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We calculate the temperature-dependent long-range magnetic coupling in the presence of dilute concentrations
of random magnetic impurities in chiral multilayer two-dimensional semimetals, i.e., undoped intrinsic multilayer
graphene. Assuming a carrier-mediated indirect Ruderman-Kittel-Kasuya-Yosida exchange interaction among
the well-separated magnetic impurities with the itinerant carriers mediating the magnetic interaction between
the impurities, we investigate the magnetic properties of intrinsic multilayer graphene using an effective chiral
Hamiltonian model. We find that due to the enhanced density of states in the rhombohedral stacking sequence
of graphene layers, the magnetic ordering of multilayer graphene is ferromagnetic in the continuum limit. The
ferromagnetic transition temperature is calculated using a finite-temperature self-consistent field approximation
and found to be within the experimentally accessible range for reasonable values of the impurity-carrier coupling.
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I. INTRODUCTION

Multilayer graphene with an additional layer degree of
freedom (in addition to the spin and pseudospin intralayer
index) has recently attracted a great deal of attention for its
fundamental properties as well as for its potential applications
[1–7]. Multilayer graphene is not a simple extension of
monolayer graphene (since it has its own characteristic layer-
number-dependent band structure and symmetry properties)
and could open the possibility of engineering electronic
properties by tuning the stacking arrangement. One important
salient feature of multilayer graphene is the enhancement of the
electronic density of states (DOS) as the number of graphene
layers increases. As a consequence, the electronic screening
becomes more important with increasing layers [6]. Since the
energy band structure of multilayer graphene is very sensitive
to its stacking sequence, the screening properties depend
strongly on the stacking arrangements in multilayer graphene
[6,7]. Each type of rhombohedral multilayer graphene (i.e.,
J -graphene) with the layer number index J = 1,2,3,4,5, . . .

is a distinct 2D material tuned by J except that all of them are
2D gapless semimetals with the chemical potential precisely
pinned at the touching point of conduction and valence bands.
The most well-known J -graphenes are monolayer graphene
(MLG) with J = 1 and bilayer graphene (BLG) with J = 2,
but trilayer (J = 3) and even higher-layer (J > 3) graphenes
have also been studied in the laboratory [5]. In fact, the J going
to the infinity limit (i.e., infinite-layer graphene) is graphite.

The current theoretical work is on the J -dependent mag-
netic properties of intrinsic (i.e., undoped) multilayer graphene
with no free carriers in the conduction or valence band
at T = 0. We study finite-temperature response (screening)
functions of multilayer graphene and their consequences for
the J -dependent magnetic properties induced by magnetic im-
purities through the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction [8,9]. In the presence of a dilute concentration
of magnetic impurities in nonmagnetic metals the effective
exchange interaction between the impurities is induced as the
second-order perturbation with respect to the direct exchange

interaction between the magnetic impurity and the itinerant
electrons of the host (i.e., the magnetic impurities experience
a long-range indirect exchange interaction mediated by con-
duction electrons, known as the RKKY interaction). Such an
indirect nonlocal carrier-mediated RKKY interaction between
two impurities could be ferromagnetic or antiferromagnetic
depending on their spatial separation because the interaction
is oscillatory due to the sharpness of the Fermi surface. This
indirect RKKY interaction exists in addition to any possible
direct exchange interaction among the magnetic impurities
which may arise due to their direct wave-function overlap.
Because the RKKY interaction is mediated by host electrons
(or holes), the enhanced DOS of multilayer graphene can lead
to an increase of the effective interimpurity magnetic coupling
with increasing J , which may induce robust magnetic ordering
for larger values of the layer number. The goal of the current
paper is to theoretically predict such magnetic ordering in
multilayer graphene as a function of layer number.

In general, intrinsic graphene does not have any permanent
magnetic moments in the bulk, but local magnetic moments
can be introduced by extrinsic doping. Doping by suitable
magnetic impurities could introduce such local moments, but
these local moments cannot order spontaneously unless there
is an interimpurity magnetic interaction. If the impurities
are far apart, i.e., the doping is dilute (which is the only
situation considered in the current work), then the direct
exchange interaction among the impurities is basically zero
since their wave-function overlap is exponentially small. It is
also now well-accepted that graphene (or generally, multilayer
graphene) is not intrinsically (i.e., in the absence of any doping)
magnetic; i.e., there is no spontaneous graphene magnetic
ordering of any kind unless local magnetic moments are
extrinsically introduced by magnetic impurities, vacancies, or
edges [10]. The important question addressed in this paper is
whether a dilute (i.e., well-separated impurities) concentration
of magnetic dopants could induce magnetism in graphene
through the RKKY mechanism with direct exchange playing
no role whatsoever. We emphasize that the dilute limit is very
different from the dense (or Kondo lattice) limit where the
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magnetic impurities themselves form a lattice (or are in almost
every unit cell of the host lattice) since direct interaction among
the impurities as well as any modification of the graphene
band structure induced by the impurities can be neglected.
The only interaction to be considered in this dilute limit is the
indirect RKKY interaction, and a continuum approximation
should suffice. The dilute approximation with well-separated
dopants makes the graphene situation here very similar to the
extensively studied [11,12] diluted magnetic semiconductor
(DMS) materials where also the primary mechanism driving
ferromagnetism in the semiconductor is thought to be the
indirect RKKY interaction. This is the physics we investigate
in the current work. The main qualitative difference between
diluted-magnetic-graphene (DMG) we consider here and the
well-studied DMS is that we must deal with an undoped
gapless semimetal (and not a doped semiconductor) and we
must incorporate the layer number for multilayer graphene.

It is known that the effective RKKY interaction in graphene
induced by the exchange coupling between local magnetic mo-
ments and conduction electrons (or holes) behaves differently
from the ordinary two-dimensional (2D) systems because of
the chiral gapless nature of graphene [13,14]. In particular, the
strength of RKKY coupling in monolayer graphene decays
faster spatially than in ordinary 2D electron systems due to
chirality (i.e., the suppression of the 2kF scattering, where kF

is the Fermi wave vector) in graphene [13,14].
One may wonder if RKKY interaction, with its long-range

spatial Friedel oscillations, is capable of inducing magnetic
ordering since the interimpurity interaction may be of random
sign (ferromagnetic or antiferromagnetic) depending on their
spatial locations. This is certainly the case in ordinary metals
or semiconductors (either 2D or 3D) [9] in the presence of a
high concentration of magnetic impurities where the effective
interimpurity interaction will be randomly ferromagnetic and
antiferromagnetic, leading to considerable frustration in the
Hamiltonian (and perhaps therefore a glassy ground state with
no obvious long-range order). However, for a low or dilute
impurity concentration (as in DMS) where the impurities are,
on average, far from each other, the effective interimpurity
RKKY interaction is, on average, mostly ferromagnetic, and
then the possibility of magnetic ordering arises, albeit with
perhaps a low transition temperature (as in DMS) because
of the generally weakened average interimpurity RKKY
interaction [11,12]. In multilayer graphene, the layer index
and chirality introduce novel RKKY physics, necessitating
a specific analysis to search for possible magnetic ordering
of DMG. In particular, multilayer graphene RKKY interaction
does not change sign (in spite of Friedel oscillations) for J � 3,
indicating a strong tendency toward a long-range ordering
of the magnetic impurities induced by RKKY coupling.
Another fundamental difference between intrinsic graphene
and ordinary metals or doped semiconductors is the fact that
undoped graphene is a gapless semiconductor or a semimetal
with no free carriers at T = 0 since the chemical potential
separates a filled valence band touching an empty conduction
band. Taken together, all these differences between chiral
intrinsic DMG and regular DMS imply that our intuition based
on the substantial body of DMS literature is a poor guide
to understanding how graphene magnetism may arise from
RKKY physics. In this paper, we provide a complete picture

based on a continuum mean-field theory, which should be
qualitatively and semiquantitatively valid in the dilute impurity
density limit.

Magnetic properties of graphene have been studied, and
in particular, there have been several studies of RKKY
interaction in graphene focusing on the possibility of magnetic
ordering of dopant magnetic impurities at zero temperature
[13–22]. However, a systematic study of RKKY interaction
in multilayer graphene as a function of layer index has not
been undertaken, and, in addition, finite temperature, disorder,
and finite carrier mean-free path effects on RKKY interaction
have not yet been studied theoretically. In this paper, we
calculate the magnetic properties of multilayer graphene with
the magnetic impurities located at the interface between
graphene and substrate without breaking any symmetry in
the graphene layer. We calculate the temperature dependence
of the RKKY interaction in multilayer graphene in order to
develop a self-consistent field theory to study long-range finite-
temperature magnetic ordering. We show that the enhanced
DOS in rhombohedral stacking allows ferromagnetic order-
ing of the magnetic impurities at experimentally accessible
temperatures, particularly for higher values of J . Our results
indicate that the magnetic impurity-induced ferromagnetic
ordering is possible in semimetallic multilayer graphene
arising from the RKKY indirect interaction in the dilute
impurity limit. Ferromagnetism in DMG, as predicted in
our theory, particularly for larger layer numbers, could, in
principle, lead to graphene spintronics if our predictions are
validated experimentally.

This paper is organized as follows. In Sec. II, we describe
our model and theoretical approaches based on chiral 2D
electron systems. In Sec. III, we give the calculated results
for RKKY interaction and the ferromagnetic transition tem-
peratures of DMG. We conclude in Sec. IV with a discussion
of the momentum-cutoff effects on the effective coupling.

II. MODEL

To study indirect magnetic interaction between quenched
local moments in multilayer graphene, we consider the indirect
exchange interaction between magnetic impurities to be of
the RKKY form, i.e., carrier-mediated effective magnetic
interaction. Indirect exchange interaction between magnetic
moments is determined by the electronic structure of the
relevant system. To describe electron states in multilayer
graphene, we consider the Hamiltonian of noninteracting
electrons in the form of a two-band pseudospin Hamiltonian
for 2D chiral quasiparticles. Thus, multilayer graphene near
the band-touching Dirac point can be described by a set of
chiral 2D electron systems (C2DESs), and the Hamiltonian
with the chirality index J (which also represents the number
of layers in rhombohedral multilayer graphene) is of the form
[6,7]

HJ (k) = t⊥

(
0

(
h̄v0k−

t⊥

)J(
h̄v0k+

t⊥

)J
0

)
, (1)

where k± = kx ± iky , v0 is the effective in-plane Fermi
velocity, and t⊥ is the nearest-neighbor interlayer hop-
ping. The Hamiltonian has an energy spectrum given by
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ελ,k = λt⊥ (h̄v0|k|
t⊥)

J
and the corresponding eigenfunctions are

|λ,k〉 = 1√
2
(λ,eiJφk ), where φk = tan−1(ky/kx) and λ = ±1

for conduction (valence) band energy states, respectively. We
consider intrinsic multilayer semimetallic graphene with the
Fermi energy precisely at the Dirac point, which we take to be
the zero of energy.

The carrier-mediated RKKY indirect exchange interaction
describing the effective magnetic interaction between local
moments induced by the free carrier spin polarization is
proportional to the static carrier susceptibility. The finite-
temperature static susceptibility can be calculated using the
finite-temperature Fermi distribution function as [1,23]

χ (q,T ) = −g
∑
λ,λ′

∫
d2k

(2π )2

fλ,k − fλ′,k′

ελ,k − ελ′,k′
Fλ,λ′(k,k′), (2)

where g = gsgv is the total degeneracy factor (gs = gv = 2 are
spin and valley degeneracy factors, respectively), fλ,k = 1/

[exp(ελ,k/kBT ) + 1] is the finite-temperature Fermi distribu-
tion function for the band index λ = ±1 and wave vector
k, Fλ,λ′(k,k′) is the square of the wave-function overlap
between |λ,k〉 and |λ′,k′〉 states, and k′ = k + q. For the
chiral electron with the chirality index J , Fλ,λ′(k,k′) =
1
2 [1 + λλ′ cos J (φk − φ′

k)].
For the undoped intrinsic case, in which the chemical

potential is located at the Dirac point for all temperatures,
Eq. (2) can be expressed as

χ (q,T ) = DJ (q)[I+
J (q,T ) + I−

J (q,T )]

= χ+
J (q,T ) + χ−

J (q,T ), (3)

where DJ (q) corresponds to the DOS with a wave number q,
which is given by

DJ (q) = gq2−J

2πJ t⊥(h̄v0/t⊥)J
, (4)

and

I±
J (q,T ) = J

∫ ∞

0
xdx

∫ 2π

0

dφ

2π

1 ± cos(Jθ )

xJ ± (x ′)J

×
[

tanh
TJ (qax)J

T
± tanh

TJ (qax ′)J

T

]
, (5)

where x ′ =
√

1 + 2x cos φ + x2, cos θ = (x + cos φ)/x ′,
TJ = (t⊥/kB)(h̄v0/t⊥a)J , and a is the lattice constant of
graphene. At zero temperature (T = 0), I−

J , which corre-
sponds to the intraband transition of electrons, vanishes
for all q (since the conduction band is completely empty
and the valence band completely full) and only interband
transition, I+

J , contributes to the susceptibility, and we have
χ (q,T = 0) = χ+

J (q) = DJ (q)I+
J (q) [6]. As q → 0, we have

χ+
J (q,T = 0) ∝ q2−J , and, therefore, for J � 3, the static

susceptibility diverges at long wavelength.
At finite temperatures (T > 0), it is interesting to notice

that the interband susceptibility behaves like χ+
J (q,T ) ∝ q2

as q → 0 for all J . Thus, the q = 0 singular behavior of
the interband susceptibility at T = 0 for J � 3, i.e., χ+

J (q →
0,T = 0) → ∞, disappears at finite temperatures. In addition,
intraband transitions contribute to the susceptibility at finite
temperatures due to thermal particle-hole excitations in the
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FIG. 1. The calculated finite-temperature static polarizability
χ (q,T ) as a function of wave vector for various temperatures
T = 0, 200, 400, 600, 800, and 1000 K, and for different chiralities
(a) J = 1, (b) J = 2, (c) J = 3, (d) J = 4, and (e) J = 5. Here
D1(a−1) = g/(2πh̄v0a) is given in Eq. (4), with J = 1 and q = a−1,
and a is the length scale of the system (i.e., lattice constant) and
a = 0.246 nm is used.

semimetal, and thus, at small q the total susceptibility comes
entirely from the intraband transition at finite T , χ−

J , due
to the vanishing of long-wavelength interband contribution.
Especially, we find that χ−

J (q = 0,T ) ∝ T 2−J for J � 2 and
χ−

J (q = 0,T ) ∝ 1/T for J � 3. Thus, the total susceptibility
at q = 0, χ (0,T ), increases with temperature only for J = 1.
For J = 2, χ (0,T ) is constant for all temperatures, and it
decreases with increasing temperature for J � 3. We will
discuss the implications of these temperature dependencies
for J -dependent long-range magnetic ordering.

It is not possible to obtain the susceptibility function ana-
lytically for all q at finite temperatures. Thus, we calculate the
finite-temperature static susceptibility numerically. Figure 1
shows the calculated static susceptibility χ (q,T ) as a function
of wave vector for several temperatures. For comparison, we
normalize the susceptibility for different J by the J = 1 DOS
at q = 1/a, DJ=1(q = a−1), where a is the lattice constant of
graphene. As shown in Fig. 1(a) the J = 1 susceptibility in-
creases linearly with temperature at small q. For J = 2 we find
that χ (0,T = 0) 	= χ (0,T → 0) and χ (0,T = 0)/χ (0,T 	=
0) = ln 4 for all finite temperatures. The finite-temperature
susceptibility at q = 0 is independent of the temperature for
J = 2, as discussed above. It is interesting to compare this
behavior with the asymptotic form for the corresponding
nonchiral regular 2D electron gas susceptibility which expo-
nentially decreases from its zero-temperature value, χ (q =
0,T ) ≈ χ (q = 0,T = 0)[1 − e−TF /T ], where TF is the Fermi
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temperature of the system [1,24]. For J � 3, even though
the zero-temperature susceptibility is infinity at q = 0, the
finite-temperature susceptibility is finite and χ (0,T ) decreases
inverse linearly with temperature, 1/T . Overall χ (q,T ) for
J � 3 manifests a similar behavior.

III. RKKY INTERACTION AND EFFECTIVE
MAGNETIC COUPLING

The interaction between a localized spin Si located at
r i and an itinerant electron spin s at r , i.e., V (r) = Jex Si ·
s δ(r i − r) with an exchange coupling Jex, accounts for the
interaction between magnetic impurities. In general, Jex is an
unknown parameter in our theory which must be determined
experimentally or from a separate first-principles calculation
beyond the scope of the current work. Then the effective
Hamiltonian describing magnetic interaction between two
classical Heisenberg spins Si and Sj located at r i and rj ,
respectively, is given by [25,26]

H = −
∑
i,j

JRKKY(r i − rj )Si · Sj , (6)

where

JRKKY(r,T ) = [Jexa
2]2

4
χ (r,T ). (7)

Note that the “classical moment” approximation here is
justified by the large moments of the magnetic impurities
typically used for magnetic doping and quantum fluctuations
in the magnetic impurity are neglected as being small. We
ignore all complications associated with Kondo physics and
other quantum strong correlation aspects assuming that the
long-range Heisenberg model is the appropriate model for
describing magnetic ordering for DMG. We essentially assume
that the relevant Kondo temperature is much less than the
RKKY temperature scale in the system [27]. The RKKY
interaction is related to the range function which is defined
by the Fourier transform of the static susceptibility, i.e.,
χ (r,T ) = ∑

q χ (q,T ), and in 2D it is given by

χ (r,T ) =
∫ ∞

0

qdq

2π
J0(qr)χ (q,T ), (8)

where J0(x) is the Bessel functions of the first kind. Note
that even though the Fourier transform of Eq. (8) is well
defined for J = 2 and 3, it requires an ultraviolet cutoff for
J = 1 and an infrared cutoff for J � 4. These large and
small momenta regularizations are necessary for obtaining
meaningful nonsingular results. In the following results, we
set the infrared momentum cutoff as q(l)

c = 0.01/a and the
ultraviolet momentum cutoff as q(h)

c = 1/a, where a is the
typical length scale of the system, i.e., a lattice constant
of graphene, and we use a = 0.246 nm in our numerical
calculations. While the large momentum ultraviolet cutoff
(inverse lattice constant) for J = 1 is natural in a continuum
theory, the infrared low-momentum cutoff is not usual in solid-
state physics. We provide the details on these regularizations
and their possible effects in the Discussion and Conclusion
section (see Sec. IV).

Figure 2 shows the RKKY range functions χ (r,T ) for J =
1,2,3,4 and for different temperatures. For J = 1 the range
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FIG. 2. The RKKY range function χ (r) as a function of distance
for different chiralities (a) J = 1, (b) J = 2, (c) J = 3, (d) J = 4.
In each figure the different curves represent different temperatures
T = 0, 10, 100, 1000 K [from bottom to top in (a), and from top to
bottom in (b), (c), (d)]. Here D0 = D1(a−1)/a2. In this calculation the
infrared momentum cutoff q (l)

c = 0.01/a for J = 4 and the ultraviolet
momentum cutoff q (h)

c = 1/a for J = 1 are used.

function oscillates for all temperatures, and its magnitude
increases with temperature. For J = 2 the range function
is almost independent of temperature. For J � 3 the mag-
nitude of the range function decreases with temperature.
These behaviors for different J can be understood from the
temperature dependence of the susceptibility shown in Fig. 1.
More importantly, we find that for J = 1,2 the range functions
alternate between positive and negative values, while for J � 3
it always remains positive at T = 0. Due to the suppression
of large q contribution for higher values of layer number J ,
the range functions for J � 3 do not have oscillations. Hence,
there are no competing ferro- and antiferromagnetic couplings
for J � 3, and the magnetic impurity moments are expected
to be ferromagnetically aligned since there is no frustration in
the RKKY coupling.

The carrier-mediated RKKY interaction-induced indirect
exchange interaction [Eqs. (6) and (7)] describes the effec-
tive magnetic interaction between local magnetic moments
induced by the free carrier spin polarization. The effective
temperature-dependent coupling is then given by the spatial
average of the JRKKY,

Jeff(T ) = 1

	unit

∫
d2rJRKKY(r,T ), (9)

where 	unit is the area of a unit cell. The effective temperature-
dependent coupling can be expressed in the dimensionless
form,

Jeff(T )

J
(0)
eff

= 1

D1(a−1)

∫
rdrχ (r,T ), (10)
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where J
(0)
eff = [Jexa

2]
2 × 2πD1(a−1)/4	unit is a magnetic cou-

pling constant, which is proportional to the square of the local
exchange coupling, but independent of the chirality index J

and temperature T . All the interesting physics of chirality
index J and temperature T enters through the integral in
Eq. (10), which depends nontrivially and nonlinearly on both
J and T . We also include disorder effects phenomenologically
through a finite carrier mean-free path by including an
exponential cutoff in the range of the RKKY interaction,
which allows us to take into account the dependence of
the magnetic behavior of multilayer graphene on the carrier
transport properties. In the presence of (nonmagnetic) impurity
scattering, the RKKY interaction range is cut off at long
distances, and we include this physics through an exponential
spatial damping at distances larger than a characteristic length
scale of the order of the carrier transport mean-free path
[25,28–30]. Thus, the effective coupling can be modified as

Jeff =
{ 1

	unit

∫
d2rJRKKY(r) (r < R),

1
	unit

∫
d2rJRKKY(r)e− r−R

R (r > R).
(11)

Here the exponential cutoff R is introduced to take into account
the finite mean-free path due to scattering by nonmagnetic
disorder in the semimetal. In the calculation, we use R =
100a = 24.6 nm, which is a characteristic scale of the mean-
free path, and the choice of R (<300a) does not change our
results qualitatively. We note that the appropriate mean free
path (R) here is the one corresponding to undoped intrinsic
multilayer graphene near the Dirac point, which depends on J

and T (and should be taken from transport data). We use the
length cutoff parameter R just as an adjustable parameter in the
theory since making R large (small) provides a convenient way
to study the qualitative effects of long (short)-range RKKY
interaction on graphene magnetism. Obviously, magnetism is
strongly suppressed when R is small. If experimental results
on multilayer graphene magnetism become available in the
future, it is straightforward to include quantitative effects of a
J - and T -dependent mean-free path in our theory.

Figure 3 shows the calculated temperature dependence
of the effective coupling for C2DESs with chiralities J =
1,2,3,4,5. As shown in Fig. 3, the effective coupling for J � 2
decreases with temperature as in ordinary nonchiral 2DES
[30], but for J = 1 it increases with temperature, which is
the direct consequence of the temperature dependence of the
static susceptibility as shown in Fig. 1. The effective coupling
also increases with increasing chiral index J (or number of
layers in rhombohedral multilayer graphene) because of the
susceptibility behavior at the long wavelength limit, as shown
in Fig. 1. Obviously, the T and J dependence of the effective
magnetic coupling shown in Fig. 3 determines the magnetic
transition temperature in DMG, as discussed below.

From the calculated effective coupling we obtain the critical
temperature for the magnetic transition in multilayer graphene.
For the Heisenberg classical spins the mean-field transition
temperature Tc is given by [26,31]

kBTc = S(S + 1)

3
xJeff, (12)

where S is the impurity spin and x = nimpa
2 is the concen-

tration of the local moments, with nimp being the effective 2D
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)
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FIG. 3. The calculated effective coupling (solid lines) as a
function of temperature for various chiralities J = 1,2,3,4,5. In
this calculation, q (l)

c = 0.01/a, q (h)
c = 1/a, and exponential cutoff

R = 100a are used. Here the normalization factor J
(0)
eff = [Jexa

2]2 ×
2πD1(a−1)/4	unit is independent of the chirality index J and
temperature T . The dashed line represents 3kBT /[S(S + 1)xJ

(0)
eff ],

and the intersections with Jeff (T ) indicate the transition temperatures
solved self-consistently.

magnetic impurity doping density. In the absence of any other
information, we assume the magnetic dopants to be randomly
distributed, but it is easy to include any correlations among
the dopant positions if such dopant clustering effects are im-
portant. We note that the ferromagnetic transition temperature
is proportional to J 2

ex and x, but its dependence on the layer
index J is highly nontrivial and cannot be simply inferred
using dimensional analysis since the layer index J enters the
DOS in a highly nonlinear manner [see Eq. (4)]. We note
that in our finite-temperature RKKY model the ferromagnetic
transition temperature is obtained from Eq. (12) by solving it
self-consistently because Jeff itself is also strongly temperature
dependent [31]. We emphasize that the strong temperature
dependence of the RKKY interaction in intrinsic graphene is
the key physics determining the DMG ferromagnetic transition
temperature in the theory. If one makes the simplistic (and
incorrect) assumption that Jeff is a temperature-independent
coupling given by its T = 0 value Jeff(0), then the transition
temperatures are going to be unrealistically high. The self-
consistent solution of Eq. (12) using the full temperature
dependence of the magnetic coupling as shown in Fig. 3
is crucial in the theory to obtain the correct magnitude as
well as the correct J dependence of the transition temperature
Tc [31].

In Fig. 4 we show the calculated self-consistent transition
temperature Tc as a function of layer index J . With the
temperature-dependent Jeff(T ) and typical values of Jex =
1 eV, S = 5/2, x = 0.05, 	unit/a

2 = 1, the self-consistent
results show the ferromagnetic transition temperatures Tc ≈
0.05, 2.6, 11, 18, and 23 K for J = 1,2,3,4,5, respectively
[see Fig. 4(a)]. In Fig. 4(b) we compare them with the
results calculated in the non-self-consistent method with the
Jeff(T = 0) value, noting that the non-self-consistent Tc is
unreasonably high. Figure 4(b) shows that the zeroth-order
mean-field results assuming Jeff to be given by its T = 0
value overestimate Tc by an order of magnitude (or more)
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FIG. 4. The calculated ferromagnetic transition temperature as a
function of layer (chiral) index J . We use the parameters Jex = 1 eV,
S = 5/2, x = 0.05, and 	unit/a

2 = 1 in this calculation. In (a) the
self-consistent results are shown for different J . In (b), the self-
consistent results (circles) are compared with the results (squares)
obtained in the nonconsistent method with Jeff (T = 0).

for J � 3 compared with the self-consistent results. We note
that Tc is proportional to xJ 2

exS(S + 1) and the results in Fig. 4
are for very specific values of x, Jex, and S, but one can
scale the results to obtain Tc for other values of Jex, S, and
x. We do emphasize, however, that x cannot be too large
so that one is in the dilute moment regime for the validity
of our continuum theory. For large impurity concentration
(x > 0.1 or so) DMG physics is different since graphene
band structure itself may be affected. In addition, the results
obviously depend also on the basic graphene band parameters
g, v0, and t⊥ [see Eq. (4)] and this dependence is complex.
We choose the standard parameter values: g = 4, v0 = 106

m/s, and t⊥ = 0.3 eV in our calculations. We discuss the
dependence on various cutoff parameters in the next section.
Our results apply to the rhombohedral stacking of graphene
layers because the rhombohedral stacking sequence with J

layers is described by C2DES with the chirality index J . Thus,
with high values of layer index J the ferromagnetic ordering
of magnetic impurities can be experimentally accessible in
rhombohedral multilayer graphene provided suitable magnetic
dopants are used with reasonable (∼1 eV or so) local exchange
coupling.

We note that the calculated J dependence of the self-
consistent Tc in Fig. 4 is roughly linear, whereas the cor-
responding dependence in the non-self-consistent mean-field
theory is nonlinear with a high power of J . We do not believe
that there is a generic unique power-law behavior of Tc on
J , and the linear dependence in Fig. 4 applies only for our
calculated results, although it should be approximately valid
for higher J values. Of course, Tc is strongly suppressed for
short mean-free path due to disorder effects, which can only be
discussed quantitatively for specific experimental situations.

IV. DISCUSSION AND CONCLUSION

We have studied the temperature dependence of the RKKY
interaction and effective magnetic ordering as a function of
layer number index for the C2DES of rhombohedrally stacked
multilayer graphene. The chiral effective Hamiltonian used
in this work is obtained from a perturbation theory taking
into account only nearest-neighbor intralayer and interlayer
hoppings [7], which is valid when we neglect the contributions
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qc  a
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104

|J ef
f|/J

(0
)

ef
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J=4

J=5

(l)

(-)

(+)
(-)

FIG. 5. The infrared momentum-cutoff dependence of the ef-
fective coupling for various chiralities J = 1,2,3,4,5 with fixed
high-momentum cutoff q (h)

c = 1/a and exponential cutoff R = 100a.

from the trigonal warping terms which are much smaller than
the terms kept in the effective Hamiltonian. Our theory is
valid only when quantum fluctuations and direct exchange
coupling between the impurity moments are negligible, which
should be valid for large impurity spins and dilute impurity
concentrations. The valid energy scale for the chiral effective
model is given by 0.03–0.3 eV [32], which corresponds to
the momentum scale of 0.01/a–0.1/a. Thus, it is natural
to introduce the infrared low-momentum cutoff and the
ultraviolet high-momentum cutoff, denoted by q(l)

c and q(h)
c ,

respectively. These regularizations are necessary for obtaining
meaningful results in graphene.

In our model, the calculated effective coupling Jeff is
insensitive to the ultraviolet cutoff q(h)

c for J � 2, while
for J = 1, Jeff shows the well-known logarithmic ultraviolet
divergence at high momenta. Note that for monolayer graphene
(J = 1 C2DES) there is no interlayer hopping and the valid
momentum scale is restricted only by the inverse lattice
constant, beyond which the linear dispersion is no longer
valid. Even though our results are independent of the high-
momentum cutoff, they are affected by the low-momentum
cutoff q(l)

c . As shown in Fig. 5, the calculated effective
couplings are consistent for small values of the cutoff q(l)

c <

10−2/a. However, for large values of cutoff the sign of Jeff

oscillates with q(l)
c . For a typical value of q(l)

c =0.01/a, Jeff >0,
and thus the ordering is ferromagnetic for all C2DESs. Note
that the calculated results also depend on the exponential
disorder cutoff R for R > 500a, and a larger R gives more
oscillating behavior in Jeff . The finite mobility of multilayer
graphene, however, restricts the size of R and for a typical scale
of mean-free path the results do not change qualitatively. In
addition, the finite mean free path cutoff prevents the system
from becoming an interaction-induced ordered state with a
nonzero energy gap at the Dirac point; thus, we can use a chiral
gas model of a gapless semimetal even at zero carrier density.

In summary, we study the magnetic properties of multilayer
graphene (chiral 2D electron systems) in the presence of
magnetic impurities as a function of layer index number
in the intrinsic semimetallic situation. By calculating the
temperature-dependent susceptibility of multilayer graphene
we investigate the temperature dependence of the RKKY
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interaction and the associated carrier-induced effective mag-
netic coupling using the effective chiral model of multilayer
graphene. We show that, due to the enhanced DOS in
rhombohedral stacking, the ferromagnetic ordering between
magnetic impurities is possible at experimentally accessible
temperatures. Our results indicate that the magnetic impurity-
induced ferromagnetic order in multilayer graphene should

be observable experimentally for layer number 3 or above in
multilayer graphene system, perhaps ushering in the physics
of spintronics based on diluted magnetic graphene.

ACKNOWLEDGMENT

This work is supported by LPS-MPO-CMTC.

[1] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod.
Phys. 83, 407 (2011).

[2] H. Raza, Graphene Nanoelectronics: Metrology, Synthesis,
Properties and Applications (Springer, Berlin, 2012).

[3] A. Yacoby, Nat. Phys. 7, 925 (2011).
[4] P. H. Tan, W. P. Han, W. J. Zhao, Z. H. Wu, K. Chang, H. Wang,

Y. F. Wang, N. Bonini, N. Marzari, N. Pugno, G. Savini, A.
Lombardo, and A. C. Ferrari, Nat. Mater. 11, 294 (2012).

[5] W. Bao, L. Jing, J. Velasco Jr, Y. Lee, G. Liu, D. Tran, B.
Standley, M. Aykol, S. B. Cronin, D. Smirnov, M. Koshino, E.
McCann, M. Bockrath, and C. N. Lau, Nat. Phys. 7, 948 (2011);
C. H. Lui, Z. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, ibid.
7, 944 (2011).

[6] H. Min, E. H. Hwang, and S. Das Sarma, Phys. Rev. B 86,
081402(R) (2012); Y. Jang, E. H. Hwang, A. H. MacDonald,
and H. Min, ibid. 92, 041411(R) (2015).

[7] H. Min and A. H. MacDonald, Phys. Rev. B 77, 155416 (2008);
Prog. Theor. Phys. Suppl. 176, 227 (2008).

[8] M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954); T.
Kasuya, Prog. Theor. Phys. 16, 45 (1956); K. Yosida, Phys. Rev.
106, 893 (1957).

[9] C. Kittel, in Solid State Physics, edited by F. Seitz, D. Turnbull,
and H. Ehrenreich (Academic Press, New York, 1968), Vol. 22.

[10] O. V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010).
[11] S. Das Sarma, E. H. Hwang, A. Kaminski, Solid State Commun.

127, 99 (2003).
[12] T. Jungwirth, J. Sinova, J. Masek, J. Kucera, and A. H.

MacDonald, Rev. Mod. Phys. 78, 809 (2006).
[13] L. Brey, H. A. Fertig, and S. Das Sarma, Phys. Rev. Lett. 99,

116802 (2007).
[14] B. Wunsch, T. Stauber, F. Sols, and F. Guinea, New J. Phys. 8,

318 (2006).

[15] M. A. H. Vozmediano, M. P. Lopez-Sancho, T. Stauber, and F.
Guinea, Phys. Rev. B 72, 155121 (2005).

[16] V. K. Dugaev, V. I. Litvinov, and J. Barnas, Phys. Rev. B 74,
224438 (2006).

[17] M. Sherafati and S. Satpathy, Phys. Rev. B 83, 165425 (2011);
84, 125416 (2011).

[18] A. M. Black-Schaffer, Phys. Rev. B 81, 205416 (2010).
[19] B. Uchoa, T. G. Rappoport, and A. H. Castro Neto, Phys. Rev.

Lett. 106, 016801 (2011).
[20] S. R. Power and M. S. Ferreira, Phys. Rev. B 83, 155432 (2011);

94, 235439 (2016).
[21] E. Kogan, Phys. Rev. B 84, 115119 (2011).
[22] L. Jiang, X. Li, W. Gao, G. Yu, Z. Liu, and Y. Zheng, J. Phys.:

Condens. Matter 24, 206003 (2012).
[23] E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418 (2007);

Phys. Rev. Lett. 101, 156802 (2008).
[24] E. H. Hwang and S. Das Sarma, Phys. Rev. B 79, 165404 (2009).
[25] D. J. Priour, Jr., E. H. Hwang, and S. Das Sarma, Phys. Rev.

Lett. 92, 117201 (2004); 95, 037201 (2005).
[26] C. Kittel, Introduction to Solid State Physics (Wiley, New York,

2005).
[27] A. Allerdt, A. E. Feiguin, and S. Das Sarma, Phys. Rev. B 95,

104402 (2017).
[28] P. J. T. Eggenkamp, H. J. M. Swagten, T. Story, V. I. Litvinov,

C. H. W. Swuste, and W. J. M. de Jonge, Phys. Rev. B 51, 15250
(1995).

[29] S. Das Sarma, Phys. Rev. Lett. 50, 211 (1983).
[30] S. Das Sarma, Phys. Rev. B 33, 5401 (1986).
[31] S. Das Sarma, E. H. Hwang, and A. Kaminski, Phys. Rev. B 67,

155201 (2003).
[32] F. Zhang, H. Min, M. Polini, and A. H. MacDonald, Phys. Rev.

B 81, 041402(R) (2010).

155414-7

https://doi.org/10.1103/RevModPhys.83.407
https://doi.org/10.1103/RevModPhys.83.407
https://doi.org/10.1103/RevModPhys.83.407
https://doi.org/10.1103/RevModPhys.83.407
https://doi.org/10.1038/nphys2166
https://doi.org/10.1038/nphys2166
https://doi.org/10.1038/nphys2166
https://doi.org/10.1038/nphys2166
https://doi.org/10.1038/nmat3245
https://doi.org/10.1038/nmat3245
https://doi.org/10.1038/nmat3245
https://doi.org/10.1038/nmat3245
https://doi.org/10.1038/nphys2103
https://doi.org/10.1038/nphys2103
https://doi.org/10.1038/nphys2103
https://doi.org/10.1038/nphys2103
https://doi.org/10.1038/nphys2102
https://doi.org/10.1038/nphys2102
https://doi.org/10.1038/nphys2102
https://doi.org/10.1038/nphys2102
https://doi.org/10.1103/PhysRevB.86.081402
https://doi.org/10.1103/PhysRevB.86.081402
https://doi.org/10.1103/PhysRevB.86.081402
https://doi.org/10.1103/PhysRevB.86.081402
https://doi.org/10.1103/PhysRevB.92.041411
https://doi.org/10.1103/PhysRevB.92.041411
https://doi.org/10.1103/PhysRevB.92.041411
https://doi.org/10.1103/PhysRevB.92.041411
https://doi.org/10.1103/PhysRevB.77.155416
https://doi.org/10.1103/PhysRevB.77.155416
https://doi.org/10.1103/PhysRevB.77.155416
https://doi.org/10.1103/PhysRevB.77.155416
https://doi.org/10.1143/PTPS.176.227
https://doi.org/10.1143/PTPS.176.227
https://doi.org/10.1143/PTPS.176.227
https://doi.org/10.1143/PTPS.176.227
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1088/0034-4885/73/5/056501
https://doi.org/10.1088/0034-4885/73/5/056501
https://doi.org/10.1088/0034-4885/73/5/056501
https://doi.org/10.1088/0034-4885/73/5/056501
https://doi.org/10.1016/S0038-1098(03)00337-5
https://doi.org/10.1016/S0038-1098(03)00337-5
https://doi.org/10.1016/S0038-1098(03)00337-5
https://doi.org/10.1016/S0038-1098(03)00337-5
https://doi.org/10.1103/RevModPhys.78.809
https://doi.org/10.1103/RevModPhys.78.809
https://doi.org/10.1103/RevModPhys.78.809
https://doi.org/10.1103/RevModPhys.78.809
https://doi.org/10.1103/PhysRevLett.99.116802
https://doi.org/10.1103/PhysRevLett.99.116802
https://doi.org/10.1103/PhysRevLett.99.116802
https://doi.org/10.1103/PhysRevLett.99.116802
https://doi.org/10.1088/1367-2630/8/12/318
https://doi.org/10.1088/1367-2630/8/12/318
https://doi.org/10.1088/1367-2630/8/12/318
https://doi.org/10.1088/1367-2630/8/12/318
https://doi.org/10.1103/PhysRevB.72.155121
https://doi.org/10.1103/PhysRevB.72.155121
https://doi.org/10.1103/PhysRevB.72.155121
https://doi.org/10.1103/PhysRevB.72.155121
https://doi.org/10.1103/PhysRevB.74.224438
https://doi.org/10.1103/PhysRevB.74.224438
https://doi.org/10.1103/PhysRevB.74.224438
https://doi.org/10.1103/PhysRevB.74.224438
https://doi.org/10.1103/PhysRevB.83.165425
https://doi.org/10.1103/PhysRevB.83.165425
https://doi.org/10.1103/PhysRevB.83.165425
https://doi.org/10.1103/PhysRevB.83.165425
https://doi.org/10.1103/PhysRevB.84.125416
https://doi.org/10.1103/PhysRevB.84.125416
https://doi.org/10.1103/PhysRevB.84.125416
https://doi.org/10.1103/PhysRevB.81.205416
https://doi.org/10.1103/PhysRevB.81.205416
https://doi.org/10.1103/PhysRevB.81.205416
https://doi.org/10.1103/PhysRevB.81.205416
https://doi.org/10.1103/PhysRevLett.106.016801
https://doi.org/10.1103/PhysRevLett.106.016801
https://doi.org/10.1103/PhysRevLett.106.016801
https://doi.org/10.1103/PhysRevLett.106.016801
https://doi.org/10.1103/PhysRevB.83.155432
https://doi.org/10.1103/PhysRevB.83.155432
https://doi.org/10.1103/PhysRevB.83.155432
https://doi.org/10.1103/PhysRevB.83.155432
https://doi.org/10.1103/PhysRevB.94.235439
https://doi.org/10.1103/PhysRevB.94.235439
https://doi.org/10.1103/PhysRevB.94.235439
https://doi.org/10.1103/PhysRevB.84.115119
https://doi.org/10.1103/PhysRevB.84.115119
https://doi.org/10.1103/PhysRevB.84.115119
https://doi.org/10.1103/PhysRevB.84.115119
https://doi.org/10.1088/0953-8984/24/20/206003
https://doi.org/10.1088/0953-8984/24/20/206003
https://doi.org/10.1088/0953-8984/24/20/206003
https://doi.org/10.1088/0953-8984/24/20/206003
https://doi.org/10.1103/PhysRevB.75.205418
https://doi.org/10.1103/PhysRevB.75.205418
https://doi.org/10.1103/PhysRevB.75.205418
https://doi.org/10.1103/PhysRevB.75.205418
https://doi.org/10.1103/PhysRevLett.101.156802
https://doi.org/10.1103/PhysRevLett.101.156802
https://doi.org/10.1103/PhysRevLett.101.156802
https://doi.org/10.1103/PhysRevLett.101.156802
https://doi.org/10.1103/PhysRevB.79.165404
https://doi.org/10.1103/PhysRevB.79.165404
https://doi.org/10.1103/PhysRevB.79.165404
https://doi.org/10.1103/PhysRevB.79.165404
https://doi.org/10.1103/PhysRevLett.92.117201
https://doi.org/10.1103/PhysRevLett.92.117201
https://doi.org/10.1103/PhysRevLett.92.117201
https://doi.org/10.1103/PhysRevLett.92.117201
https://doi.org/10.1103/PhysRevLett.95.037201
https://doi.org/10.1103/PhysRevLett.95.037201
https://doi.org/10.1103/PhysRevLett.95.037201
https://doi.org/10.1103/PhysRevB.95.104402
https://doi.org/10.1103/PhysRevB.95.104402
https://doi.org/10.1103/PhysRevB.95.104402
https://doi.org/10.1103/PhysRevB.95.104402
https://doi.org/10.1103/PhysRevB.51.15250
https://doi.org/10.1103/PhysRevB.51.15250
https://doi.org/10.1103/PhysRevB.51.15250
https://doi.org/10.1103/PhysRevB.51.15250
https://doi.org/10.1103/PhysRevLett.50.211
https://doi.org/10.1103/PhysRevLett.50.211
https://doi.org/10.1103/PhysRevLett.50.211
https://doi.org/10.1103/PhysRevLett.50.211
https://doi.org/10.1103/PhysRevB.33.5401
https://doi.org/10.1103/PhysRevB.33.5401
https://doi.org/10.1103/PhysRevB.33.5401
https://doi.org/10.1103/PhysRevB.33.5401
https://doi.org/10.1103/PhysRevB.67.155201
https://doi.org/10.1103/PhysRevB.67.155201
https://doi.org/10.1103/PhysRevB.67.155201
https://doi.org/10.1103/PhysRevB.67.155201
https://doi.org/10.1103/PhysRevB.81.041402
https://doi.org/10.1103/PhysRevB.81.041402
https://doi.org/10.1103/PhysRevB.81.041402
https://doi.org/10.1103/PhysRevB.81.041402



