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Effects of defects on thermoelectric properties of carbon nanotubes
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Carbon nanotubes (CNTs) have recently attracted attention as materials for flexible thermoelectric devices. To
provide a theoretical guideline of how defects influence the thermoelectric performance of CNTs, we theoretically
studied the effects of defects (vacancies and Stone-Wales defects) on their thermoelectric properties; thermal
conductance, electrical conductance, and Seebeck coefficient. The results revealed that the defects most strongly
suppress the electron conductance, and deteriorate the thermoelectric performance of a CNT. By plugging in the
results and the intertube-junction properties into the network model, we further show that the defects with realistic
concentrations can significantly degrade the thermoelectric performance of CNT-based networks. Our findings
indicate the importance of the improvement of crystallinity of CNTs for improving CNT-based thermoelectrics.
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I. INTRODUCTION

Over the last decades, nanoscale structures and materials
have opened new possibilities to enhance thermoelectric
properties. Low-dimensional structures such as PbTe [1],
Bi2Te3 [2], and Si/Ge superlattices [3] have been shown
to give rise to high Seebeck coefficient by quantum size
effect [4,5]. In addition, progress in synthesizing/fabricating
nanostructured materials such as nanocrystalline materials
[6–9], nanowires [10], and nanoporous thin films [2,11] has
provided ways to reduce thermal conductivity by boundary
scattering of quasiballistic phonons [12]. Carbon nanotubes
(CNTs) are promising thermoelectric materials with both of
the above two merits; they are one-dimensional materials
leading to the high Seebeck coefficient [13,14], and a sheet
(network) consisting of CNTs is naturally a nanostructured
material, where intertube junctions between CNTs reduce the
thermal conductivity [15,16]. Moreover, with their flexibility,
toughness, and stability, the CNT sheet can be attached to
curved and movable objects [17–19] such as the human
body, making CNT-based thermoelectric devices suitable for
versatile applications.

While there is an increasing number of reports on improve-
ment of thermoelectric performance of a sheet composed of
CNTs or related carbon nanomaterials [20–23], the effect is
often discussed based on a simplified picture that the ther-
moelectricity is mainly generated at the intertube junctions,
and the body of the CNT has a minor contribution due to its
high thermal conductivity (i.e., small temperature gradient).
However, this may not be true with the presence of defects that
are, in practice, omnipresent in bulk CNT samples, particularly
in those synthesized by using the chemical vapor deposition
(CVD) methods. The crystallinity of CNTs strongly depends
on CVD growth conditions; even CNT samples prepared with
the same process can differ due to subtle factors that are
difficult to control, such as the remaining catalyst particles
in a chamber [24].

While the introduction of defects to CNTs, in general,
reduces both electrical and thermal conductivity (or conduc-
tance), previous works have shown that the electrical and
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thermal properties have different sensitivity to the type of
defect; the extent of reduction varies with the defect types
for electrical conductivity [25–28] but varies less for thermal
conductivity [29–31]. Note that most of the works so far on
the effect of crystal disorder such as defects and strain on the
electronic transport properties have been done for metallic
CNTs [25–28,32,33], and there are only a few works on
semiconducting CNTs, which dominantly contribute to the
thermoelectric performance of CNT sheets. In any case, this
lack of correlation in defect sensitivity between electrical
and thermal properties complicates the effect of defects
on the thermoelectric performance, since the thermoelectric
figure of merit is proportional to the ratio of electrical to
thermal conductivity. It is, therefore, crucial to understand
the effect of defects on the thermoelectric properties to
further improve the performance of CNT-based thermoelectric
devices.

A few previous studies on thermoelectric performance of
defective or strained carbon nanomaterials such as CNTs
and graphene nanoribbons have shown that vacancies [34] or
uniaxial strain [13] deteriorate the thermoelectric performance.
However, in these studies, the phonon transport properties
were calculated in the fully ballistic regime with the atomic
Green’s function approach and did not consider diffusion of
phonons, which makes the thermal conductance dependent
on CNT length, and is known to be important for practical
lengths in CNT sheets. In addition, lack in systematic analysis
of the dependence on the CNT length and defect types makes
it difficult to use the knowledge to estimate thermoelectric
properties of CNT networks.

In this study, we systematically and comparatively study
effects of defects, namely, vacancies and Stone-Wales (SW)
defects on thermoelectric properties of CNTs. We employ
nonequilibrium molecular dynamic (NEMD) simulation to
discuss the effect of the CNT length on lattice thermal proper-
ties and the Green’s function approach to calculate electronic
transport properties. Using this knowledge, we further estimate
the effect of defects on thermoelectric properties of CNT
networks using a simplified model. Our calculation shows
that the introduction of defects significantly deteriorates the
thermoelectric performance of both individual CNTs and CNT
networks because of the dominant suppression of the electron
conductance.
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FIG. 1. Schematic of a CNT with defects: vacancy and SW defect.
The defective region connects with pristine CNT leads at both ends.
For the NEMD simulation, the length of the leads is half of that of
the defective region (Ldef/2) and are terminated by fixed layers. For
the Green’s function method, on the other hand, the leads are defined
to be semi-infinite and periodic. Dashed circles in the bottom panels
show the region in which atoms are displaced over 0.15 nm due to
the introduction of defects.

II. METHODOLOGY

Semiconducting (10, 0) CNTs with a relatively small
diameter, dcnt(=0.78 nm), are used in this study. Small-
diameter semiconducting CNTs are important for the ther-
moelectrics because CNTs with smaller diameters have larger
thermopower, the absolute value of the Seebeck coefficient
[13]. In the simulated systems, a defective region is connected
with right and left leads consisting of a pristine CNT as
illustrated in Fig. 1. The fine gray and bold colored lines in the
bottom schematics show C-C bonds around the defects before
and after the structural relaxation calculation, respectively. The
red-colored bonds consist of atoms that are clearly displaced
(over 0.15 Å) around a defect due to the relaxation calculation
and the dashed circles indicate the region occupied by these
displaced atoms. The diameters of the circle were 0.5 and
1.2 nm for the vacancy and SW defect, respectively. The
length of the defective region is varied as Ldef = 10, 50,
and 100 nm. The defect concentration, σ = Ndef/Natom, is
varied from 0% to 1.0%, where Ndef is the number of defects
(the number of removed atoms or rotated C-C bonds for
the vacancy and SW defect, respectively) and Natom is the
number of atoms in the CNT before the introduction of defects.
We introduce defects in the defective region except for both
ends with the length of 0.15 Ldef . While defects are placed
randomly, their distance maintains a certain extent of distance
from others (at least 1.0 nm) to avoid generating regions
with excessive defect concentration. In the system for the
NEMD calculations, the thermostated leads with the length
of Ldef/2 are connected with the fixed terminal layers (i.e.
adiabatic boundary) consisting of a primitive unit cell. On the
other hand, for Green’s function calculations, the leads have
a periodic and semi-infinite structure. For both calculations,
relaxation calculation with the optimized Tersoff potential
[35] is performed until all atomic forces become less than
0.01 eV/Å to reduce the defect-induced residual stress.

The NEMD simulations are performed using the LAMMPS

package [36] with the optimized Tersoff potential, which has
been developed for phonon transport in carbon nanomaterials

[37]. After relaxing the CNTs in a canonical ensemble for
more than 200 ps at 300 K, the temperature at the hot (cold)
Nosé-Hoover (NH) thermostat is heated up to 310 K (cooled
down to 290 K). After performing the NEMD simulation for 4
ns and the heat flow achieves a steady state, thermal properties
such as heat current and temperature at each atom are obtained
by averaging values at every time step for 2 ns. The heat
current through the defective region is computed as Qave =
(Qhot + Qcold)/2, where Qhot and Qcold are the energy added
to or subtracted from the hot and cold thermostats per unit
time, respectively. The error between the added and subtracted
energies, |Qhot−Qcold|/Qave, was up to 0.07 (less than 0.02 for
most cases). The time step and damping time of thermostats
are set to 0.5 and 50 fs for all simulations.

Lattice thermal conductivity κlat and conductance Klat are
then calculated as

κlat = Qave/Aring

|dT /dx| ,

(1)
Klat = κlatAring/Ldef,

where x is the position along the tube axis, dT /dx the
temperature gradient, and Aring = πdcntb the cross-sectional
area of a CNT, with b (=0.34 nm) being the separation between
graphite layers. To obtain the temperature gradient, we use the
defective region except for both ends with the length of 0.1 Ldef

(shaded region in Fig. 1); this means that defect is absent in
the ends of the fitting region with the length of 0.05 Ldef . This
defect-free region allows the prevention of the generation of
unusual temperature drop near the edges in the fitting region.

For the Green’s function calculations, we use a tight-
binding method [33], where the hopping integral for the π

orbital between carbon atoms is attenuated exponentially with
increasing the bond length [38]. The Green’s function and the
transmission function of the defected region are obtained as

Gdef = [(E + iη) − Hdef − �L − �R]−1,
(2)

�(E) = tr[�LGdef�RG
†
def],

where E is the energy of the incident electron to the defective
region, η is the infinitesimal, Hdef is the Hamiltonian matrix
of the defective region, � L(R) is the self-energy matrix of the
left (right) lead, and �L(R) = i[�L(R) − �

†
L(R)]. The electric

current I (V ) and electronic thermal current J (V ) under the
bias voltage V through the defective region are obtained using
the Landauer-Büttiker formula [39]:

I (V ) = 2e

h

∫
dE�(E)[fL(E − μL) − fR(E − μR)],

(3)

J (V ) = 2e

h

∫
dE�(E)[fL(E−μL)−fR(E − μR)](E − μ),

where e is the electron charge; h is Planck’s constant; fL(R)

is the Fermi-Dirac distribution function of the left (right)
lead, which is also a function of temperature; and µ is the
chemical potential, which can be tuned with gating or doping.
The temperature is set to 300 K in all the simulations. Under
the linear response approximation, i.e., when the differences
of the chemical potential, 	μ = μL−μR(= eV), and the tem-
perature difference 	T between both leads are infinitesimally
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small, we can obtain the thermoelectric properties as follows
[13,16]:

the electronic conductance,

Gel = − I

	V

∣∣∣∣
	T =0

= e2A0, (4)

the Seebeck coefficient,

S = −	V

	T

∣∣∣∣
I=0

= A1

eT A0
, (5)

and the electronic thermal conductance,

Kel = J

	T

∣∣∣∣
I=0

= A0A2 − A2
1

T A0
. (6)

Here, An is defined as the following integral:

An = 2

h

∫
dE�(E)

(
− ∂f

∂E

∣∣∣∣
E=μ

)
(E − μ)n. (7)

Using Eqs. (1) and (4)–(6), we can obtain the power
factor, P = S2Gel, and the thermoelectric figure of merit,
ZcntT = S2Gel/(Klat + Kel). For each defect concentration σ ,
electronic calculations are performed for five different random
defect configurations, and the obtained electron properties
[Eqs. (4)–(6)] are averaged. Note that, in case of thermal
transport calculations, NEMD simulations were performed for
a single configuration for each defect concentration because
the sensitivity to the defect configuration is much smaller
than for electrical transport properties. This was checked by
analyzing five configurations for some cases of σ in 10-nm
CNTs, and the resulting variations in κlat were sufficiently
small (20% at most and less than 10% in most cases). This
error will further diminish by fitting κlat as a function of σ .

The fundamental difference between the methods of ther-
mal and electrical calculations is worth mentioning. In the
Green’s function method, the electron-phonon and electron-
electron scattering are neglected because the electron mean
free path (MFP) of pristine semiconducting CNTs is known to
reach 200 nm at room temperature [40], which is sufficiently
longer than the CNTs used in this study. The MFP is expected
to be shorter due to electron-phonon or electron-electron
scattering induced by the localized phonons and electrons
around the defects but our calculations should be valid at least
for low defect concentrations. On the other hand, in the NEMD
simulation, it is important that the anharmonic phonon-phonon
scatterings are considered because the contribution to thermal
conductivity comes from phonons with a wide range of
frequencies including those with MFPs shorter than the CNTs
used in this study [41].

III. LATTICE THERMAL TRANSPORT PROPERTIES

A. Thermal conductivity of pristine CNTs

First we validate κlat obtained in this study. While κlat’s
of pristine (10, 0) CNTs obtained in this study are 170, 530,
and 750 W/m K for Ldef = 10, 50, and 100 nm, respectively,
it is known that κlat of CNTs varies widely depending
on different factors as follows. Salaway and Zhigilei show
that the optimized Tersoff potential estimates κlat of CNTs
larger than other empirical interatomic potentials [37]. In

fact, κlat of a 100-nm (10, 10) CNT (950 W/m K), which
is additionally calculated for this study, is larger than κlat

calculated with the adaptive intermolecular reactive empirical
bond order (AIREBO) potential (200 W/m K) [37], the
Brenner potential (210 W/m K) [42], and the simplified
Brenner potential (330 W/m K) [37,41]. While the choice
of interatomic potential is still controversial, the optimized
Tersoff potential is used in this study because this potential
reproduces experimentally observed phonon properties of
CNTs or graphite such as phonon dispersion, group velocities
[43,44], and thermal conductivity more accurately [45].

Conditions of NH thermostats (length, temperature differ-
ence, and damping time) also affect the magnitude of κlat [41].
κlat of CNTs increases with the thermostat length because of
the increase in the number of phonons generated in thermostats
with their length, and converges when the thermostat length
approaches half of Ldef [41]. κlat of CNTs calculated in this
study [750 W/m K for 100-nm 1 0, 0) CNT], therefore, are
larger than those obtained by Cao and Qu [400 W/m K for
a 100-nm (10, 0) CNT] using shorter thermostats (2–10 nm)
[46]. In fact, when changing the length of the thermostat from
50 to 2 nm, we observed a 30% reduction of κlat for a 100-nm
(10, 0) CNT (from 750 to 520 W/m K). In contrast, changing
the damping time and the temperature difference between
thermostats (Thot−Tcold) from (50 fs, 20 K) to (1 ps, 60 K),
the same conditions as those used by Sevik et al. [47], did not
affect κlat of CNTs. Here, κlat’s obtained by Sevik et al. are
almost half of κlat obtained in this study and are comparable
with κlat obtained by Salaway and Zhigilei and Cao and Qu,
while the former used longer thermostats (constant at 50 nm)
than those used by the latter.

To investigate the effect of thermal expansion on κlat, we
also compared κlat of 100-nm (10, 0) CNTs relaxed at 0 and
300 K (under NPT ensemble). By relaxing a CNT at 300 K, the
CNT expands by 1% and its κlat is slightly (a few percentage
points or less) smaller than κlat of the CNT relaxed at 0 K,
which could be attributed to the phonon softening due to
the thermal expansion [48]. However, this small variation of
κlat, which is in the range of ensemble fluctuations, cannot
describe the above-mentioned variation of κlat among different
studies. Therefore, the cause of the discrepancy is not clear at
this point, and may be due to differences in more detailed
methodology of the simulations that cannot be judged from
the information available in the paper; however, further inves-
tigation of the discrepancy is beyond the scope of this paper.
Nevertheless, the effect of defects on κlat of CNTs is consistent
with that observed by Sevik et al. as will be discussed
below.

B. Thermal conductivity of defective CNTs

Figure 2 shows the change in κlat of (10, 0) CNTs with
different Ldef , 10 nm (black circle), 50 nm (blue square),
and 100 nm (orange triangle), due to the introduction of (a)
vacancies and (b) SW defects. Here, κlat(σ ) can be written as
κlat(σ ) = cphvg�tot(σ ) with cph being specific heat, vg phonon
group velocity, and �tot phonon MFP in defective CNTs. �tot

satisfies the Matthiessen’s rule: �−1
tot = �−1

prist + �−1
def , where

�prist and �def are the MFPs in the pristine CNT and are
induced by defects. Assuming that cph and vg are independent
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FIG. 2. Change in thermal conductivity of (10, 0) CNTs due to (a)
vacancy and (b) SW defect. The symbols, black circle, blue square,
and orange triangle, represent different CNT lengths, 10, 50, and
100 nm, respectively. The solid line in (a) shows the fitting line for
vacancy and the broken line in (a) and (b) for SW defect. The inset in
(a) shows a closeup at high defect concentration (0.5 % � σ � 1.0 %),
the marked region.

of σ and �def is proportional to σ−β , we can obtain the fitting
equation, κlat(σ ) = κlat(0)[1 + ακlat(0)σβ]−1 [31], where α

and β are fitting parameters. Solid (broken) lines in Fig. 2 show
fitting curves for a vacancy (SW defect) with this relationship.
In Fig. 2(a), fitting curves for SW defect (broken line) are also
shown to compare with data for a vacancy and its inset shows
a closeup of the region at high σ .

The introduction of defects significantly decreases κlat,
particularly at low σ (<0.2 %) for both defects as also shown
in previous studies [31,47]; κlat is reduced by half at σ =
0.14 %(0.11 %),0.062 %(0.092 %), and 0.060% (0.078%) for
10-, 50-, and 100 - nm CNTs with vacancies (SW defects),
respectively. Vacancies decrease κlat of CNTs more effectively
than SW defects [29,30] because of the absence of C-C bonds
around vacancies, which obviously diminish short-wavelength
phonons directly, while their difference is not obvious in short
CNTs as shown in Fig. 2(a). Figure 2(a) also shows that,
for the SW defect, the dependence of κlat on Ldef , one of
the ballistic features of phonon transport [49], remains even
at high σ ( ≈ 1.0 %) for CNTs with Ldef � 100 nm. Sevik
et al. also show that for longer CNTs (200–600 nm) the
length dependence remains to some extent for SW defects of
σ = 0.6 % [47]. On the other hand, the Ldef dependence of κlat

diminishes more rapidly for vacancy: at σ < 0.3 % for Ldef =
200−600 nm [47], σ ≈ 0.8 % for Ldef = 50−100 nm, and
σ > 1.0 % for Ldef < 50 nm. This result can be understood
from the analysis with the atomic Green’s function method
by Sevik et al. [47]. Their analysis shows that phonon MFPs
due to vacancy-induced elastic scattering decrease from 100 to
20 nm when σ increases from 0.1% to 1.0% for most phonons
(phonons with frequency above 400 cm−1) while MFPs of
lower frequency (<200 cm−1) phonons exceed 1 μm even
under high σ (≈1.0 %). Therefore, while the Ldef dependence
of κlat diminishes at low σ ( ≈0.1 %) of vacancies when
100 nm � Ldef � 1 μm, it remains even at high σ (>0.8 %)
of vacancies for shorter CNTs (Ldef < 100 nm) because of
the comparable length of MFPs with CNT length. The reason
why the ballistic feature is more observable in shorter CNTs

FIG. 3. Transmission function of 100-nm CNTs with (a) vacan-
cies and (b) SW defects. The bottom panels show the transmission
of low-energy electrons (closeups of the marked areas). The defect
concentration varies from 0.0% (blue) to 0.1% (red) (Ndef = 0 to 9)
with the equal interval.

(Fig. 2) than in longer CNTs [47] should be the same as the
above discussion on vacancy.

IV. ELECTRON TRANSPORT PROPERTIES

A. Transmission function

Since electron contribution to thermoelectric properties is
determined by � (E) as shown in Eqs. (2)–(7), the change in
� (E) due to defects is discussed here. Figure 3 shows � (E)
of 100-nm CNTs for (a) vacancies and (b) SW defects with σ

varying from 0.0% (blue line) to 0.1% (red line) with the equal
interval of σ (corresponding to Ndef = 0 to 9). The Fermi
level is set to 0 eV. Broken lines indicate the peak chemical
potentials, µ giving the maximum P [see Fig. 4(d)], for p-
or n-type pristine CNT, defined as μp/n,0 = −/ + 0.38 eV.
μp/n,0 is located at potential levels slightly higher/lower than
the valence/conduction band edge (E = −/ + 0.41 eV) [34].
Closeups on the bottom show � (E) at the marked region
around μp/n,0. While both vacancies and SW defects suppress
� (E) significantly, their effects on � (E) are different in
some aspects. Vacancies selectively suppress � (E) at band
edges, corresponding to the energy levels of Van Hove
singularities. This selective suppression of � (E) due to
vacancy can be attributed to the generation of quasibound
states [25,50], which are generated mostly at energy levels
near Van Hove singularities (band edges) and suppress � (E)
at the corresponding energy levels. On the other hand, SW
defects suppress � (E) in the overall energy range somewhat
keeping the original steplike feature. Here, in our additional
calculation, we observed that bond distortions without adding
any defect decrease � (E) at overall energy levels rather than
at specific energy levels. This indicates that the suppression of
� (E) in the overall energy range due to SW defects can be
described by broad areas of bond distortions as illustrated in
Fig. 1. These differences between effects of vacancy and SW
defect on � (E) mainly affect the change in S due to defects
as shown below.
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FIG. 4. Thermoelectric properties of 100-nm CNTs with vacancies (top) and SW defect (bottom): (a) Seebeck coefficient, (b) electron
conductance, (c) electron thermal conductance, and (d) power factor. Color identification is the same as in Fig. 3. Broken lines denote the peak
chemical potentials for P , μp/n,opt = −/ + 0.38 eV. Insets of (a), (b), and (d) show closeups of the marked region while those of (d) show the
Wiedemann-Franz law.

B. Fluctuation of electron contributions
to thermoelectric properties

Figure 4 shows different thermoelectric properties, (a) S,
(b) Gel, (c) Kel, and (d) P , of CNTs with vacancies (top) and
SW defects (bottom). The range of σ and its color notation
are the same as those in Fig. 3. Insets in Figs. 4(a), 4(b), and
4(d) are the closeups around μp/n,0, denoted by broken lines,
while the inset in Fig. 4(c) shows Kel/(GelT L) with L being
the Lorentz number. The introduction of vacancies increases
|S| around μp/n,0 while SW defects do not substantially
affect |S| as shown in Fig. 4(a) [this trend can be seen
more clearly in Fig. 6(a)]. The trend can be attributed to
the aforementioned change in �(E) [34]; while ∂f/∂E, a
window function in the denominator of Eq. (5), takes its peak at
E = μ, (∂f /∂E)(E − μ), a window function in the numerator
of Eq. (5), takes its peak at E �= μ (E = μ ± 0.04 eV for
300 K). In addition, because the former attenuates more rapidly
than the latter with increasing |E−μ|, the denominator of
Eq. (5) is dominated by � (E) around E = μ compared with
the numerator. Therefore, considering S at μp/n,0 vacancies,
which selectively suppress � (E) near the band edge (near
E = μp/n,0), can mainly reduce the denominator of Eq. (5)
and, thus, increase |S|. On the other hand, since SW defects
decrease �(E) in the overall energy range and decrease both
the denominator and the numerator, effects of their changes on
S are canceled out and, thus, S does not change substantially.
The above discussion allows the further expectation that
electron disorders can increase S when the disorders do not
cause bond distortion but affect electronic states mainly at the
band edge (e.g., adatoms).

While S varies with a relatively complex manner, Gel

and Kel simply follow the change in � (E) as shown in
Figs. 4(b) and 4(c); Gel and Kel decrease with � (E) with
increasing σ for both vacancy and SW defect. Compared

with the increase in S, the reduction of Gel and Kel are
more significant (also see Fig. 6). This result shows that S is
dominated by electronic structures at lead regions, and Gel and
Kel by electron scattering at the defective region. Gel and Kel

near μp/n,0, the energy range dominating the thermoelectric
properties, decrease significantly with increasing σ [inset in
Fig. 4(b) for Gel ]. As for Kel, it follows the Wiedemann-Franz
law except for around energy levels corresponding to the
Van Hove singularities as well as the band gap. The electron
contribution to the heat transport, Kel, is much less than the
lattice contribution, Klat, regardless of σ ; for 100-nm CNTs;
Kel(μp,0)/Klat was 0.09 and 0.01 for σ = 0 % and 0.1% of
the vacancy, respectively.

With increasing defects, P , determined by S and Gel,
finally reduces significantly as shown in Fig. 4(d) for all cases
including the case of vacancy, which enhances |S|. This result
shows that the enhancement of |S| is overwhelmed by the
large reduction of Gel, despite P being quadratic to S (linear
to Gel) (this trend will be discussed again in Fig. 6). Here,
one can notice that, with decreasing P , the peak (optimized)
chemical potential, μp/n,opt, that gives the maximum P for
each defective CNT, may shift from μp/n,0. While it should
be appropriate to adopt μp/n,0 as the representative µ for the
pristine CNT, there are two alternatives for defective CNTs:
One is to adopt the same μp/n,0 assuming that µ remains
the same in the process of introducing defects, and the other
is to take μp/n,opt for each defective CNT reflecting the
maximum possible P . Since neither of the representative μ’s
is universally appropriate and the defects similarly affect p-
and n-type CNT properties, in the following, we mainly focus
on p-type CNTs and evaluate the properties for both μp,0 and
μp,opt that will be simply denoted by μopt and μ0 hereafter.

μopt indeed changes with increasing σ , particularly for
vacancy as shown in Fig. 5(a). For vacancy in a 100-nm
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FIG. 5. Peak chemical potential for P shifts with increasing
the defect concentration. (a) Fluctuation of the optimized chemical
potential for P of p-type CNTs with (top) vacancy and (bottom) SW
defect. (b) Change in different electron transport properties for p-type
CNTs with vacancies of σ = 0.00, 0.02, and 0.04% (Ndef = 0, 3,
and 6). The units for |S|, Gel, P , and �(E) are V/(5000 K), S/5000,
pW/K2, and dimensionless, respectively. The competing behavior of
Gel and S with the introduction of vacancies, the decrease in Gel, and
increase in S causes the shift of the peak chemical potential for P

toward high doping level.

CNT, μopt decreases from μ0(−0.38 eV) and saturates to
μ = −0.54 eV at σ ≈ 0.5 %. The magnitude of σ at which
μopt saturates increases with increasing Ldef . This reflects the
fact that the same magnitude of σ decreases � (E) more
effectively in longer CNTs in the ballistic regime because
increasing length for constant σ means larger Ndef . The
change in μopt can be understood from Fig. 5(b) showing
different thermoelectric properties of a 100-nm CNT with
σ = 0.00%, 0.02 %, and 0.04% (Ndef = 0, 3, and 6). In
Fig. 5(b), the units for |S|, Gel, and P are normalized as
V/(5000K), S/5000, and pW/K2, respectively. This figure
summarizes the aforementioned trends; with decreasing �(E)
due to the introduction of vacancies, S increases (this trend
is not clear in this figure because of its slight increase) and
Gel and P decrease around μ0. Because of the competing
effect of vacancy on S and Gel around μ0, the introduction
of vacancies causes the shift of μopt toward a high-doping
level as well as the decrease in the magnitude of Gel

and P .
The changes in |S|, Gel, and P with optimizing µ in terms

of P are shown in Fig. 6 to clarify impacts of defects on S

and Gel. Solid and broken lines represent data at μopt and μ0,
respectively. While |S| increases a few times for vacancy at
μ0 (up to four times for a 100-nm CNT), P decreases with
increasing σ (more than four orders of magnitude) because
of orders of reduction of Gel (up to five orders of magnitude
for a 100-nm CNT). While without the optimization of µ the
effect of vacancy on thermoelectric properties is larger than

FIG. 6. Thermoelectric properties of CNTs with vacancies (left)
and SW defects (right): (a) |S|, (b) Gel, and (c) P . P and Gel are
plotted on a logarithmic scale. Solid and broken lines show data at
μopt and μ0, respectively. Orders of reduction of Gel are a dominant
factor of the reduction of P due to defects.

that of the SW defect, the µ optimization can recover Gel as
well as P of CNTs with vacancies up to the same orders or
even higher (in the case of a 100-nm CNT) than those of CNTs
with a SW defect. Here, it is interesting to note that after the
optimization of µ, |S| at μopt of CNTs with vacancies remains
almost constant (≈0.2 mV/K) regardless of σ . In the case of
a SW defect (right column of Fig. 6), while the introduction
of the defects does not change |S|, the significant reduction
of Gel due to defects (up to five orders of magnitude for a
100-nm CNT) deteriorates P by the same orders as Gel. As
a result, our findings reveal that the deterioration of P due to
the introduction of defects is strongly dominated by the orders
of suppression of Gel following that of � (E) although |S|
increases in the case of vacancy.

C. Figure of merit of individual CNTs

Finally, combining thermal and electron transport proper-
ties calculated in the above, we calculated ZT of individual
CNTs. Figure 7 shows Zcnt T of CNTs with (a) vacancies and
(b) SW defects of the length of 10 nm (black circle), 50 nm
(blue triangle), and 100 nm (orange diamond) at μ0 (broken
line) and μopt (solid line). Insets show the change in Zcnt T

in the low-σ region with a linear scale. For the pristine CNTs
(σ = 0 %), Zcnt T increases with the CNT length (0.06 for
10 nm, 0.08 for 50 nm, and 0.1 for 100 nm). This is because,
for the pristine CNTs, while the electronic transport properties
do not depend on the CNT length in the fully ballistic regime,
the phonon transport, whose anharmonicity is not negligible
even in short CNTs, degrades with increasing the CNT length.
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FIG. 7. Figure of merit of CNTs with (a) vacancies and (b) SW
defects. Insets show the data at low σ (<0.25%), denoted by broken
lines in the main figure, with linear scale. Solid and broken lines show
data at μopt and μ0, respectively, the same as in Fig. 6.

However, because electronic transport properties, particularly
Gel, of longer CNTs are fluctuated more sensitively due to
defects, Zcnt T of longer CNT reduces more significantly and
the length dependence of Zcnt T reverses at σ ≈ 0.02 %;
i.e., Zcnt T decreases with increasing Ldef under σ exceeding
0.02%. As a result, while both Klat and P reduce due to defects,
the change in Zcnt T due to defects is dominated by electronic
properties, particularly Gel, which reduces orders of magnitude
with increasing σ .

V. THERMOELECTRIC PROPERTIES OF
CNT-BASED NETWORKS

Using calculated results in the above, we estimate thermo-
electric properties of networks composed of CNTs with va-
cancies. Firstly, we perform fitting of the electron transmission
function and lattice thermal conductivity calculated for single
CNTs with empirical functions. For electron transmission
function, we adopt a function �(E,Ldef,σ ) = �0(E)/{1 +
Ldef/Lmfp(E,σ )} [47], where �0 (E) is the transmission
function for the pristine CNT and the energy-dependent elastic
mean free path Lmfp (E,σ ) is the fitting parameter. For thermal
conductivity, we adopt κlat(Ldef,σ ) ∝ Lt

def , where exponent
t is the fitting parameter [51]. Figure 8(a) shows the result

FIG. 8. Fitting results: (a) electron transmission function
� (E,Ldef,σ ) of CNTs with σ = 0.02 % at different energy levels
and (b) thermal conductivity of CNTs with different σ .

of fitting for the electron transmission function of CNTs
with σ = 0.02 % at different energy levels, and Fig. 8(b)
shows the result for thermal conductivity with different defect
concentrations. The plots show that the fitted functions (dashed
lines) reproduce the calculated data (markers). The fitting was
performed to allow the possiblity to extrapolate the data as will
be discussed later, but otherwise, as the following analysis and
dicussion are based on the actually calcaluted data, the fitting
merely serves to interplolate the plots.

The thermal conductivity of two- or three-dimensional
networks composed of randomly dispersed straight CNTs is
calculated as [52,53]

κ
(d)
net = κ

∞(d)
net

1 + N
(d)
J /(12Nth)

, (8)

where the superscript, (d), denotes the network dimension
and Nth = (Klat + Kel)/Kcc with Kcc being the thermal
conductance at intertube junctions. κ

∞(d)
net and N

(d)
J are the

thermal conductivity of networks composed of CNTs with
infinite thermal conductivity and the mean number of junctions
per CNT, respectively. κ

∞(d)
net can be written as κ

∞(d)
net =

Kccf
(d)(dcnt,Ldef,ρ) with ρ and f (d)(dcnt,Ldef,ρ) being the

volume density of CNTs and a function determined by
structural factors. N

(d)
J is nearly proportional to Ldef and

for two- and three-dimensional networks can be obtained,
respectively, as

N
(2)
J = 2ns

π

(
L2

def + 2πdcntLdef + π2

2
d2

cnt

)
,

(9)

N
(3)
J = π

2
nV dcnt

(
Ldef

2 + 4dcntLdef + 8

3
d2

cnt

)
,

where nS and nV are the surface and volume number density of
CNTs, respectively. Here, we assume nS = n

2/3
V and ρ is fixed

at a rather dense value 20% [15], corresponding to 0.35 g/cm3

for (10, 0) CNTs. We used the same formula and abbreviations
(e.g., Nel = Gel/Gcc with Gcc being electron conductance at
intetutbe junctions) to discuss electrical properties of CNT
networks. Kcc (=50 pW/K) is calculated with the empirical
formula based on NEMD simulations [54] (see Appendix) and
experimentally observed Gcc (=3.8 μS) with small-diameter
SWNTs (dcnt < 3 nm) [55] is employed to obtain the electrical
conductivity of the networks, λ

(d)
net. Because the Seebeck

coefficient of CNT networks, Snet, is not sensitive to the
network condition (e.g., morphology and number of contacts)
and is dominated by S of individual CNTs [23], we use
S of individual CNTs as Snet for simplicity and obtain
the figure of merit of networks as Z

(d)
netT = S2λ

(d)
net/κ

(d)
net . For

electron properties (Gel and S), values at μopt are used in
this estimation. As for the defect concentration, because the
distance between defects ranges from ≈20 nm (for CNTs with
relatively high σ [56]) to submicrons (for highly crystalline
CNTs fabricated with a CVD method under high-temperature
condition [57,58]), we calculate values in the plausible range
of σ , in which the effective averaged distance between defects,
Ldef/Ndef , exceeds ≈10 nm.
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FIG. 9. Figure of merit of CNT-based networks. (a) Figure of
merit of individual CNTs (black) and corresponding two- (green) and
three- (blue) dimensional CNT networks. Bold and thin lines indicate
data for pristine (σ = 0 %) and defective (σ = 0.02 %) CNTs,
respectively. (b) Figure of merit of CNT-based three-dimensional
networks composed of defective CNTs with different lengths.
The data are normalized by values for pristine systems shown
in (a).

Using Eqs. (8) and (9) for thermal and electrical conduc-
tivity, Z

(d)
netT can be related to Zcnt T :

Z
(d)
netT ≡ α(d)ZcntT , (10)

α(d) = Nth + N
(d)
J /12

Nel + N
(d)
J /12

, (11)

Equation (11) shows that, when boundaries inhibit thermal
transport more effectively than electron transport (Nth >

Nel), formation of the network enhances the thermoelectric
performance (Z(d)

netT > ZcntT ); for instance, Nth/Nel = 14
for the 100-nm pristine CNT. In the parameter range of
the present calculations, this condition is always satisfied
regardless of the CNT length and the introduction of defects.
Figure 9(a) shows that formation of the network enhances
the figure of merit for both pristine (bold lines) and defective
(thin lines) CNTs, where σ = 0 % and 0.02%, respectively.
As for the two-dimensional network, N

(2)
J > N

(3)
J , and thus

Z
(2)
netT < Z

(3)
netT , are satisfied in the realistic range of parameters

(dcnt � 10 nm and ρ � 0.35 g/cm3), unless the aspect ratio
is extremely small (Lcnt/dcnt < 15).

Figure 9(a) also shows that for a fixed value of
σ (=0 % and 0.02 %), Z

(d)
netT decreases with increasing Ldef

and converges to Zcnt T . This dependence of Z
(d)
netT on Ldef

can be observed for the whole range of σ as shown in
Fig. 9(b). The general trend can be understood from the
fact that, in networks composed of shorter CNTs, phonons
and electrons pass through more junctions that enhance the
thermoelectric performance. The actual trend can be somewhat
more complicated depending on the relative magnitude of each
component in Eqs. (10) and (11). However, when electron and

thermal transport are ballistic and quasiballistic, respectively,
as assumed in this study, Z

(d)
netT should always increase with

shortening CNTs composing the network.
When defects are introduced, Z

(d)
netT is strongly reduced

following the suppression of Zcnt T seen in Fig. 7. Note that
the introduction of defects leads to competing effects on α(d);
decrease in Nth/el due to the introduction of defects reduces
α(d) while increase in Nth/Nel due to the stronger reduction
of Gel compared with Kth increases α(d). Consequently, the
introduction of defects does not vary α(d) substantially, and
thus the extent of the reduction shown in Fig. 9(b) remains
similar to that of Zcnt T . The substantial reduction of Z

(d)
netT

clearly shows the importance of improving the crystallinity of
CNTs on CNT-based thermoelectrics. This discussion should
be applicable to CNTs even longer than 100 nm, as shown
in Fig. 9(b), where the calculated data are extrapolated to
a CNT length of 1000 nm, which is about the maximum
length that ballistic electron transport persists in pristine
systems [40].

These calculations show that the increase in both Ldef

and σ deteriorates the thermoelectric performance because
of the decrease in α(d) and Zcnt T , respectively. Furthermore,
the deterioration of the thermoelectric performance of CNT-
based networks is more crucial for longer CNTs in (quasi-)
ballistic systems. We, thus, obtained important insights for the
design of CNT-based thermoelectric devices; improving the
crystallinity of CNTs and using shorter CNTs can enhance
the thermoelectric performance of CNT-based networks.

VI. CONCLUSIONS

We theoretically investigated effects of defects, vacancies,
and SW defects, on the thermoelectric properties of semi-
conducting CNTs and CNT-based networks. We found that
vacancies can increase the Seebeck coefficient of individual
CNTs (by up to four times) due to the selective suppression
of the transmission function at energy levels corresponding to
Van Hove singularities. However, significant suppression of
electron conductance regardless of the type of defect (by up to
five orders) overwhelms the increase in Seebeck coefficient. As
for the comparison of effects of the defects, while the reduction
of ZT due to vacancies is larger than that due to SW defects at
the fixed chemical potential, since the µ optimization functions
more efficiently for vacancy, ZT for vacancy is larger than ZT

for SW defect with the µ optimization. Further calculations on
effects of defects on thermoelectric performance of CNT-based
networks show that the improvement of crystallinity of CNTs
and the usage of shorter CNTs can effectively increase the ZT

of CNT networks. Our findings show concrete ways to enhance
the performance of CNT-based thermoelectric devices.
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APPENDIX: THERMAL CONDUCTANCE AT INTERTUBE
JUNCTIONS

As derived in Ref. [54], thermal conductance at intertube
junctions can be calculated by using the empirical formula

Kcc = (
AMB

eff + C
)
Neff, (A1)

where A = −1.62 × 10−11 pW/K, B = 10.86, and C =
0.2154 pW/K. Neff and Meff are the total effective number
of interatomic intertube interactions and effective interatomic
intertube interactions per atom in the contact region, respec-

tively. The contribution from a pair of the ith atom in a tube
and the j th atom in another tube is derived by the following
Lennard-Jones potential form equation,

n(rij ) =
⎧⎨
⎩

1, rij < rm

2(rm/rij )6 − (rm/rij )12, rm � rij � rc,
0, rc < rij

(A2)

where rij is the distance between the ith and j th atoms, rm =
21/6σint is the distance corresponding to the minimum of the
potential, σint = 3.4 Å is the length parameter of the Lennard-
Jones potential, and rc = 10 Å is the cutoff length.
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