the no-dispersion case. Then, if there is no interaction, i.e.,
σ = 0, the tunneling rate behaves as a set of steps as a function
of the bias. The steps correspond to the free-fermion energy
levels in the QD, implying that the bosonic and the fermionic
pictures describe the same entity. If the interaction is “turned
on,” the steps become smeared, due to the finite width that
the energy levels acquire. The width is proportional to the
coupling σ , but it also grows quadratically with the number
of the energy level. Thus, even if the interaction is small, it
leads to a nonperturbative effect, which we are able to describe
analytically due to the correspondence between free-fermion
levels and boson resonances in this geometry and the chirality
of the boson fields. When there is interaction in the QD, the
spectrum of plasmons acquires in general a weak dispersion.
We then demonstrate splitting of the fermion levels (starting
from the third one). It originates from the shift between
different single- and multiplasmon processes corresponding
to the excitation of a particular fermion level. The effect is
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FIG. 1. A scheme of one of the possible system setups. A quantum
dot in the QH regime, described by the bosonic field φ0, interacts
with N = 4 QH edge channels at the filling factor ν = 2. The dashed
line corresponds to tunneling, while the wavy lines depict Coulomb
interactions. The rate of tunneling from one of the channels is studied
as a function of the bias �μ between the channel and the dot. Note that
tunneling between copropagating QH edge channels is suppressed
[21,22]; hence only the counterpropagating ones are considered.
However, besides that, there is no formal difference between these
two cases.

mostly pronounced for the third level, on which we dwell in
detail.

The following discussion returns to QDs with a linear
spectrum for plasmons. In Sec. IV, we study the tunneling rate
to a QD with two chiral edge channels with strong long-range
interaction. These can be decoupled into charged and neutral
modes. By a proper choice of the bias only the lowest energy
level of the charged mode can be excited. However, the heights
of the steps stop being equal and acquire a universal structure
which is a consequence of the strong interaction between the
channels, leading to the charge fractionalization.

The previous case of a QD in the QH regime immediately
suggests that somewhat similar effects might be seen in the
rate of tunneling to a 3D QD in the situation considered in
Sec. V. Indeed, this time there is again a separation between
the charged and neutral modes, where by the latter we imply
the energy levels of dimensional quantization. Using the
formalism from Sec. II, we analyze this situation and show
the result to resemble the one of Sec. IV. The difference is,
however, in the fact that there is a direct coupling to the neutral
modes so that the heights and the positions of the steps are
arbitrary.

II. FERMI-EDGE SINGULARITY FROM
SCATTERING THEORY

Let us consider a QD of the characteristic size L in the
quantum Hall regime with the filling factor ν = 1 interacting
with N edge channels of a QH system at an integer filling
factor, which we depict in Fig. 1. Such a complex can be
realized in a 2D electron gas, where using electrostatic gates
and forming quantum point contacts one can create potential
barriers, allowing some of the edge channels to pass while
others reflect [23]. To account for strong effects of interaction

we first use the bosonization technique [13], which we recall
briefly below. Next we describe the essence of the scattering
theory for bosons, which is then applied to demonstrate the
manifestation of the FES. The Coulomb interaction might be
screened in a complicated way; therefore we do not assume
any particular form of density-density interactions. We only
require that the size L of the QD be much smaller than the
wavelength of the density fluctuations in the edge channels
(plasmons), thus taking into account the low-energy character
of the FES. Note that we work in units in which h̄ = c = e = 1.
To bosonize the electrons in the QD, we consider its edge as a
one-dimensional channel with the glued ends, i.e., forming a
ring. We express the electron operators in the channels, ψn(x),
and in the ring, ψ0(x), with the help of the boson fields φn(x)
and φ0(x):

ψn(x) ∝ eiφn(x), n = 0, . . . ,N, (2)

where the field φn(x) is related to the charge density oper-
ator ρn(x) = 1

2π
∂xφn(x). The commutator of bosonic fields

[φn(x),φm(y)] = iπδnm sgn(x − y) together with the above
definition guarantees the fermion commutation relations and
the electron charge [ψn(x),ρm(y)] = ψn(x)δ(x − y)δmn.

Next, we write down the Hamiltonian of the interacting
fermions in terms of the new bosonic fields:

H = H0 + Hint + Ht , (3)

where the free Hamiltonian is given by

H0 = 1

4π

∑
n=0,..,N

vn

∫
dx{∂xφn(x)}2. (4)

We include the interaction part

Hint = 1

8π2

∑
nn′

∫∫
dxdyUnn′ (x,y)∂xφn(x)∂yφn′ (y) (5)

with arbitrary electrostatic potentials Unn′ . Finally, the last
term describes tunneling between the mth channel and the QD
at some point x0:

Ht = τ (A + A†), A = ei{φ0(x0)−φm(x0)}. (6)

However, the exact position x0 is of no interest because of
the long-wavelength limit, allowing us to consider the bosonic
field in a certain interaction region being independent of the
coordinate.

Next, let us calculate the tunneling rate from one of the
channels, say the mth one, to the QD when a bias �μ

is applied between them [24]. Notably, the change of the
electro-chemical potential at the channel shifts the dot level
due to the electrostatic interaction. The value �μ takes this
effect into account and will be written down explicitly later.
Addressing the tunneling term as a perturbation, one can
express the tunneling rate as the integral

� = |τ |2
∫ ∞

−∞
dt〈A(0)A†(t)〉. (7)

Note that such an approach enables us to use the fact that the
remaining part of the Hamiltonian, H0 + Hint , has a quadratic
form in the bosonic fields. Then the tunneling rate can be
expressed in terms of their two-point correlators. The bosonic
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fields can be found from the equations of motion ∂tφn(x) =
i[H0 + Hint ,φn(x)],n = 0, . . . ,N , that reveal

∂tφn(t) + vn∂xφn(x)

+ 1

2π

∑
n′=0,...,N

∫
dyUnn′ (x,y)∂yφn′(y) = 0. (8)

The solution may be presented in the form

φn(x,t) = ϕn(x,t) + δφn(x,t), (9)

where the zero mode ϕn(x,t) and the fluctuating part δφn(x,t)
read

ϕn(x,t) = −μnt + ϕ(0)
n (x), (10)

δφn(x,t) =
∫ ∞

0

dω√
ω

N∑
n′=1

[�n′nω(x)e−iωtan′(ω) + H.c.]. (11)

Basically, the zero modes solve the system (8) in the zero-
frequency limit and satisfy the following equations:

μn = vn∂xϕ
(0)
n (x) + 1

2π

∑
n′

∫
dy∂yϕ

(0)
n′ (y)Unn′(x,y). (12)

Thus, zero modes describe stationary charge densities and
corresponding phase shifts, while the deviations are taken into
account by the fluctuating part. We expressed the latter in
the second-quantized form in the basis of the scattering states
�n′nω(x) with the creation and annihilation operators a

†
n′ (ω),

an′ (ω) satisfying the usual bosonic commutation relations. The
scattering states diagonalize the Hamiltonian H0 + Hint and
satisfy specific boundary conditions. Namely, the scattering
state �n′nω(x) is described by an incoming plane wave in
the channel n′ which then scatters into all the other channels
n = 1, . . . ,N . Thus, the scattering state presents the set of
N + 1 functions, enumerated by the second index, while the
first index enumerates the scattering states.

To find correlation functions entering the expression (7) for
the tunneling rate, we exploit the low-energy limit and perform
the perturbation expansion of the scattering states in vicinity
of the QD in frequency:

�nlω(x) = �
(0)
nl (x) + iω�

(1)
nl (x). (13)

This means that we look at the asymptotic behavior of
the scattering states in the region x ∼ L, for which our
approximation ωL/v 	 1 is valid. On the other hand, such an
expansion may be understood as a way to describe how strong
the scattering is. Specifically, the parameter ωL/v being small
implies that almost the whole incident wave gets transmitted.
Substituting now the expression (13) into (11) and into (8), we
arrive at the system

0 = vn∂x�
(0)
nl (x) + 1

2π

∑
n′

∫
dy∂y�

(0)
nn′(y)Uln′ (x,y), (14)

�
(0)
nl (x) = vn∂x�

(1)
nl (x) + 1

2π

∑
n′

∫
dy∂y�

(1)
nn′(y)Uln′ (x,y).

(15)

Obviously, �
(0)
nl (x) = constant are the solutions of (14). Par-

ticularly, for our scattering problem

�
(0)
nl (x) = δnl, n,l = 1, . . . ,N, (16)

�
(0)
n0 (x) = ε0, (17)

where ε0 needs to be defined.
To clarify the physical meaning of �(0)

nm, we note that
substituting (16) and (17) into (15) brings us to the same kind
of electrostatic equations that identify the zero modes (10). So
we may treat the problem of finding the coefficients �

(0)
n0 (x) as

an electrostatic one and formally write its solution

qn =
∑
nn′

Cnn′μn′ , (18)

where qn = 1
2π

∫
dx∂xϕ

(0)
n (x), n = 0,1, . . . ,N , are the charges

in the channels and at the dot. The particular form of the
interaction is of no interest and is generally described by a
capacitance matrix Cnn′ . Taking into account (16) and (17),
and assuming that all channels are grounded, except for the
nth one, leads to

qn = Cnn + Cn0ε0. (19)

As there is no “charge” at the dot q0 = 0, it is easy to define
its “potential” [25]

ε0 = −Cn0/C00. (20)

On the other hand, if one poses a question on how the QD
with a unit charge gets screened by grounded channels, from
qn = Cn0μ0 and q0 = 1 one gets

qn = Cn0/C00. (21)

We then conclude that the “potential” ε0, induced in the dot in
the particular situation where the plane wave is incident in the
channel n, is the same up to a sign as the charge induced in
this channel in the setup when the dot is charged:

ε0 = −qn, qn < 0. (22)

Thus, in the low-energy limit the scattering and the elec-
trostatic problems are simply connected, which reflects the
universality of the FES phenomenon. Finally, as mentioned
above, the interaction between the biased channel m and
the QD raises the dot’s energy level by μ0 = −μmCm0/C00

[compare to Eq. (20)], so we denote the difference in their
potentials as �μ = μm − μ0.

We now move to the calculation of the tunneling rate (7):

� ∝
∫ ∞

−∞
dt exp {−i�μt + K1(t) + K2(t)}, (23)

where we introduced the autocorrelator K1(t) and the cross
correlator K2(t) of the bosonic fields:

K1(t) = −
∑
n=0,1

〈[δφn(t) − δφn(0)]δφn(t)〉, (24)

K2(t) = 〈δφn(0)[δφ0(0) − δφ0(t)]〉
− 〈[δφ0(0) − δφ0(t)]δφn(t)〉. (25)
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To find them we use the spectral decomposition (11) of the
fields in the channels and in the dot. Thereby, we arrive at the
following result for the correlators:

K1(t) = −
(

1 +
N∑

n=1

q2
j

) ∫ ∞

0

dω

ω
(1 − eiωt ),

K2(t) = −2qm

∫ ∞

0

dω

ω
(1 − eiωt ).

Introducing a cutoff δ−1 at high energies, we calculate the
above integral

∫ ∞
0

dω
ω

(1 − eiωt )e−δω = ln ( δ−it
δ

). Finally, the
formula (23) leads to the following outcome for the tunneling
rate from the mth channel to the dot:

� ∝
∫ ∞

−∞
dt

ei�μt

(δ + it)1+α
= 2πθ (�μ)

�(1 + α)
�μα, (26)

α = 2qm +
N∑

n=1

q2
n, qm < 0. (27)

Hence, we reproduce the FES power law for a quantum dot
in the QH regime in the long-wavelength regime. However,
this also implies that the same is true for any QD, since
the FES has an electrostatic nature. Indeed, in terms of the
scattering theory language we realize that it is the excitation
of the lowest energy mode of the bosonic field δφ0 [i.e., of
the scattering states �0nω(x,ω → 0) = −qn] and of a zero
mode that leads to appearance of the FES. In other words, the
low-energy excitation of a charged mode defines the effect.
We will eventually return to this discussion in Sec. V.

Thus, we have also demonstrated the potential of the used
approach which will allow us to move to a significantly
more complicated system, where we already do not confine
ourselves by the low-energy limit.

To complete the formal description of the formalism, we
make some comments on the role of the interaction between
the copropagating channels before they get split close to the
dot. The tunneling rate is determined by the local correlators
and, in fact, it can be shown that the upstream interaction does
not influence the local correlators in the vicinity of the QD.
Namely, rewriting the boson fields in terms of the scattering
states coming from the interacting region, one might see that
the local correlators are the same as in the case with no
interaction in the region upstream from the QD at all.

III. APPLICATION TO THE COLLECTIVE MODE
ASSISTED TUNNELING

It has been pointed out in the previous section that the FES
physics is universal in the low-energy limit. This is reflected
in the particular power-law form of the tunneling rate as a
function of the bias where the exponent is only defined by
the charges induced in the channels around the dot. In this
and following sections, we would like to study tunneling to
a QD in a QH regime beyond the low-energy limit, meaning
that the higher energy excitations of a charged mode will be
considered. We will also answer the question of whether the
FES effect “survives” in the tunneling to higher energy levels.
We continue to work within the same framework and setup,
but now assume that the characteristic size L of the dot can

FIG. 2. Sketch of the scattering process between the QD and the
nth channel. The arrows with the corresponding scattering coefficients
rn and tn schematically represent the direction of a boson mode
propagation.

be larger than the wavelength of excitations λ, which in turn
is much larger than the characteristic size W of the interaction
region, implying relatively large QDs: L � W . This allows us
to consider tunneling to excited states in a QD, nevertheless
expecting the same level of universality as in the FES effect.

In this case, the local interaction of the QD with each chan-
nel can be described by introducing the scattering coefficients
rn and tn for the reflection and the transmission of the plasmons,
respectively. We then derive the scattering states �m0ω at the
dot explicitly. The procedure is as follows. Recall that the
bosonic fields in the channels in the proximity of the dot are
approximated by (11), (13), and (16) for W 	 λ, so the field
in the mth channel has the following form:

δφm(x,t) =
∫ ∞

0

dω√
ω

[e−iωtam(ω) + H.c.]

≡
∫ ∞

0

dω

2π
[e−iωt δφm(ω) + H.c.].

The next step would be to express the field δφ0(ω) at the dot
in the interaction region with the mth channel in terms of all
the fields δφn(ω), n = 1, . . . ,N . There are two processes that
define the value of δφ0(ω). First, it is the reflection of the
fields in N channels to the dot and, second, the successive
transmission of the field δφ0(ω) through all the interaction
regions.

Note that the reflected field from the nth channel acquires
a certain phase corresponding to the distance Lmn between the
contacts of the QD with this channel and the mth one, i.e.,
the channel from which the tunneling occurs. Making use of
the scattering coefficients rn,tn (see Fig. 2), we arrive at the
following expression for the field δφ0(ω):

δφ0 =
N∑

n=1

rnδφne
i ω

v
Lmn +

N∏
n=1

tne
i ω

v
Lδφ0. (28)

We use this result to rewrite the field φ0(ω) in terms of the
scattering states �0mω:

δφ0(ω) =
N∑

n=1

�0nωδφn(ω), (29)

�0nω = rn

1 − ∏N
n=1 tne

i ω
v
L
. (30)
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Note that we have ignored the phases exp(iωLmn/v) as they
cancel each other, which can be seen from the following
expressions for the auto- and cross correlators:

K1 = −
∫ ∞

0

dω

ω
(1 − eiωt )

(
1 +

N∑
n=1

|�0nω|2
)

, (31)

K2 = 2
∫ ∞

0

dω

ω
(1 − eiωt )Re(�0mω). (32)

To analyze the form of the scattering states (30) in the low-
energy limit, ωW/v 	 1, it is enough to expand the scattering
coefficients up to the second order in frequency. Then using
the unitarity of the scattering matrix we arrive at

rn = iωr̃n − ω2r̃nt̃n, (33)

tn = 1 + iωt̃n − ω2 r̃2
n + t̃2

n

2
. (34)

To understand the physical meaning of the coefficients r̃n

and t̃n, we note that on one hand �0mω(ω = 0) = −qm

from (17) and (22), on the other hand �0mω(ω = 0) =
r̃m/(L/v + ∑

n t̃n). Finally, recalling (21) it becomes evident
that r̃m and L/v + ∑

n t̃n are just the capacitances (up to
a constant multiplier) between the channels Cm0 and the
self-capacitance C00, respectively. We simply denote τC =
L/v + ∑

n t̃n, since this is just the travel time of the plasmon
in the dot. With this in mind, and using Eqs. (33) and (34), we
rewrite the expression for the scattering states in the form

�0nω = iωτCqn

1 − (
1 − σ

2 ω2τ 2
C

)
eiωτC

, (35)

where we introduced the dimensionless coupling constant

σ =
N∑

n=1

q2
n (36)

characterizing the strength of the interaction.
To find the autocorrelator (31), we start with analyzing

|�0nω|2. Assuming that coupling is weak, σ 	 1 (either due
to the large number of channels, N � 1, or because of partial
screening by a gate,

∑
n qn 	 1), the main contribution to

the integral in (31) comes from the singularity at ω = 0 and
from the set of plasmon resonances in (35) at frequencies
ωl = �ωl, l = 1,2, . . ., where �ω = 2π/τC . Evaluating these
contributions separately, we can write

K1 = −(1 + σ ) ln

(
δ − it

δ

)
− J, (37)

J =
∞∑
l=1

e−εl

l
[1 − exp (il�ωt − πl2σ�ω|t |)], (38)

where ε is the high-energy cutoff parameter. Considering first
the free-fermionic case of σ = 0, the sum in (38) can be
evaluated explicitly, and we obtain

Jf ree = ln(1 − ei�ωt−ε), (39)

where we dropped the unimportant constant contribution.
Therefore, the tunneling rate (23) is described by a set of

steps as a function of a bias:

�f ree ∝
∫ ∞

−∞
dt

ei�μt

(δ + it)

1

1 − e−i�ωt−ε

∝
∞∑

n=0

θ (�μ − n�ω), (40)

where we set ε = 0 in the end of calculations. This result is in
perfect agreement with the free-fermionic picture, as the steps
correspond to the quantized energy levels of the QD. This
happens because there is no interaction in the QD itself, as it is
being screened. So the electronic and bosonic description are
just the two alternative ways to look at the same system.

Returning now to the interaction case, instead of calculating
the sum over l in (38), we formally represent exp(−J ) as a
Taylor series and change the sign of the integration variable t

for convenience:

�(�μ)

∝
∫ ∞

−∞
dt

ei�μt+K(1)
2

(δ + it)1+α

×
∞∑

m=0

1

m!

( ∞∑
l=1

e−εl

l
exp(−il�ωt − l2σπ�ω|t |)

)m

. (41)

Here, we also separate the Mahan term

K(0)
2 = −2qm

∫ ∞

0

dω

ω
(1 − e−iωt ) = −2qm ln

(
δ + it

δ

)
(42)

from the cross correlator K2(−t) = K(0)
2 + K(1)

2 to complete
the FES exponent α in the denominator. We show in the
Appendix that the term K(1)

2 is negligible, as it can be
considered perturbatively in the coupling σ .

After opening the brackets in Eq. (41), each term in the triple
sum is of the form constant × exp(−in�ωt − pσ�ω|t |), n

and p being integers, and thus contributes to the nth step in
the function �(�μ). Recalling that σ 	 1, and that we are
interested in low energies, we can simply present �(�μ) as a
sum over steps [26]

�(�μ) = 2π

�(1 + α)
(�μ)α +

n0∑
n=1

�n, �μ > 0, (43)

and cut the sum at arbitrary n0 > �μ/�ω. Here the first term
is the FES contribution. Proceeding in this way, we evaluate
the integral (41) term by term and present the result in terms
of the functions

G(γ,�μn) = 2π Im{(γ�ω + i�μn)αeiπα/2}
sin(πα)�(1 + α)

, (44)

where we define �μn ≡ �μ − n�ω. Thus, e.g., the first three
steps can be presented as

�1 = G(πσ,�μ1),

�2 = 1
2G(2πσ,�μ2) + 1

2G(4πσ,�μ2), (45)

�3 = 1
3G(9πσ,�μ3) + 1

2G(5πσ,�μ3) + 1
6G(3πσ,�μ3).

The result of such evaluation is shown in Fig. 3.
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FIG. 3. The tunneling rate �(�μ) and its derivative ∂�(�μ)/
∂�μ is shown for the FES exponent α = −0.04 and the coupling
constant σ = 0.01. It is evaluated approximately according to (41)
by keeping the finite number of terms. The values are presented in
arbitrary units, as we study them up to constant multipliers.

Quite remarkably, the results (43)–(45) show that single-
electron levels in the QD can be viewed as plasmon resonances.
Indeed, although each term in Eqs. (45) for �n represents
single- or multiplasmon process, and their broadening is
caused by Coulomb interaction, in the free-fermionic limit
α,σ → 0 they add to the single-electron excitation step:
�n = θ (�μ − n�ω). This is a consequence of the fact that
we assume the linear spectrum of the plasmon in the QD,
which is known to leave electrons effectively free. This leads
us to the next idea to relax this limitation by considering a
weak dispersion in the spectrum of plasmons. The immediate
consequence of this is that one should expect splitting of
the steps in � starting from n = 2, where it is also most
pronounced.

Indeed, considering the situation where the Coulomb
interaction in the QD is not screened by a gate, it is natural
to assume the spectrum of plasmons to be weakly concave
[27], so that the frequency of the second plasmon resonance
acquires a small negative shift. To describe the first two peaks
as well as the ground state analytically, we make use of an
expression (43), introducing a small shift: 2�ω → 2�ω − ε.
Since two contributions to �2 in Eq. (45) represent single- and
two-plasmon processes, this splits the second step into two
steps:

�2 = 1
2G(2πσ,�μ2) + 1

2G[(2 − ε)2πσ,�μ2 + ε], (46)

while �1 and the FES contributions remain unchanged. Here,
the lower energy step corresponds to the emission of one
plasmon with the energy 2�ω − ε, while the higher energy
step refers to the emission of two plasmons of the energy
�ω. The width of the former one is larger and is defined
by (2 − ε)2πσ�ω as compared to 2πσ�ω for the higher
peak. The results of the calculation are shown in Fig. 4.
Higher peaks, not shown in this figure, will show additional
splittings corresponding to the number of emitted plasmons. If
the coupling constant is small enough, σ < ε/�ω, the effect
should be clearly seen in experiment.

FIG. 4. Splitting of the second electron level in two levels
corresponding to one- and two-plasmon processes in the case of
weakly dispersive plasmons is shown. The tunneling rate �(�μ)
and its derivative ∂�/∂(�μ) are calculated using Eqs. (44)–(46) for
α = −0.02, σ = 0.01, and ε = 0.22.

IV. TUNNELING TO A QD WITH NEUTRAL MODES

One of the conclusions that one can draw from the results
of the previous section is that in the case of the linear plasmon
spectrum the effects of interaction are controlled roughly by a
single parameter, coupling constant σ . One one hand, this leads
to the universality of the effect of level broadening, which is a
nonperturbative interaction effect reflecting a subtle electron-
plasmon correspondence. On the other hand, smearing of the
steps in �(�μ) results also in the suppression of the FES
effect in the excited states, so that it is observable only in
the transition to the ground state. Below, we demonstrate that
including neutral modes in the QD helps to circumvent this
limitation.

Let us consider the QD with two chiral channels with strong
long-range interaction [28]. Without loss of generality of our
main conclusion below, we can concentrate on the case of only
one external channel. We denote the bosonic fields as φ1(x) for
the channel in the lead and φ2(x), φ3(x) for the outer and inner
channel at the QD, respectively. Again, we study the tunneling
rate to the QD according to (7), specifically, to its external
channel. The interaction between the two channels at the QD
can be “turned off” by a standard rotation of the basis:

φ2 = 1√
2

(φ̃2 + φ̃3), (47)

where φ̃2(x) is the fast charge mode, and φ̃3(x) is the slow
dipole (neutral) mode. Hence, the tunneling operator in (6)
will include both charge and neutral fields.

In the case of a strong interaction that we are dealing with,
the neutral modes are much slower than the charge ones. This
allows to consider biases �μ smaller than the level spacing
of the charge mode, so that only the neutral mode is excited.
Formally, this can be expressed similarly to Eq. (30):

δφ̃2(ω) = r1

1 − t1
δφ1(ω), δφ̃3(ω) = r2

1 − t2eikL
δφ1(ω),

(48)
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where r1,2 and t1,2 are the scattering coefficients. They can
be expanded as in Eqs. (33) and (34), which guarantees the
unitarity of the scattering matrix. Using the analog of Eqs. (17)
and (22), one can write δφ̃2 = −√

2qδφ1 [29], where the
charge q < 0 is induced in the channel outside the dot.

Repeating now the steps that lead to Eqs. (37) and (38), we
observe that the charge mode contributes to the low-energy part
of the correlator in (37) with the coupling constant σc = q2,
while the neutral mode mostly contributes to the term (38)
with its own coupling σn to the field ϕ1, which is, by all means,
significantly smaller than for the charge mode. That is to say,
there is almost no interaction between them. Therefore, in first
approximation, one can set σn = 0, and the sum in (38) can be
evaluated explicitly (as in the case of free electrons) with the
result

�(�μ) ∝
∫ ∞

−∞
dt

ei�μt

(δ + it)1+α

1

(1 − ei�ωt−ε)1/2

∝
∞∑

n=0

cnθ (�μ − n�ω)(�μ − n�ω)α, (49)

where the FES exponent α = 2q + q2, according to its
universality, and cn = (−1)nCn

−1/2.
The obtained result is strikingly different from the case of a

strong interaction with a charged mode alone. Now the �(�μ)
curve gains a structure of steps that correspond to the excitation
of the neutral mode. But in addition, each step carries a power-
law singularity at its edge; i.e., the FES replicates itself as can
be seen in Fig. 5. This happens because the neutral excitations
are almost completely separated from the charge and there is
nothing to smear the effect besides the temperature. So the
energy is mostly spent on exciting the dipole mode, while a
small excess part of it gives rise to long-range electron-hole
excitations, which are responsible for the FES phenomenon.

We would like to mention also that in contrast to the
free-electron case, the amplitude of the steps is weighted
with the universal numbers cn, which are independent of the

FIG. 5. The tunneling rate �(�μ) (in arbitrary units) calculated
according to Eq. (49) with the coupling to the charge mode α =
−0.04. It represents the case of tunneling from a QH channel to a
QD with two chiral channels strongly interacting via a long-range
potential. In this case the Hamiltonian can be diagonalized in the bias
of a charge and a neutral mode. The bias can be chosen to be smaller
than the energy of the first excited state for the charge mode. Then,
the steps are explained by the excitation of the resonances of the
neutral mode, while the interaction with the charge mode guarantees
the appearance of the FES at each edge of the steps.

details of the interaction. For example, the first four numbers
are equal to 1, 1/2, 3/8, and 5/16. These numbers originate
from the expansion of the function (1 − ei�ωt−ε)−1/2 in (49)
as a Taylor series, while the square root can be viewed as a
manifestation of the charge fractionalization [30] caused by
the strong interchannel interaction in the QD.

V. TUNNELING TO A 3D QD IN THE COULOMB
BLOCKADE REGIME

In the previous section we have considered the situation
in which the charge mode in the QD in the QH regime is
separated by a Coulomb gap from the neutral mode, which
is only weakly coupled to the charge mode outside the
dot. However, because of the reduced dimensionality of the
system and as a result of strong interactions, an electron is
equally coupled to both modes, which has certain important
consequences, as discussed above. Here we consider another
quite common situation, where the QD is formed by a metallic
or a semiconductor granula of small size, so that the charged
mode is again separated by the Coulomb gap which results in
the Coulomb blockade effect. However, this time the QD is
a 3D system with the consequence that an electron has direct
coupling to neutral modes. In order to analyze this situation,
below we use the formalism introduced in Sec. II to derive the
analog of the well-known P (E) theory [31].

Having said that, we now consider the same QH system
[32] with a 3D QD, described by the following Hamiltonian:

H = H0 + Hint + Hd + Ht ,

with H0 corresponding to the free Hamiltonian (4) of the
QH channels. To model the 3D character of the dot and the
Coulomb blockade, we compactify one of the bosonic fields
φn(x) in (5) and take the zero limit for its length, L → 0, which
brings us to the following form of the interaction Hamiltonian:

Hint = 1

8π2

∑
nn′

∫∫
dxdyUnn′ (x,y)∂xφn(x)∂yφn′(y)

+ q
∑

n

∫
dx

2π
Un(x)∂xφn(x) (50)

and the QD’s energy

Hd =
∑

k

εkd
†
kdk + q2

2C
, (51)

where q is a charge at the QD and the second term corresponds
to the charging energy. So we naturally arrive from the bosonic
formalism at the fermionic description of the QD in this case.
Finally, the tunneling Hamiltonian has the form

Ht = A + A†, A =
∑

k

τkd
†
ke

i(φ0−φm), (52)

so that the tunneling occurs from the mth channel to the kth
level of the QD.

The field φ0(x,t) represents the charged mode at the dot.
However, as we consider the Coulomb blockade regime, i.e.,
the limit L → 0, only a zero mode (10) as well the lowest
energy mode in δφ0(ω) can be excited. The latter corresponds
to the excitation of the “zero” scattering states �

(0)
0n defined
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in (17) and (22). Therefore, to calculate the tunneling rate
we, basically, need to repeat the calculations in Sec. II. Thus,
the part of the tunneling Hamiltonian (52) responsible for the
charge mode reveals the FES contribution, while the neutral
mode correlators lead to the appearance of the steps:

�(�μ) ∝
∑

k

|τk|2θ (�μ − εk)(�μ − εk)α. (53)

As in the case of a QD at the filling factor ν = 2, considered in
the previous section, the FES effect is replicated at each step
corresponding to the excitation of a neutral mode. However, the
important difference is that now neither the level spacing nor
the amplitudes of the steps are regular and universal functions.

VI. CONCLUSION

Interaction of the QD with the QH edge channels results
in various curious phenomena, which manifest themselves
in the form of the tunneling rate to the dot. Working in the
framework of boson scattering theory we managed to describe
them considering a QD in the QH regime as a compactified
boson field. We first demonstrated a particular convenience of
this approach in describing a well-known FES phenomenon
at low energies. Its universality can now be understood as a
consequence of the connection between the scattering problem
in the low-energy limit and the electrostatic problem of screen-
ing. Namely, the charges induced in the channels around the
charged dot due to the interaction define the scattering states.

This method also allowed us to go to higher energies and
consider the excitation of the collective modes in the QD,
which is fully controlled by the interaction with the external
channels and in the QD itself. If the interaction inside the dot
is screened, so that the spectrum of plasmons is linear, there
is a full correspondence between the free-fermion levels and
the plasmon resonances. Thus, in the case of no interaction
between the channels and the QD, the tunneling rate curve
versus the bias is simply described by the set of steps, whereas
in the presence of interaction, the steps become smeared.
It is important to note that though we consider a relatively
small coupling, the effect is nonperturbative. However, it
was possible to describe the analytical solution due to the
fermion-boson correspondence as well as the chirality of
bosons. Next, we elaborated on the case of a weak dispersion
in the spectrum of plasmons in the QD which leads to the
splitting of fermion levels. This rather complicated behavior
can be again easily explained in terms of plasmons.

Finally, a QD with two chiral strongly interacting edge
channels also reveals interesting physics. Describing the
system in terms of well-separated charge and neutral modes
we showed that the tunneling rate acquires a universal form

at low enough energies. Remarkably, a different setup with a
3D QD in the Coulomb blockade regime exhibits a similar
behavior and can be treated within our general approach.
Nevertheless, unlike the previous case, a direct coupling to the
neutral mode leads to the nonuniversal structure of the result.
All the discussed phenomena can be explored experimentally,
which we strongly recommend [33].
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APPENDIX A: CROSS CORRELATOR FOR THE
MULTILEVEL QD

Let us justify why K(1)
2 can be considered as a perturbative

correction in Eq. (41). We start with applying the expression for
the scattering states (35) to (32) to obtain the cross correlator

K2 = −2qm

∫ ∞

0
dx(1 − eixt/τC )

sin x

|�|2 , (A1)

� = 1 − [1 − (iσ/2)x2]eix, (A2)

where we introduced the dimensionless variable x = ωτC . The
integral (A1) has a logarithmic divergence for small x cut by
e−ixt/τC . We explicitly singled out this divergence in Eq. (41)
to find the tunneling rate. This is the Mahan contribution that
defines the correct power-law exponent of the FES. The rest
of the cross correlator can be written as

K(1)
2 = −2qm

∫ ∞

0
dx(1 − e−ix t

C )

(
sin x

|�|2 − 1

x

)
. (A3)

This part is proportional to qm 	 1 and here we demonstrate
that the integral itself is of the order 1. First and foremost, we
make sure that there are no more divergences. We eliminated
the divergence for small x, but there is an ultraviolet cutoff
at large x. However, this contribution is also canceled by the
same cutoff in the FES [see Eq. (42)]. We also note that the
term containing the time exponent vanishes for large values of
x due to strong oscillations. Next, we have to check that by
isolating K(0)

2 , the Mahan term, we did not lose any additional
contributions coming from the small x. Indeed, expanding
around zero sin x

|�|2 − 1
x

∼ 1
x−x3σ/2 − 1

x
∼ xσ/2, one can see that

the deviation is small in σ . Finally, concerning the constant
part of the correction, it can be left aside as we are describing
the tunneling rate up to a multiplier. Consequently, the term
K(1)

2 in the cross correlator represents a perturbative correction
in coupling in the next order and thus can be neglected.
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