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We developed a six-band k · p model that describes the electronic states of monolayer transition metal
dichalcogenides (TMDCs) in K valleys. The set of parameters for the k · p model is uniquely determined
by decomposing tight-binding (TB) models in the vicinity of K± points. First, we used TB models existing in
literature to derive systematic parametrizations for different materials, including MoS2, WS2, MoSe2, and WSe2.
Then, by using the derived six-band k · p Hamiltonian we calculated effective masses, Landau levels, and the
effective exciton g-factor gX0 in different TMDCs. We showed that TB parametrizations existing in literature
result in small absolute values of gX0 , which are far from the experimentally measured gX0 ≈ −4. To further
investigate this issue we derived additional sets of k · p parameters for different TMDCs by developing our
own TB parametrizations based on simultaneous fitting of ab initio calculated, within the density functional
theory (DFT) and GW approaches, energy dispersion, and the value of gX0 . We showed that the change in TB
parameters, which only slightly affects the dispersion of higher conduction and deep valence bands, may result
in a significant increase of |gX0 |, yielding close-to-experiment values of gX0 . Such a high parameter sensitivity
of gX0 opens a way to further improvement of the description of TMDCs electronic structures by DFT and/or TB
models.
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I. INTRODUCTION

Monolayers of transition metal dichalcogenides (TMDCs)
have attracted recently much attention due to their exceptional
properties, such as coupling of spin and valley degrees of
freedom, which allows for the valley polarization with a
circularly polarized light in these materials [1–6]. Recent mag-
netophotoluminescence experiments revealed the significant
Zeeman splitting of emission lines associated with optical
recombination of excitons and trions in different valleys. The
effective exciton g factors of this “valley Zeeman effect”
in a magnetic field directed normal to a monolayer plane
were found to be gX0 ≈ −4 for a wide range of investigated
materials, including selenides [7–12], sulfides [13,14], and
tellurides [15]. Theoretical calculations of exciton g factor
were done in Refs. [16–18].

The electron band structure of crystalline solids is usually
calculated using ab initio methods such as density functional
theory (DFT), which requires a minimum set of input parame-
ters and provides a rather accurate description of energy bands.
This method is widely applied to calculate the band dispersion
in TMDCs, however the evaluation of the g factors of charge
carriers within the DFT method is difficult. On the other hand,
the multiband k · p method is perfectly suited for theoretical
investigation of both energy dispersion in the vicinity of
selected points, high-symmetry, as a rule, in the k space and
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evaluation of various phenomena, such as magneto-optical and
transport effects, including Zeeman effect, optical absorption,
and photogalvanics [19,20]. However, this method is empirical
in a sense that the parameters of the effective Hamiltonian
should be found by comparison with ab initio calculations
and/or with experiments. Despite this, the k · p method is exact
provided all energy bands are taken into account. Reasonable
approximations, which include the set of well-selected bands
that account for point symmetry of the material and are close
in energy, are usually found for a variety of semiconductors
(including group-IV materials, such as Si and Ge, III-V and
II-VI binary compounds, including GaAs, CdTe, HgTe, and
many others) [21–24].

The simple two-band k · p model, which accounts for the
bottom conduction and topmost valence bands, is insufficient
for calculation of exciton Zeeman effect since the exciton
g-factor gX0 vanishes in the two-band k · p approximation
[11]. Therefore the development of multiband k · p models is
required. Several multiband k · p models describing electronic
spectra in TMDCs [25–27] are available in literature. In these
works analytical expressions for multiband Hamiltonians are
present, however, its detailed parametrization, i.e., the set
of parameters describing positions of energy bands and the
values of interband matrix elements of momentum operator,
is not established. These multiband Hamiltonians are used
only as a starting point to derive an effective two-band k · p

model, which includes the contributions of other bands by
the perturbation theory. This procedure results in additional
phenomenological terms describing contributions of remote
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bands in the two-band k · p Hamiltonian. The values of these
terms, i.e., quadratic and cubic in k diagonal and off-diagonal
terms, are found by fitting the DFT band structure in the
vicinity of K points of the Brillouin zone. However, this
direct parametrization of the k · p Hamiltonian is ambiguous,
because basically the same set of energies and effective masses
can be reproduced with different values of the interband matrix
elements. Moreover, as shown by DFT calculations, and as we
will discuss below, the closely lying excited conduction (c + 2)
and valence (v − 3) bands, strictly speaking, cannot be treated
as remote and should be also directly included in the k · p

model.
In this work we obtain parametrization of the multiband

k · p model using an alternative approach based on the idea
proposed in Ref. [11]. This approach takes the use of the
tight-binding (TB) model as an intermediate step between
DFT and k · p modeling. Unlike the k · p method the TB
model provides the electronic band structure in the whole
Brillouin zone. By decomposing the TB Hamiltonian in
the vicinity of a given wave vector in the Brillouin zone,
we obtain a multiband k · p Hamiltonian (the number of
bands is equal to the number of atomic orbitals included in
the TB model) with a set of parameters that are uniquely
determined by the TB parametrization. Such a procedure gives
an unambiguous set of k · p parameters, which is explicitly
related to a given TB model. In contrast to existing two-band
k · p models the derived multiband Hamiltonian allows us
to analyze the contributions of different bands to exciton
g factor and thus establish importance of these bands for
other physical problems that can be solved within the k · p

method.
On the other hand, the TB models still require the

selection of parameters, because, just like in k · p approach,
it turns out that fitting just the band dispersion is not
sufficient to obtain a single unequivocal set of parameters.
Additional values, such as the weights of atomic orbitals in TB
wave function decomposition, are used to constrict possible
parametrizations. In this work we use the experimentally
measured value of exciton g factor as an additional con-
straint to improve the TB parametrization. Such an approach
has proven itself for classical semiconductors like GaAs,
where the k · p model has been improved particularly by
taking into account the experimentally measured electron
g factors [28].

As a starting point we use several existing 11-band TB
models [29–33]. These models include d-type orbitals of
metal atoms and p-type orbitals of chalcogen atoms, and
capture all symmetries of the studied system. The resulting
k · p Hamiltonian contains six closely lying bands (including
the topmost valence and bottom conduction bands) that
have even parity with respect to mirror reflection in the
monolayer plane and properly describes C3h point symmetry
of K valleys. We present a systematic parametrization of the
six-band k · p Hamiltonian by expansion of TB Hamiltonians
[29–33] in the vicinity of K± points of the Brillouin zone for
different materials (MoS2, WS2, MoSe2, WSe2) and different
TB models. We also do the whole three-step procedure on
our own, i.e., perform post-DFT calculations by applying
GW formalism to obtain reliable band gaps and accurate
band dispersion, fit it with the TB model, and do the k · p

decomposition, which allows us, as a result, to obtain an
independent k · p parametrization. In previous studies the main
focus was made on DFT calculations using mainly local or
semilocal exchange-correlation functionals [29–31], whereas
a hybrid functional was also used [32] to partially correct the
severe underestimation of band gap values usually observed at
the DFT level for MoS2 monolayers, see Ref. [34] for a recent
review. The use of GW correction strongly affects the effective
charge carrier masses [35,36] too. In Ref. [31] TB parameters
were extracted from GW calculations for MoS2 and were used
to correct parameters extracted from standard DFT electronic
structures.

Then we use the derived six-band k · p Hamiltonian to
calculate effective masses, Landau levels, and the effective
exciton g-factor gX0 in different TMDCs. We establish that the
main contributions to gX0 result from the mixing with excited
conduction (c + 2) and deep valence (v − 3) bands. We show
that the calculated values of gX0 and effective masses vary
in a wide range for different TB parametrizations. The wide
spread of calculated gX0 indicates ambiguity of the available
TB parametrizations. Moreover, the calculated values of gX0

available in literature TB models (|gX0 | � 1) are rather far from
experimental values. To overcome this problem, we find our
own TB parametrizations based on the simultaneous fitting
of DFT+GW band structure and the experimental value of
gX0 . By decomposing the obtained TB Hamiltonians we were
able to find k · p parametrization sets, which well describe
the experimental exciton g factor (gX0 ≈ −4), as well as
conduction and valence band effective masses and the wave
functions coefficients. This result underlies the importance of
the careful choice for the DFT starting point calculations and
TB parametrizations: along with effective masses and energy
gaps the g-factor value may serve as a test for improving both
the DFT calculations and TB models.

II. EFFECTIVE k · p HAMILTONIAN

As a starting point for construction of an effective k · p

Hamiltonian we use 11-band tight-binding models developed
in Refs. [29–33]. These tight-binding models include three
p-type orbitals on each of the two chalcogen atoms (X) and
five d-type orbitals on a metal atom (M). The electron wave
function within the tight-binding approximation is presented
as a linear combination of atomic orbitals φ

(a)
j [11],

�
(n)
k (r) =

∑
a,l,j

eikRa,lC
(a)
j φ

(a)
j (r − Ra,l), (1)

where n is a number of an electronic band, k is a wave vector,
a = M,X denotes the type of an atom, l runs through the atoms
of a given type, j enumerates the set of orbitals, Ra,l gives the
position of atoms in a two-dimensional lattice, and C

(a)
j are

coefficients.
The basis orbitals of the 11-band tight-binding model are

[29–33]

φ
(a)
j = {dz2 ,d+,d−,p+,p−,pz,A,dxz,dyz,px,A,py,A,pz,S},

(2)

where d± = dx2−y2 ± 2idxy , p± = px,S ± ipy,S , dα denotes
the orbital with a d-like symmetry of the M atom, pβ,S =
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(pβ,t + pβ,b)/
√

2, pβ,A = (pβ,t − pβ,b)/
√

2 are the symmet-
ric and asymmetric combinations of the p-type orbitals of
the top (t) and bottom (b) X atoms in the unit cell, x and
y axes lie in the monolayer plane, and z is the monolayer
normal. The spin-orbit interaction between electron spin and
orbital momenta of atomic orbitals [30,31] is neglected in this
work.

If the z → −z mirror symmetry is conserved, i.e., for a
free-standing monolayer in the absence of external electric
field and strain, the Hamiltonian, which describes the energy
spectrum of a monolayer electron with a wave vector k, written
in the basis Eq. (2), has the form

H(k) =
(
HE 0
0 HO

)
. (3)

Here HE is the 6 × 6 block acting on the orbitals with even
with respect to z → −z symmetry, and HO is the 5 × 5 block
acting on the orbitals with odd symmetry. The exact form
of blocks HE and HO depends on a particular tight-binding
model [29–33]. It is known that the Bloch functions of the
bottom conduction and topmost valence bands, which are
of the main interest in this work, are even with respect to
z → −z reflection [25,27], and therefore these bands are
described by the HE block. We note that magnetic field
normal to a monolayer does not break the parity of wave
functions, and hence we do not need the HO block in the
calculation of gX0 . We also note that the mixing of the
HE and HO blocks by a perturbation that breaks z → −z

symmetry does not affect gX0 in the first order in this
perturbation.

To construct an effective k · p Hamiltonian in the vicinity of
K± = (±4π/3a0,0) points, where a0 is the lattice constant, we
will decompose the tight-binding Hamiltonian HE(k) over a
small wave vector q = k − K±. Up to the second-order terms
this decomposition yields

H±
E (q) ≈ HE(K±) +

∑
α=x,y

∂HE

∂kα

(K±)qα

+ 1

2

∑
α,β=x,y

∂2HE

∂kα∂kβ

(K±)qαqβ. (4)

Electron wave functions at K± valleys of MX2 transform
according to irreducible representations (irreps) of the C3h

point group. We denote six wave functions that diagonalize
H+

E (q) at q = 0 as �
(v−5)
E′

1
, �

(v−4)
A′ , �

(v−3)
E′

2
, �

(v)
A′ , �

(c)
E′

1
, �

(c+2)
E′

2
,

where a superscript names the electronic band and a subscript
denotes the corresponding irreducible representation (A′,
E′

1, and E′
2), see Table I. Note that in addition to two

conduction (c and c + 2) and two valence (v and v − 3) bands,
known from the four-band k · p models [25,27], the six-band
model contains two deep valence bands v − 4 and v − 5,
which transform at K+ point via A′ and E′

1 representations,
respectively.

In the new basis H±
E (q) can be written as

H±
E (q) = H±

1 (q) + H±
2 (q), (5)

TABLE I. The nonzero coefficients C
(a)
j of wave functions Eq. (1)

at K+ point and corresponding irreducible representations of the C3h

point group. The phases of the wave functions are chosen in such a
way that αi and βi are real numbers, α2

i + β2
i = 1, and αi > 0. We

denote pz ≡ pz,A.

Irrep Band Nonzero wave function coefficients

A′ v, v − 4 � (v): Cd+ = α1, Cp+ = iβ1;
� (v−4): Cd+ = β1, Cp+ = −iα1

E′
1 c, v − 5 � (c): Cd

z2 = α2, Cp− = iβ2;
� (v−5): Cd

z2 = β2, Cp− = −iα2

E′
2 c + 2, v − 3 � (c+2): Cd− = α3, Cpz

= β3;
� (v−3): Cd− = β3, Cpz

= −α3

where the first term contains linear in q terms:

H+
1 (q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ev−5 δ7q− δ6q+ δ4q− 0 δ2q+
δ7q+ Ev−4 δ5q− 0 δ3q+ δ1q−
δ6q− δ5q+ Ev−3 γ2q+ γ5q− 0
δ4q+ 0 γ2q− Ev γ3q+ γ4q−

0 δ3q− γ5q+ γ3q− Ec γ6q+
δ2q− δ1q+ 0 γ4q+ γ6q− Ec+2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(6)

and the second one

[H±
2 (q)]nl = h̄2q2

2m′
n

δnl, n,l = 1, . . . ,6 (7)

is a diagonal matrix with quadratic in q elements. In Eqs. (6)
and (7) En (n = c + 2,c, . . . ) are the band energies at K±
points, γj and δj are parameters, q± = qx ± iqy , and q2 =
q2

x + q2
y . The effective masses m′

n describe contributions to
the band dispersion arising from the mixing with remote
bands, which are not present in the k · p model [11]. Note
that in the decomposition of the off-diagonal elements of the
tight-binding Hamiltonian (4) we retain only the linear in q
terms. The phases of wave functions at K+ point (Table I)
are chosen in such a way that parameters γj and δj are
real. Parameters of the k · p Hamiltonians (6) and (7) for
different parametrizations, materials, and tight-binding models
are listed in Tables IV and V of Appendix A.

To derive the k · p Hamiltonian H−
1 at the K− point of the

Brillouin zone one should replace q+ by q− and vice versa in
Eq. (6) [37]. Note that at k = K− basis wave functions �(c) and
�(v−5) transform according to E′

2 irreducible representation,
whereas �(c+2) and �(v−3) transform according to E′

1.
The effective masses of the main conduction and valence

bands in the framework of k · p model are

1

mc

= 1

m′
c

+ 1

m∗
c

,
1

mv

= 1

m′
v

+ 1

m∗
v

, (8)

where

1

m∗
c

= 2

h̄2

(
γ 2

5

Ec − Ev−3
+ γ 2

3

Ec − Ev

+ γ 2
6

Ec − Ec+2
+ δ2

3

Ec − Ev−4

)
, (9)
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FIG. 1. Electronic spectra of MoS2 calculated using TB models
Rostami et al. [33] (a) and Fang et al. [31] (b). Red lines are k · p

quadratic dispersions at K point calculated using effective masses
for each band (see text for details). Note the different order of deep
valence bands in two panels.

1

m∗
v

= 2

h̄2

(
γ 2

2

Ev − Ev−3
+ γ 2

3

Ev − Ec

+ γ 2
4

Ev − Ec+2
+ δ2

4

Ev − Ev−5

)
(10)

result from the mixing of electronic bands described by
Hamiltonian (6), whereas m′

c and m′
v account for the mixing

with remote bands, see Eq. (7).
Figure 1 shows the dispersion of electronic bands in MoS2

calculated in the framework of TB models of Refs. [31,33],
respectively, in Figs. 1(b) and 1(a) and the dispersion
εn = En + h̄2q2/2mn, where an effective mass of the nth band
is calculated similar to n = c and n = v, see Eqs. (8)–(10).
Figure 1 illustrates that a certain care should be taken when
labeling the valence bands: the bands are labeled according to
its wave functions representations, see Table I, and the order
might be different for different TB models.

The effective masses mc and mv for different TB models are
listed in Tables II and III. Agreements with previous studies
[25] and experimental estimates of mv values [38] are indeed
good, providing a good basis for g-factors determination. As
for mc values the TB parametrizations obtained in this work
fit the local maximum in the conduction band in the K-�

TABLE II. The values of g factors and effective masses (in units
of m0) of the v and c bands calculated within the k · p model from
different TB parametrizations (listed in footnotes) based on DFT
calculations.

MoS2
a MoS2

b MoSe2
b WS2

b WSe2
b

mv − 0.54 − 0.72 − 0.82 − 0.53 − 0.57
mc 0.54 0.86 1.02 0.68 0.76
gv 8.73 5.57 5.12 6.08 5.64
gc 7.82 5.41 5.12 6.13 5.79
gX0 = gc − gv − 0.91 − 0.16 0 0.05 0.15

aTB model of Ref. [33] based on DFT calculations.
bTB model of Ref. [31] based on DFT calculations.

TABLE III. The values of g factors and effective masses (in
units of m0) of the v and c bands calculated within the k · p model
from different TB parametrizations (listed in footnotes) based on
DFT+GW calculations.

MoS2
a MoS2

b MoS2
c MoSe2

c WS2
c WSe2

c

mv − 0.58 − 0.40 − 0.56 − 0.57 − 0.49 − 0.58
mc 0.90 0.37 0.37 0.52 0.40 0.46
gv 6.18 11.90 5.59 5.83 5.96 4.08
gc 6.83 10.15 1.77 3.21 2.11 0.24
gX0 = gc − gv 0.65 − 1.75 − 3.82 − 2.62 − 3.85 − 3.84

aTB model of Ref. [31] based on DFT+GW calculations.
bDFT+GW and TB parametrization of this work (TB model based
on Ref. [33]).
cDFT+GW and TB parametrization of this work (TB model based
on Ref. [31]).

direction, see Fig. 3, and give mc values close to the ones in
DFT+GW calculations.

III. ZEEMAN EFFECT

In this section we use the developed k · p model to
calculate the g factors of electrons in conduction and valence
bands. The main interest, however, is related to the exciton
g factor, which has been measured in a number of recent
experiments by optical means. Single carrier Zeeman splittings
can be determined, for instance, from the measurements of
Shubnikov–de Haas oscillations.

We consider the Zeeman splitting of electrons in K±
valleys in magnetic field B = (0,0,Bz) perpendicular to a
monolayer plane. The Zeeman effect contains spin and valley
contributions described by g-factors g0 and gorb, respectively,

HB = g0

2
μBBzσz + gorb

2
μBBzτz. (11)

Here σz is a spin operator (σz = ±1 for spin-up and spin-down
electrons, respectively), τz represents the valley degree of
freedom (τz = ±1 for K+ and K− electrons, respectively),
and μB is the Bohr magneton. The effective g factors of K+
and K− electrons are defined as [11]

gK+
c,v ≡ gc,v = g0 + g

c,v
orb, gK+

c,v = −gK−
c,v . (12)

The valley term g
c,v
orb has an orbital nature and accounts for

the mixing of the electronic bands by magnetic field. Within the
k · p scheme this mixing is obtained by replacing q in Eq. (6)
with q − (e/ch̄)A, where e = −|e| is the electron charge, and
A is the vector potential of the magnetic field, resulting in (cf.
Ref. [11])

gc
orb = 4m0

h̄2

(
− γ 2

5

Ec − Ev−3
+ γ 2

3

Ec − Ev

− γ 2
6

Ec − Ec+2
+ δ2

3

Ec − Ev−4

)
, (13)

gv
orb = 4m0

h̄2

(
γ 2

2

Ev − Ev−3
− γ 2

3

Ev − Ec

+ γ 2
4

Ev − Ec+2
− δ2

4

Ev − Ev−5

)
. (14)
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The spin g-factor g0 comprises two contributions, namely, the
bare electron g factor (g0 = 2) and a small contribution due to
the spin-orbit interaction, which is not taken into account in
our model. This contribution within the k · p model is of the
order of ∼ gorb�so/�Eij 	 gorb, where �so is the spin-orbit
splitting of a given band, and �Eij is a characteristic energy
distance to other bands.

The σ+ and σ− photoluminescence lines observed in
experiments originate from the radiative recombination of
neutral excitons X0 with electrons occupying K+ and K−
valleys, respectively [39]. Therefore the effective Zeeman
splitting of X0 is �Z = gX0μBBz with [11]

gX0 = gc − gv. (15)

In this difference, according to Eqs. (12)–(14), the contribution
to gc and gv , which occurs due to the mixing between c and
v bands (∝ γ 2

3 ), cancels out, so that nonzero contributions to
gX0 arise due to the mixing of v and c with deep valence and
excited conduction bands.

IV. DISCUSSION

Tables II and III present the values of g factors and
effective masses calculated within the developed k · p model
after Eqs. (13) and (14) and Eqs. (8)–(10). Since the large
contributions to gc and gv that originate from the mixing
between v and c bands cancel out in the exciton g factor, the
value of gX0 is defined by the mixing with deep valence and
excited conduction bands. The main contributions to gX0 in
the studied parametrizations come from the mixing with v − 3
and c + 2 bands, i.e., from the terms −γ 2

5 /(Ec − Ev−3) and
−γ 2

6 /(Ec − Ec+2) in Eq. (13) and terms γ 2
2 /(Ev − Ev−3) and

γ 2
4 /(Ev − Ec+2) in Eq. (14). As an example, the contribution

from c + 2 gives ≈15% of the total gc value, and the
contribution from v − 3 gives ≈30% of the total gv value for
MoS2 parametrization (a) in Table II. As seen from Table II,
existing in literature TB models result in small absolute values
of gX0 , which are far from the experimentally measured
gX0 ≈ −4.

Based on our own DFT and post-DFT (GW ) calculations
and TB fitting procedure (see computational details and
dispersion of energy bands in Appendixes B and C) we
obtained additional k · p parametrizations for MoS2, WS2,
MoSe2, and WSe2, see columns b–f in Tables III and V. For this
purpose we use two different TB models, the 11-parameters
TB model of Ref. [33] and the TB model of Ref. [31] with
25 independent parameters. Within the fitting procedure we
numerically extract parameters of the k · p Hamiltonian and
calculate exciton g factor using Eqs. (13)–(15). We then
use the value of gX0 as an extra fitting parameter (we fit
it to the experimental value gX0 ≈ −4) additional to band
dispersions and wave function coefficients. Equations (13)–
(15) use single-particle electron and hole g factors at bands
extrema and do not take into account the renormalization of
gX0 due to the Coulomb effect. Although this renormalization,
as will be shown below, might be significant, it is still not
sufficient to explain experimentally observed large values
of gX0 , if we start from the available in literature TB
parametrizations, which give gc − gv ≈ 0. Therefore it is
more likely that the large experimental values of exciton

gc
gv

gc
gv c

v
E

E
0

0

g-
fa

ct
or

6

7

8

9

10

Energy (eV)
−0.4 −0.2 0 0.2 0.4

FIG. 2. Conduction and valence band g-factors gc and gv as
functions of electron and hole energy, respectively. The energies are
counted from the bottom of the conduction band and from the top of
the valence band as shown in the inset. The solid and dashed lines
show results of calculations for parametrization (a) from Table IV
and parametrization (a) from Table V, respectively.

g factor are related to the renormalization of single-particle
g factors rather than the Coulomb effect. Moreover, the scatter
of experimental values for gX0 (see, e.g., Ref. [13] for a review
of experimental results) is of the same order as the estimated
gX0 renormalization due to Coulomb effect. Based on these
arguments we neglect the Coulomb renormalization in our
fitting procedure of gX0 and use the average experimental
value gX0 = −4.

The fitting procedure for the TB model of Ref. [33] results
in a good fit of the dispersion of c and v bands across high-
symmetry paths of the Brillouin zone and only a slight change
of energy position and dispersion of high conduction and deep
valence bands compared to the original parametrization of
Ref. [33]. However this change is sufficient to obtain a large
increase of |gX0 |, gX0 ≈ −1.75 (see column b of Table III).
Using the TB model of Ref. [31] we are able to obtain
gX0 ≈ −3.8 for MoS2, WS2, and WSe2 and gX0 ≈ −2.6 for
MoSe2 as well as a good fit for all six energy bands dispersions,
wave function coefficients, and effective masses, see columns
c–f in Table III.

The wide spread of calculated gX0 values underlies the
sensitivity of gX0 to a given parametrization of a DFT or a
TB model. Hence, along with effective masses and energy
gaps, the value of gX0 may serve as a test tool for a given
parametrization of a DFT or a TB model.

So far in our theory we treated electron and hole in the
exciton independently, neglecting the Coulomb interaction
between charge carriers. It is well known, however, that the
exciton binding is large in TMDCs and plays a significant
role in optical experiments [40,41]. The effects of Coulomb
interaction between an electron and a hole as well as
localization by an in-plane potential [42] can be estimated
by introducing the g-factor dependence on a charge carrier
energy. Such a dependence is derived by simply replacing
Ec with Ec + �Ec in Eq. (13) and Ev with Ev − �Ev in
Eq. (14), where �Ec and �Ev are the energy shifts of electron
and hole levels [43] due to either localization or Coulomb
binding. This dependence is depicted in Fig. 2. Note that
negative energies �Ec, �Ev reflect the binding of electron and
hole in an exciton, whereas positive �Ec, �Ev correspond to

155406-5



D. V. RYBKOVSKIY, I. C. GERBER, AND M. V. DURNEV PHYSICAL REVIEW B 95, 155406 (2017)

localization of a charge carrier in a quantum dot. One can see
that within a typical scale of exciton binding energy in TMDCs,
EB ∼ 400 meV, gc and gv change significantly, resulting in
a possible enhancement �|gX0 | ≈ 1. However, the detailed
calculation of Coulomb correction to gX0 is beyond the scope
of the present work.

V. CONCLUSIONS

To conclude, we developed a six-band k · p model that
describes the electronic states of monolayer TMDCs in K
valleys. The set of parameters for the k · p model is uniquely
determined by decomposing 11-band tight-binding models in
the vicinity of K± points. Using existing in literature TB
models we were able to derive systematic parametrizations
for different materials (MoS2, WS2, MoSe2, WSe2) and
different TB Hamiltonians. Using the derived six-band k · p

Hamiltonian we calculated effective masses, Landau levels,
and the effective exciton g-factor gX0 in different TMDCs.
We showed that the main contributions to gX0 result from
the mixing with excited conduction band c + 2 and deep
valence band v − 3. We also obtained additional sets of k · p

parameters for MoS2, WS2, MoSe2, and WSe2 by developing
our own TB parametrizations based on simultaneous fitting
of ab initio calculated energy dispersion and the value
of gX0 .

The k · p parametrizations extracted from existing TB
models result in small absolute values of gX0 , which are
far from the experimentally measured gX0 ≈ −4. However,
as we showed using our additional sets of k · p parameters,
the change in parameters, which only slightly affects the
dispersion of higher conduction and deep valence bands, may
result in a significant increase of |gX0 |. As a result, we obtained
gX0 ≈ −1.75 and gX0 ≈ −3.82 for the two sets, corresponding
to MoS2, gX0 ≈ −3.8 for WS2 and WSe2, and gX0 ≈ −2.6 for
MoSe2. Such a high parameter sensitivity of gX0 opens a way
to further improvement of DFT and TB models, since g-factor
modeling requires at the same time an accurate description of
deep valence and high conduction bands.
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APPENDIX A: PARAMETERS OF k · p MODEL

Parameters of the k · p Hamiltonians (6) and (7) for
different parametrizations, materials, and tight-binding models
are listed in Tables IV and V.

TABLE IV. Parameters of the k · p model as introduced in Eqs. (6)
and (7) extracted using the DFT calculations as a starting point. The
values of γi and δi are given in eV Å, the units of Ei are eV, the
effective masses m′

n are given in the units of m0. Parametrizations are
based on TB models listed in footnotes.

MoS2
a MoS2

b MoSe2
b WS2

b WSe2
b

Ev−5 − 6.96 − 4.50 − 4.42 − 5.27 − 5.14
Ev−4 − 5.17 − 3.83 − 3.70 − 4.21 − 4.02
Ev−3 − 9.59 − 3.49 − 3.36 − 3.82 − 3.67
Ev − 0.97 − 0.03 − 0.05 0.04 0.02
Ec 0.86 1.77 1.52 2.00 1.69
Ec+2 1.91 2.98 2.50 3.36 2.80

γ2 − 5.75 1.62 1.50 1.62 1.49
γ3 4.27 3.39 2.96 3.91 3.43
γ4 − 0.87 − 0.92 − 0.91 − 1.53 − 1.44
γ5 2.57 − 2.66 − 2.44 − 3.26 − 3.04
γ6 1.33 0.94 0.84 1.21 1.05

δ1 3.19 − 4.20 − 3.86 − 4.95 − 4.52
δ2 0.80 − 0.19 − 0.16 − 0.30 − 0.29
δ3 − 0.61 2.08 2.11 2.23 2.25
δ4 − 2.05 0.14 − 0.06 0.18 − 0.06
δ5 1.74 2.06 1.79 2.15 1.88
δ6 1.45 0.69 0.48 0.32 0.07
δ7 7.49 4.45 4.81 4.78 5.14

m′
v−5 0.87 0.76 0.67 0.64 0.57

m′
v−4 1.34 0.83 0.78 0.84 0.80

m′
v−3 6.09 6.92 7.69 9.50 12.32

m′
v − 2.81 6.37 6.58 6.64 7.16

m′
c − 1.96 − 1.16 − 1.18 − 1.02 − 1.04

m′
c+2 − 0.70 − 0.60 − 0.63 − 0.53 − 0.55

aTB model of Ref. [33] based on DFT calculations.
bTB model of Ref. [31] based on DFT calculations.

APPENDIX B: COMPUTATIONAL DETAILS
OF DFT + GW METHOD

The atomic structures and the quasiparticle band structures
have been obtained from DFT calculations using the VASP
package [44,45]. The Perdew-Burke-Ernzerhof (PBE) [46]
functional was used as an approximation of the exchange-
correlation electronic term. The software uses the plane-
augmented wave scheme [47,48] to treat core electrons.
Fourteen electrons for Mo, W atoms and six for S, Se ones
are explicitly included in the valence states. All atoms are
allowed to relax with a force convergence criterion below
0.005 eV/Å. A grid of 12 × 12 × 1 k points has been used, in
conjunction with a vacuum height of 17 Å, to take benefit
of the error’s cancellation in the band gap estimates [49].
A Gaussian smearing with a width of 0.05 eV was used
for partial occupancies, when a tight electronic minimization
tolerance of 10−8 eV was set to determine with a good
precision the corresponding derivative of the orbitals with
respect to k needed in quasiparticle band structure calculations.
Spin-orbit coupling was not included to determine eigenvalues
and wave functions as input for the full-frequency-dependent
GW calculations [50] performed at the G0W0 level. The total
number of states included in the GW procedure was set to 600,
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TABLE V. Parameters of the k · p model as introduced in Eqs. (6)
and (7) extracted using the DFT+GW calculations as a starting point.
The values of γi and δi are given in eV Å, the units of Ei are eV, the
effective masses m′

n are given in the units of m0. Parametrizations are
based on TB models listed in footnotes.

MoS2
a MoS2

b MoS2
c MoSe2

c WS2
c WSe2

c

Ev−5 − 4.99 − 6.88 − 5.20 − 5.20 − 5.90 − 5.79
Ev−4 − 4.32 − 4.15 − 4.66 − 4.62 − 4.99 − 4.85
Ev−3 − 3.62 − 10.52 − 4.18 − 3.99 − 4.39 − 4.24
Ev 0 0 − 0.05 0.00 − 0.03 − 0.04
Ec 2.48 2.47 2.44 2.32 2.98 2.43
Ec+2 4.04 3.96 4.60 3.95 5.27 4.30

γ2 2.08 − 8.00 − 0.88 − 1.50 − 1.57 − 0.86
γ3 4.43 5.93 4.65 4.47 5.41 4.11
γ4 − 2.14 − 1.77 − 3.05 − 2.65 − 3.77 − 3.53
γ5 − 3.07 3.36 − 8.27 − 6.75 − 8.57 − 8.37
γ6 1.52 1.79 0.67 0.51 0.63 0.40

δ1 − 5.14 4.05 − 3.80 − 3.98 − 5.27 − 5.09
δ2 − 0.50 1.26 3.55 3.57 4.18 3.02
δ3 2.53 0.55 − 2.63 − 2.35 − 1.51 − 1.30
δ4 0.02 − 2.09 − 0.26 − 0.61 − 0.54 − 0.96
δ5 2.15 2.28 − 0.42 0.14 0.13 − 0.71
δ6 0.69 2.23 − 0.23 − 0.85 − 0.67 − 0.05
δ7 5.05 6.53 3.90 4.31 4.65 4.61

m′
v−5 0.67 0.85 0.44 0.43 0.41 0.49

m′
v−4 0.71 2.00 1.22 1.04 1.20 1.01

m′
v−3 14.00 1.64 0.62 0.70 0.54 0.60

m′
v 3.04 − 3.39 1.03 1.27 0.96 1.35

m′
c − 0.90 − 1.33 − 0.40 − 0.42 − 0.37 − 0.41

m′
c+2 − 0.47 − 0.59 − 0.36 − 0.40 − 0.31 − 0.35

aTB model of Ref. [31] based on DFT+GW calculations.
bDFT+GW and TB parametrization of this work (TB model based
on Ref. [33]).
cDFT+GW and TB parametrization of this work (TB model based
on Ref. [31]).

after a careful check of the direct band gap convergence, to be
smaller than 0.1 eV.

APPENDIX C: DETAILS OF TB FITTING PROCEDURE
AND ADDITIONAL TB PARAMETRIZATIONS

Most of the modern TB parametrizations are made to
reproduce the energy bands of ab initio calculations. The
parameter set is usually found by minimizing the error between
the DFT and TB energies. We found, however, that even if
the parameter set reproduces the electronic bands with great
accuracy, it does not necessarily give satisfying values of the
g factor. In order to overcome this problem, we included
the calculation of the g factor in our optimization procedure
and varied the TB parameters to fit both the GW energies
and g-factor values. Within this procedure, the calculated g

factor was obtained via Eqs. (13)–(15) by taking a numerical
derivative of the TB Hamiltonian matrix according to Eq. (6).
To prevent the order change of the energy bands during
optimization we also included the error in the eigenvectors
at the K point. The weights were concentrated in the vicinity
of the K and � points of the hexagonal Brillouin zone and had

TABLE VI. Parameters of the TB Hamiltonian (in units of eV)
of Ref. [31] obtained after fitting of DFT+GW calculations.

MoS2 MoSe2 WS2 WSe2

ε6 − 0.913 − 0.921 − 0.755 − 0.999

ε7 0.251 0.0117 0.301 − 0.047

ε8 0.251 0.0117 0.301 − 0.047

ε9 − 1.54 − 1.62 − 1.49 − 1.69

ε10 − 2.26 − 2.01 − 2.51 − 2.25

ε11 − 2.26 − 2.01 − 2.51 − 2.25

t
(1)
6,6 − 0.922 − 0.903 − 1.02 − 0.985

t
(1)
7,7 0.437 0.418 0.622 0.618

t
(1)
8,8 − 0.668 − 0.658 − 0.819 − 0.775

t
(1)
9,9 0.24 0.197 0.197 0.191

t
(1)
10,10 1.11 1.24 1.2 1.22

t
(1)
11,11 − 0.0029 0.0399 − 0.0481 0.028

t
(1)
6,8 0.0462 0.0782 0.121 − 0.0083

t
(1)
9,11 − 0.0408 − 0.206 − 0.192 − 0.039

t
(1)
6,7 − 0.763 − 0.705 − 0.97 − 0.853

t
(1)
7,8 − 0.4 − 0.347 − 0.455 − 0.412

t
(1)
9,10 − 0.168 − 0.15 − 0.227 − 0.176

t
(1)
10,11 − 0.133 − 0.14 − 0.188 − 0.228

t
(5)
9,6 − 0.975 − 0.816 − 0.727 − 0.8

t
(5)
11,6 0.0162 0.0554 0.211 0.183

t
(5)
10,7 1.83 1.65 1.99 1.8

t
(5)
9,8 0.914 0.86 0.957 0.811

t
(5)
11,8 − 0.0447 − 0.115 − 0.0814 − 0.0766

t
(6)
9,6 0.936 0.793 1.13 0.993

t
(6)
11,6 0.945 0.857 0.906 0.728

t
(6)
9,8 0.797 0.702 0.985 0.888

t
(6)
11,8 0.449 0.343 0.493 0.31

higher values for v and c bands for better reproduction of the
most important electronic states.

The parameter optimization was thus carried out by
minimizing the function

f ({ti}) =
∑
i,k

wi,k
(
ETB

i,k − EGW
i,k

)2

+
∑

i

ui

[(
CTB

i,� − CGW
i,�

)2 + (
CTB

i,K − CGW
i,K

)2]

+ v
(
gTB

X0 − g
expt
X0

)2
, (C1)

where {ti} are the TB parameters, i and k denote the number
of the electronic band and the wave vector, respectively, and
wi,k, ui , and v are the weight coefficients. In Eq. (C1) ETB and
CTB

i are the tight-binding energies and coefficients of wave
functions decomposition, which depend on the particular TB
Hamiltonian and parameters used, and EGW and CGW

i are the
values, obtained by DFT+GW or another ab initio method.
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TABLE VII. Parameters of the TB Hamiltonian (in units of eV) of
Ref. [33] for MoS2 obtained after fitting of DFT+GW calculations.

ε0 ε2 εp εz Vpdσ Vpdπ Vddσ

−5.707 −5.784 −8.319 −12.171 4.791 −1.606 −1.221

Vddπ Vddσ Vppσ Vppπ

0.526 0.359 0.905 −0.396

Parameter gTB
X0 is the g-factor value calculated according to

Eqs. (13)–(15) from the TB Hamiltonian, and g
expt
X0 is the

experimental value. The fitting was carried out by a random
search algorithm until a compromise between the quality of
the band structure and g-factor value for MoS2, MoSe2, WS2,
and WSe2 was found.

Resulting parametrizations of TB Hamiltonians of
Refs. [31] (for MoS2, MoSe2, WS2, and WSe2) and [33] (for
MoS2) are presented in Tables VI and VII. The resulting energy
dispersions in comparison with DFT+GW calculations for
MoS2 are presented in Fig. 3. Based on these two sets of
TB parameters we obtained k · p parametrizations listed in
Table V, columns b–f, with effective masses and g factor listed
in Table III, columns b–f.

APPENDIX D: LANDAU LEVELS

The developed k · p model allows for calculation of Landau
levels in the system. For this purpose we make replacements
q+ → √

2a†/lB and q− → √
2a/lB in Eqs. (6) and (7), where

a† and a are the creation and annihilation operators acting in the
space of Landau functions lB = √|e|h̄/|Bz|c, and decompose
the six-component wave function of the j th band �(j ) in a

Γ M K Γ

DFT + GW
TB

En
er

gy
 (e

V
)

−6

−4

−2

0

2

4

Γ M K Γ

−6

−4

−2

0

2

4
(a) (b)

FIG. 3. DGT+GW and TB calculations for electronic energy
dispersion in MoS2. (a) The fit of TB model of Ref. [31] and (b)
the fit of TB model of Ref. [33]. The zero energy was aligned to the
top of the valence band v.

numerical
analytics

En
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gy
 (m

eV
)

0

2

4

6
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En
er

gy
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−8

−6

−4

−2

0

Magnetic field (T)
0 5 10

conduction band (c)

valence band (v)
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(b)

FIG. 4. Dispersion of the first four Landau levels in the bottom
conduction (c) and topmost valence (v) bands calculated using
parametrization (a) of the k · p model (see Table IV). Solid lines show
the results of numeric calculations using decomposition Eq. (D1),
and dashed lines stand for a simple analytical formula εj (n,Bz) =
h̄ω(j )

c (n + 1/2) (see text for details).

series of the Landau level functions ϕn,qy
[51],

�(j ) =
∑
n�0

⎛
⎜⎜⎜⎜⎜⎝

an

bn

cn

dn

en

fn

⎞
⎟⎟⎟⎟⎟⎠

ϕn,qy
, (D1)

where n and qy are the quantum numbers, and an, bn, cn,
dn, en, and fn are coefficients. The numeric diagonalization
of obtained Hamiltonian yields the energy position of the
j th band in magnetic field Ej (n,Bz). However, this energy
contains also the valley Zeeman term, described by the second
term of Eq. (11). To get rid of the Zeeman term we define
Landau levels as εj (n,Bz) = 1/2[Ej (n,Bz) + Ej (n, − Bz)].

The dispersion of the first four Landau levels for j = c

and j = v is presented in Fig. 4. For comparison we also
show linear dispersions calculated using the simple formula
εj (n,Bz) = h̄ω

(j )
c (n + 1/2), with ω

(j )
c = |eBz|/mjc and the

effective masses mc and mv given by Eq. (8). One can see
that the results given by the exact numeric diagonalization of
the effective Hamiltonian and the simple analytical formula
coincide in the wide range of Bz, the discrepancy in the
valence band is more noticeable due to more pronounced band
nonparabolicity.
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