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We theoretically investigate the nonlinear optical pulse responses of excitons in a thin film where the excitonic
center-of-mass motion is confined. A large interaction volume between excitons and radiation yields particular
coupled states with radiative decay times reaching several femtoseconds. By considering two polarization
directions of light, we reveal that these fast-decay modes dominantly survive in an optical Kerr spectra even under
a massive nonradiative damping � = 30 meV. The results clearly show that there is an optimal combination of
the incident pulse width and the film thickness for maximizing the integrated intensity of nonlinear signals.
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I. INTRODUCTION

An attractive feature of nanostructures is their great
accessibility to single quantum states due to their apparent
quantization, which allows us to develop unconventional
photofunctions owing to the flexible controllability of the light-
matter interaction [1,2]. However, the light-matter interaction
of a single quantum state is essentially weak because of
the localization of its wave function. An effective method
for overcoming the small reaction cross section of a single
quantum state is utilizing auxiliary systems such as micro-
cavities or optical antennas made with metallic structures,
where the extremely localized photonic modes realize a high
probability of excitation of the single quantum states by a
few photons [3–5]. Another solution involves the realization
of spatially extended quantum states. A large coherent volume
due to collective dipole motions leads to an enhanced oscillator
strength [6,7]. In particular, the coherence length of excitonic
center-of-mass (c.m.) motions reaches several hundreds of
nanometers in the one-dimensional confined system. This
situation yields a large exciton-radiation coupling because the
multipole-type excitons with the c.m. quantum number λ � 2
can match their spatial phase with the radiation wave [8–10].
In contrast to the optical responses based on the conventional
long-wavelength approximation (LWA) of light, this type of
interaction exhibits remarkable optical effects such as a large
radiative shift leading to the interchange of the quantized levels
[9] and ultrafast radiative decay [10]. Such exciton-radiation
coupling beyond the LWA strongly modifies the optical spectra
relative to those expected from bare excitonic systems, and
the interpretation of the spectral shape becomes complex.
Although numerous studies have been performed on the
excitonic properties in thin-film geometry [11–17], efforts to
exploit the potential of light-matter coupling beyond the LWA
regime have only just begun, and the unresolved physics and
potential applications of excitons in promising materials offer
scope for further research.

Nanostructures of ZnO have attracted the attention of
researchers because of their potential applications in opto-
electronic devices operable even at room temperature (RT),
such as light-emitting diodes [18,19], ultraviolet photovoltaics
[20], and exciton polariton lasing [21,22] utilizing the wide
band gap and large exciton binding energy. Although the
formation of an exciton-radiation-coupled system is a key to

the exploitation of such applications, even the fundamental
structures of the coupled modes were previously unclear. In
recent years, however, we revealed that the radiation-induced
coupling between A and B excitons in thin-film structures
enhances the radiative decay rate of particular coupled states
[23]. This result motivates us to exploit coherent nonlinear
photofunctions such as ultrafast optical switching at RT
because the enhanced decay rates can be expected to exceed
the thermal dephasing at RT [24] (typically several tens of or
several hundreds of femtoseconds).

Herein, by considering two polarization directions of light,
we expand the nonlocal response theory of multicomponent
excitons [23] and investigate the optical Kerr response (OKR),
which is known as a typical third-order nonlinear optical
effect. Then we demonstrate that a particular A-B-coupled
state in ZnO with an enhanced radiative width of over 50 meV
dominantly survives in the OKR signals, even under a massive
nonradiative damping � = 30 meV. The incident pulse width
and the film-thickness dependence of the integrated intensity
of nonlinear signals clearly show that there is an optimal
combination between these two parameters for enhancing the
optical nonlinearity. The results indicate the importance of an
integrated design of nanostructures and an input optical pulse
for maximizing the veiled potential of single quantum states
for ultrafast nonlinear optics. The presented demonstrations
exhibit a striking contrast to the conventional understanding of
excitons, where the coherent nonlinear response is considered
to be negligible at RT because the radiative decay rate of
excitons never exceeds the thermal dephasing.

The rest of this article is organized as follows: Section II
outlines the theory of nonlocal optical response for deriving the
radiative decay time of the exciton-radiation-coupled system.
Section III demonstrates the optical Kerr spectra considering
two kinds of temperature regions: cryogenic temperature (CT)
and RT. In Sec. IV, we investigate the pulse width and film
thickness dependences of nonlinear signals to determine the
optimal pulse width for each film thickness. The results and
discussions in this article are summarized in Sec. V.

II. RADIATIVE DECAY TIME

Beyond the LWA regime, the interplay between the spatial
structures of the radiation and excitonic wave function is
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activated. Recently, we constructed a theoretical framework
for the nonlocal optical response of multicomponent excitons
in a thin-film structure with special attention to their self-
consistency [23]. In this section, we review the formalism of
the linear response to obtain a full understanding of exciton-
radiation-coupled modes and the origin of fast radiative decay.
As a model system, we considered a thin-film structure with
a thickness of d along the z axis. The thickness is assumed
to be far greater than the effective Bohr radius of an exciton;
thus, the excitonic relative motion can be treated in the same
way as that in the bulk system. In this condition, only the c.m.
motion of excitons is confined in the sample. We neglect the
confinement effect of the relative motions of an electron-hole
pair, which dominantly contributes to the energy structure of
excitons in the size region where the thickness reaches the
effective Bohr radius [25] (1.8 nm for ZnO [26]). According
to the standard effective-mass approximation, the eigenenergy
of the bare exciton is given as Eσλ = Eσ + (h̄2k2

σλ)/(2Mσ ),
where σ is an index for labeling multiple exciton bands (thus,
σ corresponds to A or B in the case of ZnO), Eσ is the
energy of a transverse exciton in the bulk limit, and Mσ is the
effective mass of an exciton. In a thin sample, the distortion
of wave functions near the surface generally affects the energy
structures of excitons. We therefore applied a microscopic
transition layer model [27,28] as the excitonic c.m. wave
function gσλ(z). In this model, the quantization condition is
given as kσλd − 2 tan−1 kσλ/Pσ = λπ (λ = 1,2, . . . ), where
Pσ is a decay constant of evanescent waves with a value on
the order of the inverse of the effective Bohr radius, indicating
the distortion length. In this paper, we fix these values as the
effective Bohr radius (1/PA = 1/PB = 1.8 nm) because the
optical signal is not sensitive to a change in Pσ for a thickness
beyond the LWA regime [23], although for thin samples in
the LWA regime, Pσ is one of the important parameters for
accurate analysis of the c.m. quantization as demonstrated in
Ref. [29].

According to the linear-response theory [30], the j th-order
polarization can be obtained from the perturbation expansion
method of the density matrix. The first-order polarization in
the site representation P (1)(z,ω) can be written in nonlocal
form as [23]

P (1)(z,ω) =
∫

χ (z,z′,ω)E(z′,ω)dz′. (1)

In this expression, a resonant term of the nonlocal susceptibil-
ity is written as

χ (z,z′,ω) =
∑

σ

∑
λ

pσλ(z)p∗
σλ(z′)

Eσλ − h̄ω − i�σ

, (2)

where �σ is a nonradiative damping constant and pσλ(z) =
μσ gσλ(z). In our definition, μσ has the dimension of a dipole
moment per one-half power of volume. This value is obtained
from multiple longitudinal-transverse splitting energies [23].

P(z,ω) should be determined self-consistently with the
electromagnetic field in Maxwell’s equation. Assuming nor-
mal incidence for simplicity, the Maxwell electric field E(z,ω)
in integral form is written as

E(z,ω) = E (0)(z,ω) + 4πq2
∫

dz′G(z,z′,ω)P(z′,ω), (3)

FIG. 1. Calculation model for optical Kerr response.

where E (0)(z,ω) is the background electric field, and G(z,z′,ω)
is the retarded Green’s function for a thin-film structure [31].
The eigenmodes of an exciton-radiation-coupled system are
obtained from

det|(Eσ ′λ′ − h̄ω)δσ ′σ δλ′λ + Aσ ′σλ′λ(ω)| = 0, (4)

where Aσ ′σλ′λ(ω) describes the radiative correction from the
bare exciton state written as

Aσ ′σλ′λ(ω) = −4πq2
∫∫

dz dz′p∗
σ ′λ′(z)G(z,z′,ω)pσλ(z′),

(5)

which indicates the coupling between the λth σ -band exciton
and λ′th σ ′-band exciton via radiation. This term includes the
radiation-induced coupling between different band excitons
(A and B excitons for ZnO) when σ ′ �= σ .

The real part Re[h̄ωξ ] gives the eigenenergy including the
radiative shift from the bare exciton energy, and the imaginary
part −Im[h̄ωξ ] gives the radiative width, where ξ is an index
of the quantized exciton-radiation-coupled states. Considering
the exponential decay of signals, we defined the radiative decay
time τξ as

τξ = −1

2Im[ωξ ]
. (6)

III. OPTICAL KERR RESPONSE

First we investigate the nonlinear optical spectra of A and
B excitons in a ZnO thin film, focusing on the OKR. Figure 1
shows a calculation model for the OKR. The polarization angle
of the pump light is rotated by π/4 to that of the X-polarized
probe light. The pump light with both X and Y components
modulates the susceptibility through the third-order nonlinear
component, which generates a temporal birefringence of
the sample. The Y-polarized probe light contains a pure
nonlinear component without the background electric field,
i.e., E (0)

y (z,ω) = 0. On the other hand, the X-polarized probe
light contains both nonlinear and linear components, including
the background electric field. To calculate the output OKR
signals, we expand the formalism of degenerate four-wave
mixing (DFWM) in Ref. [23] with consideration of two
polarization directions of light. In the present demonstration,
we focus on the dominant contribution, i.e., the effects of the
one-exciton resonance, while avoiding nonessential issues of
two-exciton contributions [23]. Elaborate analysis considering
the free two-exciton states through the cancellation effect [32]
is necessary for evaluating the absolute values of OKR signals,
although we do not consider it in the present study.
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Considering the first- and third-order polarizations, the total electric field of this configuration can be written as

Ex(y)(z,ω) = E (0)
x(y)(z,ω) +

∑
σ

∑
ν

{
Xx(y)

σν (ω) + Ux(y)
σν (ω)

}
Bσν(z,ω), (7)

where Bσν(z,ω) is defined as

Bσν(z,ω) = 4πq2
∫

dz′G(z,z′,ω)pσν(z′). (8)

In Eq. (7), X
x(y)
σν (ω) and U

x(y)
σν (ω) are written as

Xx(y)
σν (ω) = 1

Eσν − h̄ω − i�σ

∫
p∗

σν(z)Ex(y)(z,ω) dz, (9)

and

Ux(y)
σν (ω) =

∑
λ

∫∫
dω1dω2X̄σνλ(ω,ω1,ω2)H

pumpx(y)
σν (ω1)H ∗pumpx

σλ [(ω1 + ω2) − ω]H probex

σλ (ω2), (10)

where Hσν(ω) = ∫
p∗

σν(z)E(z,ω) dz should be determined self-consistently by solving the third-order Maxwell’s equation.
However, if we assume that an electric field originating from the third-order polarization is far weaker than that originated from
the linear polarization, this value corresponds well to the solution of the linear response calculation. X̄σνλ(ω,ω1,ω2) includes
energy denominators of triple resonance to the input frequencies ω1, ω2, and the observed frequency ω written as

X̄σνλ(ω,ω1,ω2) = 1

(h̄ω1 − h̄ω − iγσ )(Eσν − h̄ω − i�σ )

{
1

Eσλ − h̄ω2 − i�σ

+ 1

−Eσλ + h̄(ω1 + ω2 − ω) − i�σ

}

+ 1

(Eσν − Eσλ − h̄ω + h̄ω2 − i�σ )(Eσν − h̄ω − i�σ )

×
{

1

−Eσλ + h̄(ω1 + ω2 − ω) − i�σ

+ 1

Eσν − h̄ω1 − i�σ

}
, (11)

where γσ is a nonradiative population decay constant. It
should be noted that Eq. (11) has the same form as the
case of the DFWM in Eq. (19) in Ref. [23]. Generally, the
OKR and the DFWM are different nonlinear processes; thus,
the combination of incident frequencies changes for each
process. For example, assuming that the two incident lights are
continuous waves with the pump frequency ω1 and the probe
frequency ω2, the observed OKR frequency is ω = ω2. On the
other hand, the observed DFWM frequency is ω = 2ω1 − ω2

or ω = 2ω2 − ω1. Therefore, if we use the combination of ω1

and ω2 as the observed frequency instead of ω, the expression
for the denominator of the triple-resonance term has a different
form for each process. However, by utilizing the same ω for
each process, we find that Eq. (11) is the same as that in
the case of the DFWM, although the numerator differs for
each process as shown in Eq. (10) in this manuscript and Eq.
(18) in Ref. [23]. In addition, the generated nonlinear signal
includes every combination of Fourier components in the pump
and probe pulses. We integrate over these components by the
numerical method.

As conditions of the input lights, we assume Gaussian
pulses whose integrated intensity of the pump (probe) light
is fixed to 3.0 μJ/cm2 (0.3 nJ/cm2), and the center energies
are both 3.378 eV. Here, we consider two temperature regions
CT and RT, and set the corresponding nonradiative damping
parameters as �σ = γσ = 2 and 30 meV. In addition, we
used the material parameters of A and B excitons in bulk
ZnO [33] as listed in Table I, where m0 is the static electron
mass.

Figure 2(a) shows the �σ dependence of the optical Kerr
spectra Iy(ω) of a ZnO thin film normalized by the peak
intensity of the input probe pulse Iprobe(ω), and Fig. 2(b)
shows the eigenmodes of the exciton-radiation-coupled system
(radiative width vs eigenenergy) for a film thickness of 291 nm.
The 120-fs input pulses can cover a certain range of spectral
width and partially excite the lower (Re[h̄ωξ ] < EA), middle
(EA � Re[h̄ωξ ] � EB), and upper (EB < Re[h̄ωξ ]) branches
of exciton-radiation-coupled modes at once. The energy and
spectral width of the signals obviously reflect the eigenenergy
and radiative width. In the case where �σ = 2 meV (CT
region), the eigenmodes with a radiative width larger than
2 meV dominantly appear; thus, large splitting between the
lower and upper peaks is obvious in the spectrum. On the
other hand, the eigenmodes with a radiative width smaller
than 2 meV are less reflected in the spectrum because of the
damping effect. Here, each of the two peaks at the CT should
not be attributed solely to the A or B exciton according to
their energy position. These two peaks should be assigned to

TABLE I. Parameters of bulk ZnO [33].

A B

MA = 0.87m0 MB = 0.87m0

EA = 3.3758 eV EB = 3.3810 eV
EL1 = 3.3776 eV EL2 = 3.3912 eV

LT 1 = 1.8 meV 
LT 2 = 10.2 meV
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FIG. 2. (a) �σ dependence of calculated optical Kerr spectra
Iy(ω) normalized by the peak intensity of the input probe pulse
(the dotted line indicates spectrum of input 120-fs probe pulse), and
(b) eigenmodes of exciton-radiation-coupled system (radiative width
vs eigenenergy) for a film thickness of 291 nm. Serial numbers from 1
to 5 are assigned to eigenmodes which correspond to ones in Fig. 4(a).

respective mixed modes containing both A and B excitons
owing to the radiative coupling [23].

With an increase in thermal damping �σ , these two peaks
disappear, and only one peak with a spectral width broader
than the input pulse width appears (red line). The spectral
width contains both radiative and nonradiative widths. From
the eigenmode analysis as shown in Fig. 2(b), the red signal
can be mainly attributed to mode 4 because this mode has
a radiative width larger than 50 meV (and thus larger than
�σ = 30 meV). The figures clearly demonstrate that the large
nonlinear signal can survive even at RT regions when the
radiative decay is faster than the nonradiative decay.

In the aforementioned discussions, the 120-fs input pulse
may not be very effective for maximizing the nonlinear
intensity, because it cannot cover the entire radiative width
of the fastest mode. Additionally, there are dependences of
the input pulse width and the film thickness on the output
nonlinear intensities. In the next section, we investigate how
the nonlinear intensity can be maximized by changing these
parameters.

IV. NONLINEAR EFFICIENCY

To evaluate the intensity of the OKR signals, we defined the
nonlinear efficiency η as the ratio of the integrated intensity of
the input probe light to that of the output Y-polarized one, as
follows:

η =
∫

Iy(ω)dω∫
Iprobe(ω)dω

. (12)

Figure 3 shows the pulse-width dependence of the nonlinear
efficiency η for a film thickness of 291 nm. The value of
η is maximized when the input pulse effectively covers the
peak structures as shown in Fig. 2(a). In the case where
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FIG. 3. Pulse-width dependence of nonlinear efficiency η for a
film thickness of 291 nm.

�σ = 2 meV (CT region), the upper and lower modes are
relatively dominant compared with the fastest decay mode.
Therefore, nearly 40-fs pulses are optimal. Pulses that are too
short are not effective because of the loss of energy.

On the other hand, when �σ = 30 meV (the RT region),
the fastest decay mode with a radiative width over 50 meV
(radiative decay time reaching several femtoseconds) domi-
nantly survives in the optical responses. In this situation, a
shorter input with a nearly 15-fs pulse width is more effective
for covering the very broad radiative width. The nonlinear
efficiency is enhanced by a factor of 10 compared with that
of the 120-fs pulse excitation. Significantly, the high damping
does not greatly reduce the nonlinear efficiency for nearly 15-fs
input pulses, although the damping is 15 times greater than that
at CT. This is because the radiative width of the fastest mode
is far larger than �σ and less affected by the thermal damping
effects.

According to these results, we expect compatibility between
fast and strong nonlinear responses caused by short-pulse
excitation in the RT region. We demonstrate this by comparing
the radiative decay time τξ and the nonlinear efficiency
η. Figure 4 shows the film-thickness dependences of τξ

and η with different pulse widths at �σ = 30 meV. These
figures reveal two particularly noteworthy points: (1) The
optimal pulse width depends on the film thickness. This is
because the radiative width of the exciton-radiation-coupled
mode is determined according to the interaction volume (film
thickness) between the exciton and radiation field. Therefore,
when the radiative decay time becomes far shorter than the
input pulse width with an increase in the film thickness, the
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FIG. 4. Film-thickness dependence of (a) the radiative decay
time τξ of exciton-radiation-coupled modes, and (b) the nonlinear
efficiency η with different pulse widths at �σ = 30 meV.
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nonlinear efficiency decreases. (2) In the case of the 10-fs
pulse, similar to the tendency of the radiative decay times,
the nonlinear efficiency increases with the film thickness. In
particular, the local minimal values of the radiative decay time
and maximal values of the nonlinear efficiency occur around
the same thickness, indicating that the fast radiative decay
of excitons becomes compatible with the sufficient nonlinear
responses if an appropriate film thickness and input pulse width
are selected.

For a thickness region less than 80 nm in length, the
nonlinear efficiency is weak. However, around this thickness,
where the speed of radiative-decay exceeds that of dephasing,
the growth of the nonlinear efficiency becomes rapid even
in the case of �σ = 30 meV. For ZnO, this occurs in a
relatively thin region because particular exciton-radiation-
coupled modes exhibit a larger radiative width owing to the
radiative coupling of the A and B excitons.

V. CONCLUSION

With the A and B excitons in ZnO, we theoretically
investigated the radiative decay times of exciton-radiation-
coupled modes and their nonlinear optical responses by pulse
excitation, focusing on the optical Kerr effect. Because of the
large radiative coupling of excitons, particular modes exhibit
large radiative widths over 50 meV (short radiative decay times
reaching several femtoseconds), which can exceed the typical
thermal damping at RT. This is why such modes survive in

coherent nonlinear optical signals such as the OKR in the
case of a large damping parameter in the RT region. Then,
we demonstrated the pulse-width dependence of the nonlinear
efficiency (defined as the ratio of the integrated intensity of
the input light to that of the output light), which is expected
to increase when the input pulse effectively covers the broad
radiative widths of the exciton-radiation-coupled modes. We
discovered that the optimal short pulse enhanced the nonlinear
efficiency with sufficient values even at RT, compared with
those in the CT region. Furthermore, the film-thickness de-
pendence of the radiative decay times and nonlinear efficiency
clearly indicate the possibility of compatibility between the
fast and strong nonlinear responses by choosing an appropriate
film thickness and input pulse width. The presented results
draw a contrast to conventional observations of the optical
responses of excitons, where a coherent nonlinear response is
considered to be never prominent at RT, because the thermal
dephasing is far faster than the typical radiative decay of
excitons.
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