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Understanding the role of surface plasmon polaritons in two-dimensional
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We have studied the dependence of the rotation angle and ellipticity on the sample orientation and incident
polarization from metallic nanohole arrays. The arrays have fourfold symmetry and thus do not possess any
intrinsic chirality. We elucidate the role of surface plasmon polaritons (SPPs) in determining the extrinsic chirality,
and we verify the results by using finite-difference time-domain (FDTD) simulation. Our results have indicated
the outgoing reflection arises from the interference between the nonresonant background, which preserves the
input polarization, and the SPP radiation damping, which is linearly polarized but carries a different polarization
defined by the vectorial field of SPPs. More importantly, the interference manifests various polarization states
ranging from linear to elliptical across the SPP resonance. We analytically formulate the outgoing waves based
on temporal coupled mode theory (CMT), and the calculations agree with the FDTD results. From CMT, we find
the polarization conversion depends on the interplay between the absorption and radiative decay rates of SPPs
and the sample orientation.
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I. INTRODUCTION

Polarization is one of the most fundamental parameters
of electromagnetic waves, and it defines many intriguing
optical phenomena [1]. Therefore, how one can manipulate
the polarization state has been a major concern not only
from a scientific point of view but also from a practical
consideration. Conventional methods rely primarily on using
birefringent materials that have an anisotropic refractive index
[2]. Half- and quarter-wave plates are two prominent examples
that either rotate a linearly polarized light or convert it into
a circular polarization [2]. With the emergence of nanopho-
tonics, materials can now be designed at the length scale of
nanometers to engineer different wave properties including
polarization. Photonic crystals [3,4], plasmonic systems [5–9],
metamaterials [10–17], and metasurfaces [18–23] have been
reported to control the polarization state, each to a different
extent. In the early works of plasmonic systems, a birefringent-
like environment is created by using elliptical nanoholes
or nanoparticles in periodic lattices that break the space
invariance or mirror symmetry when the major axis of the basis
is tilted away from the incident polarization [9]. Since then,
this symmetry breaking technique has been widely applied
to design various shapes on the basis of plasmonic systems
and metamaterials for polarization conversion. Gammadion
[10,24,25], spiral [26,27], helix [28,29], cross [30,31], and
L-, G-, and S-shapes [32–34] have been extensively studied to
exhibit various degrees of optical activity. These entities induce
strong chiral near fields that evolve into different polarization
states. Other than the intrinsic chirality, extrinsic chiral effects
are drawing attention as well. For example, a nonlocal effect
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has been reported to control polarization [35]. Polarization
conversion can occur in achiral metallic arrays enabled by
spatial dispersion [36]. The nonlocality induces anisotropic
optical responses along and out of the incident plane, leading
to birefringence. In addition, achiral metamaterials have
shown strong optically activity if the incident light, polar
direction and the sample normal forms a chiral triad that
breaks symmetry [37,38]. Surprisingly, propagating surface
plasmon polaritons (SPPs) have recently renewed the interest
in extrinsic chirality. It is observed that under certain excitation
condition, SPPs from achiral systems can produce a much
stronger circular dichroism than the gammadion metamaterials
[39–41]. Therefore, a complete understanding of the effects of
SPPs on polarization conversion is necessary for gaining better
control. However, while SPPs have been reported to yield
polarization conversion for more than 20 yr, the underlying
physics is not yet fully understood [7,42,43].

In this paper, we have studied the rotation angle (ψ)
and ellipticity (χ ) from two-dimensional (2D) square lattice
circular nanohole arrays by using angle- and polarization-
resolved reflectivity spectroscopy. Our results demonstrate
SPPs play a significant role in controlling the polarization state
of the outgoing wave. In particular, both ψ and χ indicate the
polarization state exhibits a very complicated behavior, span-
ning from almost circular to linear polarization when crossing
the SPP resonance. The experimental results are compared
with the finite-difference time-domain (FDTD) simulations.
Furthermore, we find the polarization is determined by the
interference between the nonresonant reflection that contains
the same polarization as the incidence and the resonant SPP
radiation damping in which the polarization is defined by
the vectorial near field pattern of SPPs. To support this, we
have analytically formulated the outgoing polarization based
on temporal coupled mode theory (CMT) [44]. The theory
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FIG. 1. (a) The schematic of the angle- and polarization-resolved reflectivity spectroscopy. The incident and azimuthal angles are defined
as θ and ϕ, respectively. Insets: the plane-view SEM image of the Au array used for measurement and the cross-section image of the unit
cell used for the FDTD simulation. The (b) experimental and (c) FDTD simulated contour p-polarized specular reflectivity mappings. The
dashed lines indicate the excitation of (−1,0) and (0,−1) SPP modes calculated by the phase matching equation. At ϕ = 45◦, where two SPP
modes cross with each other, a plasmonic band gap occurs together with two hybridized bright and dark modes located at shorter and longer
wavelengths.

stresses the importance of the interplay between the absorption
and radiative decay rates of SPPs and the sample orientation
in polarization conversion.

II. EXPERIMENTAL METHODS

The 2D square lattice gold (Au) nanohole arrays, with areas
larger than 1 cm2, are fabricated by interference lithography,
as described earlier [45]. The plane-view scanning electron
microscopy (SEM) image of one sample is illustrated in
the inset of Fig. 1(a) as an example, showing it has period,
P = 800 nm, hole depth H , and radius, R = 100 and 116 nm.
The structure possesses a fourfold symmetry, and it is thus
achiral. Since the Au film is optically thick, the sample has
no transmission. After sample preparation, it is placed on a
computer-controlled goniometer for angle- and polarization-
resolved reflectivity spectroscopy [46]. The setup is shown
in Fig. 1(a). A collimated white light from a quartz lamp
is illuminated onto the sample at a well-defined incident
angle θ . The illumination area is ∼0.7 cm2. The sample can
be rotated with respect to the surface normal for different
azimuthal angles ϕ, defined as the angle between the incident
plane (y-z plane) and the �-X direction of the lattice. An
incident polarizer is located between the light source and the

sample, whereas a quarter-wave plate and an analyzer can
be placed after the sample for polarimetric measurements.
The specular reflections are collected by a charge coupled
device (CCD) detector attached to a spectrometer. By contour
measuring the reflectivity at different θ and ϕ, one can map out
the dispersion relations of the arrays for mode identification
[45,46]. At the same time, the polarization state of the outgoing
reflection can be accessed by measuring both ψ and χ

[47]. In general, ψ and χ are given as tan2ψ = S2/S1 and
sin2χ = S3/S0, where S0−3 are the four Stokes parameters.
The parameters are related to the reflection intensities I as
S0 = I (0◦,0◦) + I (90◦,0◦), S1 = I (0◦,0◦) − I (90◦,0◦), S2 =
2I (45◦,0◦) − I (0◦,0◦) − I (90◦,0◦), and S3 = 2I (45◦,90◦) −
I (0◦,0◦) − I (90◦,0◦), where the parenthesis (γ,β) defines the
orientation of the analyzer and the phase retardation introduced
by the quarter-wave plate [47]. The transmission axis of the
analyzer [see Fig. 2(a)] can be set at γ = 0◦, 45◦, and 90°
with respect to the incident plane by either removing the
quarter-wave plate (i.e., β = 0◦) or inserting the wave plate
with the fast axis parallel to γ = 90◦ (i.e., β = 90◦) [47].
Therefore, the reflections at four detection configurations,
I (0◦,0◦), I (90◦,0◦), I (45◦,0◦), and I (45◦,90◦), allow one to
determine all four Stokes parameters, as well as ψ and χ .
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FIG. 2. (a) The schematic for measuring the four Stokes parameters of the specular reflection; Ep and Es are defined as the p and s

polarizations. The experimental (b) rotation angle ψ and (c) ellipticity χ contour mappings taken at θ = 10◦ under p excitation. Noticeable ψ

and χ are seen at the (−1,0) and (0,−1) SPP excitations. (d) The ψ extracted along the (−1,0) and (0,−1) SPP modes. The dashed line indicates
ϕ = 45◦, where the anomalous oscillations superimposed on the broad background are seen. The plots of the largest positive and negative χ ,
as well as the χ exactly at λSPP for the (e) (−1,0) and (f) (0,−1) SPP modes. For positive and negative χ , similar anomalies are observed at
ϕ = 45◦, given by the dashed lines. The χ at λSPP is almost equal to zero and is independent of ϕ.

III. RESULTS

A. Angle-dependent reflectivity, rotation, and ellipticity mappings

We first show the ϕ-dependent p-polarized reflectivity mapping of the array in Fig. 1(b) taken at θ = 10◦. From the mapping,
two dispersive low reflection bands are seen, and they are identified as two Bloch-like SPPs by using the phase matching equation
[45,46]

2π

λSPP

√
εAu

εAu + 1
=

√(
2π

λSPP
sin θ + 2π

P
(n cos ϕ + m sin ϕ)

)2

+
(

2π

P
(n sin ϕ − m cos ϕ)

)2

, (1)

where εAu is the dielectric constant of Au extracted from
Ref. [48], λSPP is the SPP resonant wavelength, and (n,m)
are the integers defining the order of SPPs. As indicated by
the dashed lines in Fig. 1(b), Eq. (1) shows two (−1,0) and
(0,−1) SPPs are excited. At ϕ = 45◦, where the SPPs cross,
we see that a small plasmonic band gap, ∼9 nm, emerges
together with the formation of a pair of hybridized dark and
bright modes that feature with different radiation damping
rates [49,50]. The dark mode located at longer wavelength is
nonradiative and thus is barely seen, while the bright mode is at
a shorter wavelength, displaying a strong reflection dip [49,50].
For the polarimetric measurements, Figs. 2(b) and 2(c) show
the corresponding ψ and χ contour mappings. By comparing
three mappings, we clearly see they are closely related. One
can also see the nonresonant reflection background, in which

the array acts as a flat mirror and thus has high reflectivity,
does not induce any noticeable ψ and χ , evidently showing
that both ψ and χ are mediated by SPPs. When tracking along
the (−1,0) SPP mode in the ψ mapping, for example, we see
ψ decreases from zero to negative when ϕ increases and then
flips to positive at λSPP ∼ 940 nm (i.e., ϕ = 20◦). The signs
are reversed for the (0,−1) SPPs. On the other hand, at any ϕ

in the χ mapping, the χ of (−1,0) mode transits from positive
to negative when scanning from a short to long wavelength
but becomes zero at λSPP. This trend is again reversed for the
(0,−1) mode. At the cross point, both ψ and χ are almost zero.

To examine our results more carefully, we extract ψ and
χ as a function of ϕ along the (−1,0) and (0,−1) modes in
Figs. 2(d)–2(f). For two modes, both ψ and χ exhibit inversion
symmetry in magnitude and sign, as expected from fourfold
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FIG. 3. The corresponding FDTD simulated (a) rotation angle ψ

and (b) ellipticity χ contour mappings. (c) The ψ extracted along the
(−1,0) and (0,−1) SPP modes. (d) The largest positive and negative
χ , as well as the χ exactly at λSPP, for the (0,−1) SPP modes. Similar
anomalies are seen at the gap region.

symmetry. For ψ in Fig. 2(d), at the gap where ϕ = 45◦, ψ

becomes zero. In addition, ψ varies dramatically near the gap
region, featuring an anomalous “oscillation” superimposed on
the broad ψ background. For χ , we extract the largest positive
and negative χ around λSPP, as well as the χ exactly at λSPP

for two modes and plot them in Figs. 2(e) and 2(f). In fact,
χ is zero along λSPP. For the positive and negative χ , similar
oscillation features overlying on the broad backgrounds are
seen at the gap region. By summarizing the behaviors of
ψ and χ , one physically can imagine at λSPP the outgoing
wave is linearly polarized, but the polarization is rotated away
from the incident plane defined by ψ . However, when the
wavelength is slightly off the λSPP, the reflection becomes
right or left elliptically polarized, depending on the mode order
and wavelength. More importantly, an additional but unknown
effect is involved, giving rise to the anomalies in both ψ and
χ around the gap region.

B. The FDTD simulation

To verify our experimental results, we have conducted
FDTD simulations. The unit cell is shown in the inset of
Fig. 1(a), and it has P = 800 nm, H = 100 nm, and R =
116 nm, as well as a small modulation with height = 35 nm.
The Bloch boundary condition is used on four sides, and a
perfectly matched layer is used on the top and at the bottom
[51]. Note the simulations only attempt to compare the general
behaviors of ψ and χ with experiment. Perfect matching
between them is difficult since the simulation cell cannot
exactly mimic the actual array. At θ = 10◦, we calculate the
p-polarized reflectivity ψ and χ mappings in Figs. 1(c), 3(a),
and 3(b). The simulation results are similar to the experiment.
In particular, along the SPP modes, the behaviors of both

ψ and χ are comparable with those in Figs. 2(b) and 2(c).
The theoretical ψ for the (−1,0) and (0,−1) modes and the
χ for the (0,−1) mode are plotted in Figs. 3(c) and 3(d)
as a function of ϕ. The χ is zero along the SPP modes,
indicating linear polarization. Both ψ and χ are zero at the gap.
Although the major features observed from the experiment are
consistent with the simulations, discrepancies are also present.
By comparing the reflectivity mappings in Figs. 1(b) and 1(c),
the simulated plasmonic gap is only ∼1 nm, which is hardly
seen. In addition, at the gap region, i.e., ϕ = 45◦, in Figs. 3(c)
and 3(d), despite similar ψ and χ anomalies that appear,
the peak and dip look sharper than the experiment. The
flipping of ψ is more extreme, and the polarization state is
completely converted from p to s at λSPP = 950 nm (i.e.,
ϕ ∼ 20◦) in simulation. These discrepancies arise from the
fact that our unit cell is created simply by duplicating the SEM
image of the sample, which usually underestimates the fine
details of the system, such as surface roughness and irregular
shape nonuniformity, that are necessary for reproducing the
simulated results that perfectly align with the experiment.
Therefore, numerical simulation serves as a tool to check the
trustworthiness of our measurements

IV. RADIATION OF SPPs

A. Dependence of SPP excitation on incident polarization angle

To elucidate the importance of SPPs in determining ψ and
χ and the occurrence of the anomalies at the gap region, one
must first understand how SPPs are excited and then decay
radiatively in periodic arrays. In particular, the polarization
state of the SPP radiation damping is expected to play a key role
in controlling the outgoing polarization. We have performed
two types of experiments. The first measures the reflectivity
as a function of incident polarization angle α, defined with
respect to the incident plane, at θ and ϕ specifically for
exciting particular (−1,0) SPPs; α = 0◦ and 90◦ define the
p and s incidences. No analyzer and quarter-wave plate
are used. One example is plotted in Fig. 4(a) for θ and
ϕ = 10◦ and 10◦, corresponding to the excitation of (−1,0)
SPPs at 950 nm. It exhibits a sinusoidal-like behavior, and
the reflectivity minimum is located at αmin = 168◦. Keeping
θ = 10◦ while changing ϕ, we see similar sinusoidal curves
for other (−1,0) λSPP, but αmin is being shifted [Fig. 4(b);
see Supplemental Material for the full set of experimental
curves [52]]. We then plot αmin as a function of λSPP in
Fig. 4(c), showing αmin increases gradually with λSPP but
diverges at ∼910 nm, where the gap is located (i.e., ϕ = 45◦)
to 180◦ and 90◦ for the bright and dark modes. In fact,
αmin can be interpreted as the best polarization angle for
exciting SPPs, in which much of the energy is channeled
to SPPs for yielding low reflectivity. Therefore, αmin implies
the overlapping of the incident and the SPP electric fields
is maximal so that the coupling between them is optimal
[8]. In other words, as shown in the inset of Fig. 4(c),
considering the incident polarization unit vector as ê and the

plasmonic field as
⇀

ESPP, αmin occurs when ê · (
⇀

ESPP × ẑ) = 0,
where ẑ is the unit vector normal to the surface so that two
fields lie on the same plane. In addition, for nondegenerate
propagating SPPs, where the longitudinal component of
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FIG. 4. (a) The plot of the normalized reflectivity a function
of incident polarization angle α taken at θ = 10◦ and ϕ = 10◦,
corresponding to λSPP = 950 nm. The best excitation condition αmin

is determined by fitting the data with a sinusoidal function, as given
by the solid line; αmin = 168◦, as indicated by the arrow. (b) More
normalized reflectivity curves together with the best fits taken at
θ = 10◦ and ϕ = 20◦, 40◦, 60◦, and 80◦, corresponding to λSPP = 944,
916, 876, and 830 nm. (c) The plot of αmin as a function of λSPP for
θ = 10◦. Note that αmin diverges to 180◦ and 90◦ at λSPP = 910 nm,
where ϕ = 45◦ for the bright and dark modes. The solid line is the
analytical model based on ê · (k̂SPP × ẑ) = 0, where the unit vectors
of ê, k̂SPP, and ẑ are defined in the inset. The êp and ês are the p and
s polarization vectors. (d) The plot of αmin as a function of λSPP for
θ = 5◦, 10◦, and 15◦ together with the analytical model. Data around
the gap region are excluded.

⇀

ESPP is always parallel with the propagation direction k̂SPP,
the above condition can be rewritten as ê · (k̂SPP × ẑ) = 0.
Given ê = sin αx̂ + cos α cos θŷ + cos α sin θ ẑ and k̂SPP =
cos ρx̂ + sin ρŷ, where ρ is the propagation angle defined

with respect to the incident plane, the vector product yields

tan αmin = cos θ cot ρ. (2)

In general, ρ is determined by rearranging the phase match-
ing equation in Eq. (1) as ρ = tan−1(P sin θ/λSPP+n cos ϕ+m sin ϕ

n sin ϕ−m cos ϕ
).

For (−1,0) SPPs, we calculate αmin for different λSPP and plot it
in Fig. 4(c) for comparison. We find it agrees with experiment,
except at the cross region. The deviation occurs because at the
cross point, where two degenerate SPPs couple, they interfere

and form two standing waves as
⇀

E
1

SPP +
⇀

E
2

SPP and
⇀

E
1

SPP −
⇀

E
2

SPP
for the bright and dark modes [53,54]. The resulting electric
field vectors, thus, point along and normal to the incident plane

for two modes, leading to the product (
⇀

E
1

SPP +
⇀

E
2

SPP) × ẑ and

(
⇀

E
1

SPP −
⇀

E
2

SPP) × ẑ that are perpendicular and parallel to the
incidence. As a result, αmin is determined to be 180◦ and 90◦
for the bright and dark modes, consistent with our results.
Figure 4(d) shows αmin as a function of λSPP taken at different
θ together with the analytical models for nondegenerate (−1,0)
SPPs (i.e., exclude the cross regions). Except at θ = 15◦, where
discrepancy is seen at short wavelengths, the good agreement
between them verifies the condition for SPP excitation.

We also perform FDTD simulations to further confirm
Eq. (2). First, we mimic our experiment to determine αmin

by simulating the reflectivity as a function of α at θ = 10◦
for different λSPP, and the results are plotted in Fig. 5(a).
Second, we determine the propagation direction angle ρ of
the corresponding SPPs under the same θ by calculating
the Poynting vector. The Poynting vector maps taken at two
ϕ = 30◦ and 45◦ for λSPP = 936 and 907.5 nm are shown
in Figs. 5(b) and 5(c) for illustration. In the unit cell, the
Poynting vector is determined by integrating the vectors at four
boundaries. With both ρ and θ ready, αmin is obtained from
Eq. (2) and plotted in Fig. 5(a) for comparison. Despite some
minor discrepancy, two independent methods give almost the
same trend, validating Eq. (2). Therefore, considering the
reciprocity theorem [55], we speculate that the polarization
of the outgoing SPP radiation, defined as φSPP with respect to
the incident plane, should follow αmin for any given sample
orientation.

FIG. 5. (a) The FDTD simulated αmin as a function of λSPP (square symbol) calculated at θ = 10◦. The αmin deduced from the analytical
model by using the Poynting vector under the same excitation condition (circle symbol). The Poynting vector mappings taken at θ = 10◦ and
two ϕ = (b) 30◦ and (c) 45◦ for λSPP = 936 and 907.5 nm, which correspond to a nondegenerate and hybridized bright SPP modes.
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FIG. 6. (a) The normalized orthogonal reflectivity measured as a
function of α at θ = 10◦ and ϕ = 10◦ (λSPP = 950 nm). The solid line
is the best fit for determining φSPP. (b) More orthogonal reflectivity
curves taken at θ = 10◦ and ϕ = 20◦, 40◦, 60◦, and 80◦. The best fits
are given by the solid lines. (c) The schematic for the developing
the analytical mode for the φSPP determination. The polarization
of the SPP radiation is defined by φSPP with respect to the inci-
dent plane; α + γ = 90◦ for the orthogonal polarizer-analyzer pair.
(d) Comparison between αmin taken from Fig. 4(c) and φSPP, showing
αmin = φSPP.

B. Polarization angle of SPP radiation damping

To prove the speculation, we conduct the second exper-
iment. This time, we place the analyzer in the detection
path and orient it so that the polarizer and analyzer are
always perpendicular to each other. Therefore, the measured
reflectivity contains no contribution from the nonresonant
reflection but only the component of SPP radiation damping
projected onto the transmission axis of the analyzer. Since
the φSPP of the SPP radiation is always equal to αmin, which
remains unchanged provided the sample orientation is fixed,
the orthogonal polarizer and analyzer pair only affects how
much power is channeled to SPPs but not φSPP. As an
example, Fig. 6(a) shows the orthogonal reflection measured
at θ and ϕ = 10◦ and 10◦ (i.e., (−1,0) λSPP = 950 nm), as a
function of α, showing a sinusoidal behavior. Several more are
taken at other ϕ in Fig. 6(b), exhibiting similar sinusoidal
but displaced curves. To find φSPP, we refer to Fig. 6(c)
for the outgoing wave, which shows the polarization of the
SPP radiation together with the transmission axes for the
polarizer and analyzer and the incident plane. Given the SPP
radiation with intensity ISPP is linearly polarized at φSPP, the
signal after the analyzer is I (α) = ISPP(α)cos2(φSPP − γ ) =
ISPP(α)sin2(α + φSPP), where α + γ is always equal to π/2
for the orthogonal pair. Knowing from Fig. 4(b) that ISPP(α)
should follow a general sinusoidal function A + B sin(aα + b)
where the capital and lowercase A and B are constants,
we fit Fig. 6(b) to determine φSPP. The results of φSPP for
different ϕ are plotted in Fig. 6(d). The data from Fig. 4(c) is

also superimposed on it, showing an almost perfect match to
conclude αmin = φSPP.

V. THE CMT FOR THE REFLECTION INTERFERENCE

Accordingly, the outgoing specular reflection is expected
to carry two polarization components, and they are the
nonresonant reflection, which is solely determined by the
incident polarization, and the SPP radiation damping, which
is linearly polarized with the rotation determined primarily
by the plasmonic field. This knowledge can then be trans-
formed into analytical reflection coefficients by using temporal
CMT [44,46,49,54]. Under p-polarized excitation at fixed
θ and ϕ, the transient of SPP mode amplitude a can be
written as:

da/dt = iωSPPa − �tota/2 +
√

�rade
iδs+ cos αmin, (3)

where ωSPP is the resonant angular frequency (electron volts),
�tot is the SPP total decay rate (electron volts) and is equal to
the sum of absorption (�abs) and radiative decay (�rad) rates, δ
is the in-coupling phase shift, and s+ is the amplitude of the in-
cident wave power. A factor of cosαmin is added to s+, indicat-
ing only part of the input energy is coupled to SPPs. Since a is
harmonic with time, we solve Eq. (3) for a =

√
�rade

iδ cos αmin

i(ω−ωSPP)+�tot/2 s+.
If only the specular reflection is present so that the single
port model is applicable and the SPP radiation is a linearly
polarized but rotated from the incident plane by φSPP = αmin,
the reflection coefficients of the parallel (rpara) and orthogonal
(rorth) components can then be expressed as [44,46]

[
rpara

rorth

]
=

⎡
⎣ro + �rad cos2 αmine

iς

i(ω−ωSPP)+�tot/2

�rad sin αmin cos αmine
iς

i(ω−ωSPP)+�tot/2

⎤
⎦, (4)

where ro is the nonresonant reflection background and ζ is
the total coupling phase shift of SPPs and is close to zero
for single port [46,49]. Here, the parallel and orthogonal
components are defined as the analyzer is placed at γ = 0◦ and
90◦. From Eq. (4), one sees the para- and orth-reflectivities are
controlled by αmin, which depends on the sample orientation,
wavelength, and the mode order, and the interplay between the
absorption and radiative decay rates of SPPs. For verification,
we calculate the (−1,0) para- and orth-reflectivity spectra of
the array and plot them in Fig. 7(a) for θ = 10◦ and several
ϕ under p incidence. The parallel and orthogonal profiles
appear as dips and peaks, respectively. The profiles are then
fitted by Eq. (4) to determine �rad, �tot, and αmin. The best
fits are shown as the solid lines in Fig. 7(a) for comparison,
and the fitted results are plotted in Figs. 7(b) and 7(c) with
λSPP. ro, and ζ determined to be around −0.989 and −0.035,
respectively, for all cases in Fig. 7(d).

To double check �rad, �abs, and αmin, we independently
calculate �rad and �abs under the same excitation conditions
by using the time-domain method in Fig. 7(b) [46]. Although
�tot in the time domain is directly related to the linewidth of the
Lorentzian reflection profile in the frequency domain through
Fourier transforms, �rad and �abs are not trivial. We calculate
�rad by simulating the time decay curve of the electric field
intensity after progressively reducing the imaginary part of
εAu in an attempt to remove the SPP absorption [46]. Then,
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FIG. 7. (a) The FDTD simulated (−1,0) parallel and orthogonal reflectivity spectra calculated for θ = 10◦ and ϕ = 0◦, 6◦, 12◦, 18◦, and
24◦ under p excitation, corresponding to λSPP = 962, 961, 958, 952, and 945 nm. The parallel spectra appear as dips, whereas the orthogonal
spectra are peaks. The solid lines are the best fits using the temporal CMT model. (b) The deduced �rad and �abs by using the CMT and the
time-domain methods for different λSPP. (c) The CMT deduced and the FDTD calculated αmin for different λSPP. (d) The deduced ro and ζ for
different λSPP, showing they are almost constant at −1 and 0. Comparison between the CMT deduced (solid lines) and the FDTD simulated
(symbols) (e) rotation angle ψ and (e) ellipticity χ for θ = 10◦ and ϕ = 0◦, 6◦, 12◦, 18◦, and 24◦.

�abs is equal to �tot − �rad. We also directly determine αmin

in Fig. 7(c) by calculating the reflectivity as a function of α

for each λSPP. Two methods show less than 4% discrepancy
between CMT and direct calculation. Once the CMT model is
ready, we attempt to reproduce the numerical results. The ψ

and χ spectra are calculated by using the deduced parameters
and displayed in Figs. 7(e) and 7(f), together with the FDTD
results, and they are consistent with each other.

VI. DISCUSSION

We are now in the position of interpreting the behaviors of
ψ and χ by using the CMT expressions. From Eq. (4), since
ζ is close to zero [see Fig. 7(d)], the parallel and orthogonal
reflections are always in phase at λSPP, producing a linear
polarization. However, when the wavelength is slightly off
the resonance, the radiation of SPPs acquires an additional
phase shift due to the imaginary term i(ω − ωSPP) at the
denominator. The nonresonant and the parallel component of
the SPP radiations, thus, are no longer π out of phase with
each other. The interference between them then yields different
elliptical polarization states, depending on i(ω − ωSPP), �rad,
�abs, and αmin.

From Figs. 7(e) and 7(f), we notice the ψ and χ profiles
at ϕ = 18◦ (i.e., λSPP = 952 nm) deserve further attention.
When scanning across the resonance, the polarization changes
from almost right circularly polarized (i.e., χ ∼ −45◦) to
orthogonal linearly polarized at λSPP (χ = 0◦ and ψ = ±90◦)

and then to left circularly polarized (χ ∼ 45◦) at a longer
wavelength. From Figs. 7(b)–7(e), we find the fitted ro =
−0.989, αmin = 161.7◦, �tot = 5.64 meV, �rad = 3.28 meV,
and ζ = 0.033 give rpara = 0.05 and rorth = 0.136 at 952 nm.
The rorth/rpara ratio reaches 2.72, resulting in the orthogo-
nal/parallel reflectivity ratio = 7.4. In fact, the condition for
achieving complete orthogonal polarization conversion can
be understood by making rpara = 0 in Eq. (4), physically
implying the nonresonant reflection is destructively interfered
with the parallel component of the SPP radiation. By assuming
ro ∼ −1 and ζ ∼ 0, the condition 2 cos2 αmin − 1 = �abs/�rad

would yield rpara = 0. In other words, for a given λSPP so that
�abs/�rad is a constant, we may orient the sample to have
αmin to facilitate complete parallel to orthogonal polarization
conversion. However, when �abs/�rad = 1, which signifies
critical coupling, both rpara and rorth = 0, leading to total
absorption [56].

A low rorth in this ϕ = 18◦ case indicates, much of the
incidence energy is being lost to the absorption of SPPs. Useful
polarization conversion requires not only rpara = 0 but at the
same time rorth ∼ 1. To enhance rorth, from Eq. (4), the array
must be designed to have �rad sin αmin cos αmin being close to
�tot/2 if ζ ∼ 0. Therefore, to fulfill two conditions simultane-
ously, �rad must be much larger than �abs, making αmin = 45◦
or 135◦. It has been reported that under some circumstances,
where the hole size is smaller than the period, �rad follows the
Rayleigh scattering of single isolated holes with (R

√
H/λ)4,

while �abs can be considered as plain metal Ohmic absorption,
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FIG. 8. (a) The dispersion relation of the Ag array calculated by the phase matching equation at θ = 10◦. (b) The plot of αmin with λSPP

in the analytical model at θ = 10◦. The ϕ is determined to be ∼37.7◦ by the dashed lines for αmin ∼ 135◦. The FDTD calculated (−1,0)
(c) parallel and (d) orthogonal reflectivity spectra for θ = 10◦ and ϕ = 29◦, 31◦, 33◦, 35◦, and 37◦ under p incidence. The parallel and
orthogonal reflectivity spectra show as dips and peaks.

which is ωε′′
m(ε′

m/ε′
m + 1)

3
2 /(ε′

m)2, where ε′
m and ε′′

m are the
real and imaginary parts of the metal dielectric constant and
�abs/�rad could be much reduced by properly designing the
geometry and the material of the system [57]. To illustrate
that, we perform FDTD simulation on the Ag array as it has
smaller �abs than that of Au at the optical wavelength. Our
approach is as follows. We choose an array with P = 1600 nm,
R = 640 nm, and H = 300 nm such that the hole diameter
is as close to the period as possible for maximizing �rad,
while at the same time the �abs of the (−1,0) mode at near
infrared is minimal. To roughly locate the sample orientation
for αmin = 135◦, we calculate the dispersion relation by the
phase matching equation and the plot of αmin with λSPP in
Figs. 8(a) and 8(b) at θ = 10◦. As indicated by the dashed lines,
ϕ is close to 37.7◦ for αmin ∼ 135◦. Figure 8(c) then shows the
FDTD calculated parallel and orthogonal reflectivity spectra
calculated at several ϕ from 29◦ to 37◦ under p excitation.
Actually, at ϕ = 33◦, parallel and orthogonal reflectivities are
found to be 0.053 and 0.963, respectively, at λSPP = 1.842 μm,
leading to orthogonal/parallel reflectivity ratio = 333. By
fitting the spectra using Eq. (4), we find �rad and �abs = 11.44
and 0.44 meV and αmin = 136.38◦.

Finally, for the circular polarization, both rpara and rorth

should have comparable magnitude but retard in a relative
phase of 90◦. As aforementioned, at ω �= ωSPP, the reflection

coefficients can be rewritten as [rpara
rorth

] = [ro + Aeiκ cos αmin

Aeiκ sin αmin
], where

A and κ are constants, depending on αmin, �tot, �rad, ω − ωSPP,
and ζ . Therefore, circular polarization requires ro+Aeiκ cos αmin

Aeiκ sin αmin
=

±i. For the ϕ = 18◦ case, rpara and rorth are found to be
close to −0.989 + 0.0029

i(ω−ωSPP)+0.00282 and −0.000978
i(ω−ωSPP)+0.00282 by

taking ζ ∼ 0. Therefore, their division is close to ±i when
ω − ωSPP = ∓0.00099 − 0.000169i, which agrees with the
results in Figs. 7(e) and 7(f), where χ ∼ ±45◦ is found at
ω − ωSPP = ∓0.00097.

VII. CONCLUSION

In summary, we have studied polarization conversion from
2D Au nanohole arrays by angle- and polarization-resolved
reflectivity spectroscopy. Although the arrays do not possess
any intrinsic chirality, both the rotation angle and ellipticity
measurements have indicated that Bloch-like propagating
SPPs play a significant role in facilitating extrinsic chirality.
The experimental, numerical, and analytical results reveal the
interference between the nonresonant background, and the
SPP radiation manifests various polarization states, ranging
from linear to elliptical polarization across the SPP resonance.
While the nonresonant background preserves the incident
polarization, the properties of the SPP radiation are strongly
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dependent on the vectorial near field pattern of SPPs and
the interplay between their absorption and radiative decay
rates. As a result, by controlling the sample orientation and
geometry to tailor the field pattern and decay rates, it is possible
to achieve almost complete parallel to orthogonal linear and
parallel to circular polarization conversions.
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