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Long-range exchange interaction in triple quantum dots in the Kondo regime
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Long-range interactions in triple quantum dots in the Kondo regime are investigated by accurately solving
the three-impurity Anderson model. For the occupation configuration of (N1,N2,N3) = (1,0,1), a long-range
antiferromagnetic exchange interaction (JAF) is demonstrated and induces a crossover from the separated Kondo
singlet to the long-range spin singlet state between edge dots. In the long-range spin singlet phase, a long-range
overlapping or entanglement of Kondo clouds is discovered, which induces a transition peak in the spectral
function of the middle dot under equilibrium conditions. Under nonequilibrium conditions, the long-range
entanglement of the Kondo clouds is characterized by the conductance peak at zero bias, which can be observed
in experiments.
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I. INTRODUCTION

Long-range interaction as a high-order interaction origi-
nates from the superpositions of indirectly coupled states. It
plays an important role in many-body physics and quantum
computing [1–4]. For the latter, the long-range interaction
makes it possible to manipulate a distant quantum gate or
qubit in one step, which is of higher operating efficiency
and fault-tolerant capability than nearest-neighbor control in
exchange-based quantum gates [5]. The triple-quantum-dot
(TQD) device provides an ideal platform for investigating
the quantum manipulation [6–11]. The long-range transport
in serially coupled TQDs has been observed in recent ex-
periments [3,12,13]. For example, Platero et al. measured
a resonant transport line (in the area of the bipolar spin
blockade) between the edge dots, which suggests a long-
range coherent superposition near the degenerate point of
(N1,N2,N3) = (1,1,1)/(2,1,2) (Ni is the number of electrons
in ith QD) [12]. Shortly afterwards, the same group reported
a long-range spin transfer near another degenerate point of
(1,0,1)/(2,0,2), where QD2 remains unoccupied during the
tunneling process [13]. Vandersypen et al. demonstrated a
high-order coherent tunneling between QD1 and 3 near the
degenerate point of (0,1,0)/(1,1,1) through the observation of
Landau-Zener-Stückelberg interference [3].

In order to produce measurable current, all of above
experimental results are achieved in the boundary of Coulomb
blockade near degenerate points in the stability diagram.
However, these regimes are not suitable for theoretical analysis
of the long-range interaction (especially the long-range spin
correlation or exchange interaction), since occupation numbers
and magnetic moments of QD1 and 3 are not conserved
during the transport under bias in those boundaries. One better
choice is to push the range of study deeply into the Coulomb
blockade region far away from the degenerate points, such
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as the local moment regime of QD1 and 3 where both the
occupation number and spin are well defined. In order to
produce measurable current or other observable features, we
investigate the long-range exchange interaction and its effects
in the Kondo regime.

The Kondo phenomenon itself is an important and in-
teresting issue in TQDs. It results from the screening of a
localized spin by the delocalized spins from reservoirs (or
leads), which presents a pronounced zero-bias conductance
peak at temperatures below the Kondo temperature in QD
systems, with a Kondo singlet (KS) formed [14–16]. Recently
considerable theoretical efforts have been made in the topic
of serial TQDs, such as the equilibrium and nonequilib-
rium Kondo transport properties [17], Fermi-liquid versus
non-Fermi-liquid behavior [18], and two-channel Kondo
physics [19]. In addition, the Kondo phenomenon in other
structures of TQDs has been discussed as well, including the
mirror symmetry TQDs [20–22], triangular TQDs [23–26],
and parallel TQDs [27]. To the best of our knowledge, none of
these works concern the long-range exchange interaction and
its effect on the Kondo phenomenon in TQDs.

In the present work, we study the long-range exchange
interaction between QD1 and 3 in the Kondo regime in serial
TQDs, by accurately solving the three-impurity Anderson
model with the hierarchical equation of motion (HEOM)
formalism [28,29]. The geometry is depicted in Fig. 1(a).
Two symmetrical edge dots (QD1 and 3) are in the local
magnetic moment regime (N1 = N3 = 1), and are coupled to
the source (S) and drain (D) reservoir but decoupled from each
other (t13 = 0). The intermediate one (QD2) symmetrically
couples to the QD1 and 3 (t12 = t23 = t) via a variable
singly occupied level ε2 modulated by a gate voltage Vg .
In order to highlight the long-range correlation, we focus
on the occupation configuration of (N1,N2,N3) = (1,0,1) by
pushing ε2 high enough, as schematically shown in Fig. 1(b).
In the limit of (1,1,1), we have reported a reappearance of the
Kondo phenomenon and worked out an effective ferromagnetic
exchange interaction between QD1 and 3 [30]. In the present
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FIG. 1. (a) The schematic diagram of the triple-quantum-dot
system. In present work, QD1 and 3 are symmetric and both in
the localized momentum regime with N1 = N3 = 1. QD2 is nearly
unoccupied with a gate-modulated on-site energy ε2 = −U/2 + eVg .
(b) The schematic diagram is shown for the long-range antiferromag-
netic exchange interaction (JAF) between QD1 and 3 via high-order
tunneling processes.

work, as schematically shown in Fig. 1(b), we will demonstrate
a long-range antiferromagnetic exchange interaction (JAF >

0), which can be simply expressed in terms of JAF ≈ 4t4/ξ 2U ,
where ξ ≡ ε2 − ε1 (ε1 being the on-site energy of QD1) is
called the detuning energy, and U (Ui = U ; i = 1,2,3) is
the on-dot Coulomb interaction. The effect of JAF on Kondo
features including spectral characteristics and Kondo current
in TQDs will be discussed in detail.

II. MODEL AND THEORY

The total Hamiltonian for the system is described by the
three-impurity Anderson model

H = Hdots + Hres + Hcoup, (1)

where the isolated TQD part is

Hdots =
∑

σ,i=1,2,3

[εiσ â
†
iσ âiσ + Uniσniσ̄ ]

+ t
∑

σ

(â†
1σ â2σ + â

†
2σ â3σ + H.c.), (2)

with â
†
iσ (âiσ ) being the operator that creates (annihilates) a

spin-σ electron with energy εiσ in ith QD. niσ = â
†
iσ âiσ is the

operator of the occupation number.
In what follows, the symbol μ is adopted to denote the

electron orbital (including spin, space, etc.) in the system
for brevity, i.e., μ = {σ,i, . . . }. The device reservoirs are
treated as single-particle systems with the Hamiltonian as
Hres = ∑

kμα=S,D εkαd̂
†
kμαd̂kμα , with εkα being the energy of

an electron with wave vector k in the α reservoir, and
d̂
†
kμα(d̂kμα) the corresponding creation (annihilation) operator

for an electron with the α-reservoir state |k〉 of energy εkα .
The Hamiltonian of the dot-reservoir coupling is Hcoup =∑

kμα tkμαâ†
μd̂kμα + H.c. To describe the stochastic nature

of the transfer coupling, it can be written in the reservoir
Hres-interaction picture as Hcoup = ∑

μ[f †
μ(t)âμ + â†

μfμ(t)],

with f †
μ = eiHrest [

∑
kα t∗kμαd̂

†
kμα]e−iHrest being the stochastic

interactional operator and satisfying the Gauss statistics.
Here, tkμα denotes the transfer coupling matrix element.
The influence of electron reservoirs on the dots is taken
into account through the hybridization functions, which as-
sume Lorentzian form, �α(ω) ≡ π

∑
k tαkμt∗αkμδ(ω − εkα) =

�W 2/[2(ω − μα)2 + W 2], where � is the effective quantum
dot–reservoir coupling strength, W is the bandwidth, and μα

is the chemical potentials of the α reservoir.
In this paper, the three-impurity Anderson model is accu-

rately solved by the HEOM approach, which is established
based on the Feynman-Vernon path-integral formalism with a
general Hamiltonian, in which the system-environment corre-
lations are fully taken into consideration [28,29]. The HEOM
formalism is in principle accurate and applicable to arbitrary
electronic systems, including Coulomb interactions, under the
influence of arbitrary applied bias voltage and external fields.
The outstanding issue of characterizing both equilibrium and
nonequilibrium properties of a general open quantum system
is referred to Refs. [28–33]. It has been demonstrated that
the HEOM approach achieves the same level of accuracy
as the latest high-level numerical renormalization group and
quantum Monte Carlo approaches for the prediction of various
dynamical properties at equilibrium and nonequilibrium [29].

The reduced density matrix of the quantum dot system
ρ(0)(t) ≡ trres [ρtotal(t)] and a set of auxiliary density matrices
{ρ(n)

j1···jn
(t); n = 1, . . . ,L} are the basic variables in HEOM. L

denotes the truncated tier level. The equations governing the
dynamics of open systems are in the form of [28,29]

ρ̇
(n)
j1···jn

= −
(

iL +
n∑

r=1

γjr

)
ρ

(n)
j1···jn

− i
∑

j

Aj̄ ρ
(n+1)
j1···jnj

− i

n∑
r=1

(−)n−r Cjr
ρ

(n−1)
j1···jr−1jr+1···jn

, (3)

where Aj̄ and Cjr
are Grassmannian superoperators which are

illustrated in detail in Refs. [28,29].
The dynamical quantities can be acquired via the HEOM-

space linear response theory [34]. The spectral function A(ω)
exhibiting prominent Kondo signatures at low temperatures
can be evaluated by a half Fourier transformation of correlation
functions as

Aμ(ω) = 1

π
Re

( ∫ ∞

0
dt{C̃

â
†
μâμ

(t) + [C̃
âμâ

†
μ
(t)]∗}eiωt

)
. (4)

The electric current from the α reservoir to the system is
given by

Iα(t) = i
∑

μ

trs[ρ
†
αμ(t)âμ − â†

μρ−
αμ(t)], (5)

where ρ†
αμ = (ρ−

αμ)† is the first-tier auxiliary density operator.
The details of the HEOM formalism and the derivation of
physical quantities are supplied in Refs. [28,29].

III. RESULTS AND DISCUSSION

As shown in Fig. 1, we assume that QD1 and 3 always keep
electron-hole symmetry and their parameters are the same,
in which ε1 = ε1 = −U/2 and ε3 = ε3 = −U/2. In order to
figure out whether there may exist a long-range exchange
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FIG. 2. The spin-spin correlation function C13 ≡ 〈�S1 · �S3〉 −
〈�S1〉 · 〈 �S3〉 varies as a function of the on-site energy of QD2, i.e., ε2,
and the nearest interdot coupling strength t . Two phases are shown: the
Kondo singlet (KS, C13 ∼ 0) and long-range spin singlet (LSS, C13 <

0). The horizontal dashed line marks the gradual change of phases
from KS to LSS, which is further elucidated by the spectral functions
of the scatter points (see Fig. 3). The vertical dashed line marks the
gradual change of phases with ε2 at t = 0.7 meV. The parameters
are as follows: U = 1.2 (in units of meV), ε1 = ε3 = −0.6, the
bandwidth of reservoirs W = 5.0, the temperature KBT = 0.03, and
the hybridization width between reservoirs and QDs is � = 0.3.

interaction, we calculate the spin-spin correlation function
between QD1 and 3,

C13 ≡ 〈�S1 · �S3〉 − 〈�S1〉 · 〈 �S3〉. (6)

In Fig. 2, we depict C13 as a function of the modulated
on-site energy of QD2 (ε2 = ε2 + eVg) and the nearest interdot
coupling strength t . The other parameters are as follows: the
on-dot Coulomb correlation U = 1.2 (in unit of meV), the
bandwith of reservoirs W = 5.0, the temperature KBT = 0.03
which is much lower than the Kondo temperature of QD1 or
3 derived from the analytical formula in the literature [15],
and the hybridization widths between reservoirs and QDs
� = 0.3. In present work, we set ε2 > 1.0 meV to keep the
configuration of (1,0,1). Two phases are shown in the figure.
The first one is the Kondo singlet (KS) which is characterized
by near zero correlation between �S1 and �S3 (C13 ∼ 0) at small
t . The second one is the main finding of the present work,
called the long-range spin singlet (LSS) characterized by finite
C13 (C13 < 0 in the figure), which proves that a long-range
exchange interaction between �S1 and �S3 dose exist although
direct coupling between them is absent. From the sign of C13,
we conclude that the long-range exchange is antiferromagnetic
and thus we suggest an effective interaction term as

H13 = JAF �S1 · �S3. (7)

It is expected that H13 plays an important role in quan-
tum computing, which can expand the original idea of the
exchange-based quantum gates [5], by manipulating a distant
quantum gate or qubit in one step. We comment that the
small value of C13 in the bottom right corner of Fig. 2 results
from the competition between the LSS phase and the effective
ferromagnetic phase we have reported in Ref. [30].

More detailed information of the phase diagram in Fig. 2
can be illustrated by the spectral functions Aiσ (ω) in differ-

FIG. 3. The spectral functions Ai(ω) of the TQDs are shown at
ε2 = 3.0 (in unit of meV, ξ = 3.6) for different interdot coupling
strengths along the horizontal line in Fig. 2: (a) t = 0.01, (b) t = 0.5,
and (c) t = 0.7. The top panel: i = 1; the middle panel: i = 2; and
the bottom panel: i = 3. The other parameters are the same as those
in Fig. 2.

ent phases. The spin degeneracy makes Ai↑(ω) = Ai↓(ω) =
Ai(ω) and the symmetry in our model also suggests A1(ω) =
A3(ω). We select three characteristic points at t = 0.01, 0.5,
and 0.7 meV along the dashed line in Fig. 2 at ε2 = 3.0 (ξ =
3.6) meV, and depict their corresponding Ai(ω) in Figs. 3(a) to
3(c). By referring to Figs. 2 and 3, we find in the limit of weak
interdot coupling (t < 0.2 meV) the absence of long-range
correlation (C13 ∼ 0) results in the individual screening of
local momentums by the nearest reservoirs; thus the degenerate
KS state is formed. The spectral function A1(ω)/A3(ω) shows
similar behavior to that in a single QD with one Kondo peak
at ω = 0, while A2(ω) ∼ 0 around ω = 0 due to the empty
occupation, as shown in Fig. 3(a). With the increase of the
interdot coupling, the single peak of A1(ω)/A3(ω) grows
slightly higher due to the “t-enhanced Kondo phenomenon”
(figure not shown) [31].

Further increasing t to t > 0.3 meV distinctly changes
the Kondo features. As shown in Fig. 3(b), the central
peak of A1(ω)/A3(ω) becomes much higher and wider at
t = 0.5 meV than that at t = 0.01 meV; meanwhile a small
peak develops in A2(ω) near ω = 0. The latter is unusual,
since QD2 is still empty and the emerging peak impossibly
results from Kondo screening directly. The most possible
mechanism is the long-range tunneling between QD1 and
3 by the aid of JAF, or equivalently speaking, the electron
wave functions separately localized in QD1 and 3 at t ∼ 0
becomes overlapping within QD2 now. At first glance, it is
analogous to the ordinary double-well model in the textbooks;
however, what are localized in QD1 and 3 here are not ordinary
electrons but Kondo quasiparticles. This means that the Kondo
quasiparticle in QD1 can tunnel to QD3 through QD2, via
overlapping their wave functions which are nothing but the
widely studied “Kondo cloud” [35]. Although we cannot
present the spatial distribution of Kondo clouds here, we
have demonstrated their long-range overlapping, or long-range
quantum entanglement [36].
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FIG. 4. The I -V curves of the TQD system at various detuning
energies ξ at t = 0.7 (in units of meV) along the vertical line in
Fig. 2 at (a) low temperature KBT = 0.03, and (c) high temperature
KBT = 0.3. The corresponding differential conductance dI/dV -V
curves at (b) low temperature KBT = 0.03 and (d) high temperature
KBT = 0.3. The other parameters are the same as those in Fig. 2.

In the limit of strong interdot couplings, e.g., t = 0.7 meV,
the overlapping of Kondo clouds of QD1 and 3 becomes much
stronger to induce a distinct peak in A2(ω); meanwhile the
long-range JAF has induced the crossover from the degenerate
KS state of individual QD to the LSS state (see Fig. 2),
characterized by the splitting of the Kondo peaks of QD1
and 3 in Fig. 3(c). Since Kondo clouds are hard to be observed
in experiments [35], we suggest that they can be captured by
their long-range overlapping or entanglement.

In order to relate to experiments and highlight the effect of
long-range entanglement of Kondo clouds under nonequilib-
rium conditions, we then calculate the current-voltage (I -V )
curves and corresponding differential conductances dI/dV at
various detuning energy ξ at t = 0.7 meV and summarize the
results respectively in Figs. 4(a) and 4(b) at low temperature
KBT = 0.03. Interestingly, we find that current can increase
with the increase of ξ , or with the increase of the height of
the potential barrier. For example, the current at V = 0.02 mV
increases from 1.3 nA at ξ = 1.6 meV to 2.0 nA at ξ = 3.6
meV, as shown in Fig. 4(a). Meanwhile, a conductance peak at
zero bias develops with the increase of ξ , as shown in Fig. 4(b).
The anomalous enhancement of transport ability obviously
results from the long-range entanglement of Kondo clouds. At
t = 0.7 and ξ = 3.6 meV, the long-range entanglement of the
Kondo clouds is strong enough to form an extended conductive
channel (see Fig. 3); thus the electrons can transfer through
QD1 to 3 along this channel no matter how high the barrier
in QD2, which induces the enhancement of current and the
development of conductance peak at zero bias.

The long-range transport with the aid of the entanglement of
Kondo clouds is a many-body effect that is distinctly different
from the low-order sequential tunneling and cotunneling. That
point can be verified by checking the transport properties at
temperature higher than the Kondo temperature, as shown in
Figs. 4(c) and 4(d), which depicts the I -V and dI/dV -V
curves with the same parameters as those in Figs. 4(a) and 4(b)
except KBT = 0.3 meV. Now, the current decreases normally

FIG. 5. The differential conductance dI/dV -V curves of the
TQD system at ξ = 3.6 (in units of meV) for different phases along
the horizontal line in Fig. 2: KS (t = 0.2), crossover region (t = 0.5),
and LSS (t = 0.7). The other parameters are the same as those
in Fig. 2.

with the increase of ξ or with the increase of the height of the
barrier. Of course, no conductance peak can be seen any more
[Fig. 4(c)], and all of the dI/dV -V curves become flat with
the values of conductance much smaller [Fig. 4(d)] than those
shown in Fig. 4(b).

In order to verify the conclusion that the long-range
entanglement of the Kondo clouds is characterized by the con-
ductance peak at zero bias, we calculate the dI/dV -V curves
at ξ = 3.6 meV in different phases along the horizontal line
in Fig. 2: KS (t = 0.2 meV), crossover region (t = 0.5 meV),
and LSS (t = 0.7 meV). The results are shown in Fig. 5, where
the scale of the value of dI/dV of the KS phase is expanded
by a factor of 10. As shown in the figure, at small t (KS
phase), although the Kondo peaks in QD1 and 3 contribute a
possible conductive channel, the high barrier of QD2 prevents
the transfer of electrons from QD1 to QD3. Increasing t to
0.5 meV drives the TQDs into the crossover region between
KS and LSS. The weak entanglement of Kondo clouds [see
Fig. 3(b)] can assist the tunneling of electrons and introduce a
conductance peak ∼0.4e2/h at zero bias, as shown in Fig. 5.
Further increasing t will broaden and heighten the conductance
peak. In the LSS phase at t = 0.7 meV, the conductance
peak at zero bias increases to a much higher value ∼0.9e2/h

(see Fig. 5) due to the strong entanglement of Kondo clouds
[see Fig. 3(c)]. We confirm the maximum value of the
conductance peak only accessible in the LSS phase. If one
drags the phase out of the LSS by changing t or ε2 from the
top right corner of Fig. 2, the peak will shrink and decrease
(figures not shown).

Finally, we will derive an analytical expression of JAF for
isolated TQDs, and then prove it is also valid in the open TQD
system over a wide range of parameters. We start from the
Hamiltonian of Eq. (2) for isolated TQDs and constrain our
derivation in the subspace with a total occupation number of
NT ≡ N1 + N2 + N3 = 2. The states of double occupation in
QD2 (with zero occupation in QD1 and 3, i.e., the |0,2,0〉
states) are excluded because their energy is much higher than
others. When t = 0, E|1,0,1〉 =2ε1,E|2,0,0〉 =E|0,0,2〉 =2ε1 + U ,
and E|1,1,0〉 = E|0,1,1〉 = 2ε1 + ξ . Since only low-energy states
are concerned, we substitute high-energy eigenvalues with
their unperturbed ones and solve the secular equation to obtain
the singlet and triplet states, where their splitting are defined
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FIG. 6. The dependence of the long-range antiferromagnetic
exchange interaction JAF on t4 and 1/ξ 2 is calculated in (a) and
(b), respectively. The other parameters are U = 1.2 and ξ = 2.6 in
(a), t = 0.55 and U = 1.2 in (b). The black lines and red scattered
points are calculated by the analytic formula [Eq. (8)] and numerical
HEOM approach, respectively. The other parameters are the same as
those in Fig. 2.

as JAF ≡ ET − ES . After some algebra and assuming t � U ,
we get

JAF ≈ 4t4

ξ 2U
. (8)

Equation (8) is similar to the antiferromagnetic exchange
interaction in double QDs (DQDs) if one defines an effective
next-neighbor interdot coupling between QD1 and 3 as t ′ =
t2/ξ to rewrite Eq. (8) as JAF ≈ 4t ′2/U . However, a rigorous
proof is required for open TQD systems. By investigating the
splitting of Kondo peaks of QD1 or 3, the features of JAF can
be studied, as in DQD systems [29]. The distance between the
splitting peaks should equal to 2JAF.

The results of HEOM calculations on the formula of JAF

are summarized in Fig. 6, where ε2 = 2.0 meV is chosen. The
other parameters are the same as those in Fig. 2 unless specified
otherwise. The numerical JAF as functions of t4 and 1/ξ 2

are respectively shown in Figs. 6(a) and 6(b), together with
the analytical results obtained from Eq. (8) for comparison.
One can see that almost all of the numerical data fall in the
analytical lines in the range of parameters explored here. We
thus conclude that JAF ≈ 4t4/ξ 2U is also valid in open TQD
systems over a wide range of parameters. We emphasize some
features shown in Fig. 6 as follows: (i) The t4 dependence
shown in Fig. 6(a) indicates that JAF in TQDs is more sensitive
to t ; thus a larger t is required to induce the crossover from
the KS to the LSS phase (cf. Fig. 2). (ii) The 1/ξ 2 dependence
shown in Fig. 6(b) suggests an easy way to manipulate JAF in

TQDs via gate control of the detuning energy. In this sense, the
phase diagram shown in Fig. 2 is experimentally accessible.

It is well acknowledged that the nearest-neighbor antiferro-
magnetic exchange can induce a non-Fermi-liquid quantum
critical point in DQDs, which is called the “two-impurity
problem.” Let us make some comments on the relation between
the results here and those in DQDs in the literature. In the
two-impurity problem, Sela and Affleck found a crossover
from the critical point to the low-energy Fermi liquid phase at
finite temperature [37]. The quantum phase transition has ever
been proved to be very robust against both the asymmetry
of the device (parity) and electron-hole asymmetry [38].
That crossover behavior has been verified by our HEOM
calculations on parallel-coupled DQDs [29], as well as on
serial-coupled ones. For nonequilibrium transport, the HEOM
calculations have found the zero-bias conductance peak
exhibits a single peak for the weak interdot coupling t . With
the increase of t , the zero-bias conductance peak also shows a
continuous evolution from single to double peaked behavior.
Those nonequilibrium characteristics confirm the conclusions
and predictions in Refs. [37,38] and other relevant references.
For the TQDs with an unoccupied middle dot as studied
here, although the long-range antiferromagnetic exchange is
similar to that of DQDs if an effective next-neighbor interdot
coupling defined, the characteristics in the strong-coupling
limit are quite different. As shown in Fig. 4(b), the zero-bias
conductance peak rather than a splitting dip (see Ref. [29])
develops at low temperature. Even at high temperature, the
dip character will not appear as shown in Fig. 4(d). Therefore,
the HEOM calculations have revealed new nonequilibrium
transport characteristics in TQDs, which can improve the
understandings in the above-mentioned literature, including
our work.

IV. SUMMARY

In summary, we have investigated the long-range interac-
tions in triple quantum dots (TQDs) in the Kondo regime, by
accurately solving the three-impurity Anderson model with
the hierarchical equation of motion (HEOM) formalism. For
the occupation configuration of (N1,N2,N3) = (1,0,1), we
demonstrate that there exists a long-range antiferromagnetic
exchange interaction, JAF, which can induce a crossover from
the separated Kondo singlet (KS) to the long-range spin
singlet (LSS) state between edge dots. In the LSS phase, a
long-range overlapping or entanglement of Kondo clouds is
discovered, which induces a transition peak in the spectral
function of the middle dot under equilibrium conditions. Under
nonequilibrium conditions, the long-range entanglement of
Kondo clouds induces an anomalous enhancement of current
and a conductance peak at zero bias, which can be observed in
experiments. The expression of JAF ≈ 4t4/ξ 2U is analytically
derived and numerically verified, according to which JAF can
be conveniently manipulated via gate control of the detuning
energy.
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