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General expressions for the electron- and hole-acoustic-phonon deformation potential Hamiltonians (HE-DP)
are derived for the case of Ge/Si and Si/Ge core/shell nanowire structures (NWs) with circular cross section.
Based on the short-range elastic continuum approach and on derived analytical results, the spatial confinement
effects on the phonon displacement vector, the phonon dispersion relation and the electron- and hole-phonon
scattering amplitudes are analyzed. It is shown that the acoustic displacement vector, phonon frequencies and
HE-DP present mixed torsional, axial, and radial components depending on the angular momentum quantum
number and phonon wave vector under consideration. The treatment shows that bulk group velocities of the
constituent materials are renormalized due to the spatial confinement and intrinsic strain at the interface. The
role of insulating shell on the phonon dispersion and electron-phonon coupling in Ge/Si and Si/Ge NWs are
discussed.
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I. INTRODUCTION

Based on enforcement of Si nanowires (NWs) linked to
thermal conductivity [1], photodetectors [2], and solar cells
[3–5], nowadays a notable effort has been addressed to study
Si/Ge and Ge/Si core/shell semiconductor NWs [6–9]. These
typical type-II band structures display high mobility [10] and
can be used in many applications [11–13]. It is also well
established that the band gap at � point of core/shell Si/Ge
and Ge/Si nanostructures increases with decreasing radius, an
effect directly linked to the spatial confinement and to the
intrinsic strain at the interface [12,14], produced in turn by
the 4% lattice mismatch between Si and Ge materials [15].
Yet, more interestingly, in the nanoscale regime the Si/Ge
and Ge/Si core/shell structures show a direct band gap at �

point [6,16,17].
Besides the intrinsic strain, it is important to considered

the role of spatial confinement on the acoustic-phonon modes
and on the electron-phonon interaction. The acoustic phonon
dispersion is strongly modified [18] when the radius of the
quantum wire is of the order or smaller than the phonon
wavelength. The confined acoustic phonon in such a nanos-
tructure plays an important role on the carrier scattering rate,
on the flow of electric current, and on the mobility or carrier
transport. A suppression of the thermal conductivity in the
core/shell Si/Ge NWs has been reported in Refs. [19–21]. It
has been shown that certain combinations of the core/shell
cross-section modulation and the acoustic mismatch allow
to control the thermal flux. This result is, in principle, a
promissory candidate for thermoelectric applications. Thus
the reduction of the thermal conductivity and the characteristic
of the carrier mobility in core/shell NWs are directly linked
to the confinement effects on the phonon dispersion relation
[21–25]. Also, it is important to remark that the core/shell wire
structures are useful for optical applications [26,27] and for
quantum computing engineering with spin qubits [28,29].

Several works have been devoted to obtain the acoustic
phonon dispersion in wires and core/shell nanowires using

both ab initio calculations [30,31] and phenomenological
continuum approaches (see Refs. [18,32–34] and references
there in). In addition, studies of electron-phonon interaction for
the conduction band have been reported [35–37]. However, the
electron-acoustic-phonon interaction in core-shell NWs has
not been fully tackled. A phenomenological theory, allowing
for the evaluation of the electron-phonon Hamiltonian due to
a deformation potential interaction, for cylindrical structures
with arbitrary radii for both core and shell at the nanoscale
regime, is a central issue for understanding the fundamental
physics of many of the phenomena aforementioned. In the
present work, we study the electron-phonon interaction in
Ge-core/Si-shell and Si-core/Ge-shell NWs in the framework
of the continuum model and the �k · �p band theory.

The paper is organized as follows. In Sec. II, we write
down the general expression for the electron- and hole-phonon
deformation-potential Hamiltonians. For the conduction band,
we assume the �1c symmetry to be valid for Ge/Si and Si/Ge
NWs grown along [110], while for the holes we adopt the
Bir-Pikus Hamiltonian (BPH) for states near the top of the
valence bands with �15v symmetry. Section III is devoted to
a description of the elastic continuum model and the general
basis of solutions for the phonon amplitudes. We make special
emphasis on the phonon spectrum calculations, the role of
the spatial confinement effect, the symmetry of the space
of solutions and on the comparison with the homogeneous
wire limit. In Sec. IV, we present detailed derivations of
the electronic-acoustic phonon scattering rate for conduction
and valence bands and of the influence of the core and shell
radii for electrons and holes on the scattering amplitudes. We
report our main results in Sec. V. Finally, in the appendices,
we summarize the most relevant technical elements in the
development of the present work.

II. ELECTRON-ACOUSTIC-PHONON INTERACTION

We consider typical core/shell cylindrical NWs with core
radius rc, shell thickness � = rs − rc, and the z axis parallel
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to the growth direction [110]. We assume that all parameters
involved in the present theoretical model are piece-wise
functions of r , that is, we have assumed the parameters of
the constituent materials to be isotropic.

In the occupation number representation, the Hamiltonian
of the electrons interacting with the acoustic phonons can be
expressed as [38]

He-ph =
∑
α′,α

Mα′,α[a†
j (kz) + aj (−kz)]c

†
α′cα , (1)

where a
†
j (kz) [aj (−kz)] denotes the phonon creation (anni-

hilation) operator in the j branch with wave vector kz(−kz)
and c

†
α′ (cα), the corresponding operator for electron in the

electronic state α′ (α). Here, Mα′,α takes into account the
electronic scattering event between the states α → α′ by
the interaction with an acoustic phonon. It is well known that
in Si and Ge semiconductors the electron-phonon coupling
can be determined using the short range deformation potential
(DP) model [39]. In a first approach, we develop a theory
where this interaction is treated in the same way as in the bulk
DP approach. Nevertheless, it has been reported that the DP
constants are anisotropic and that depend on the spatial con-
finement (see Ref. [4] and references there in). Furthermore,
the DP mechanism can be treated as a perturbation to the
band energies due to the lattice distortion; as a consequence,
the electron-phonon coupling depends on the electronic band
structure [39]. As we stated above, the Ge/Si and Si/Ge
core/shell nanowires grown in the [110] direction show a direct
band gap at � point of the Brillouin zone [12,16,17,40], hence,
the conduction band minimum shows a �1c symmetry, while
the top valence band has a �15v one, respectively.

A. Conduction band

Following the above discussion, the electron-phonon scat-
tering amplitude probability can be written as

Mα′
e,αe

= 〈
�α′

e

∣∣a(�1c)∇ · u
∣∣�αe

〉
, (2)

where a(�1c) is the volume deformation potential [39], u is
the phonon displacement vector in the branch j , and |�αe

〉 is
the electron wave function for the core/shell NW.

B. Valence band

For the scattering amplitude Mα′
h,αh

of a hole in the valence
band interacting with an acoustic phonon we have

Mα′
h,αh

= 〈
�α′

h

∣∣HBP

∣∣�αh

〉
, (3)

where |�αh
〉 is the hole wave function in the NW and HBP

is the Bir-Pikus Hamiltonian for the J = 3/2 valence band
states [39,41]. Assuming the zinc-blende symmetry, the HBP

Hamiltonian in cylindrical coordinates and in the framework
of the axial approximation, can be written as

HBP = [
a(�15v) − 1

2b(�15v)
(
J 2

z − J 2/3
)]∇ · u + b(�15v)

× [
1
2J 2

∓X± +
√

2{J∓,Jz}Y± + 3
2

(
J 2

z − J 2/3
)
εzz

]
,

(4)

with a(�15v) and b(�15v) being the volume and shear de-
formation potentials for the highest energy at �15v valence

band [42], X± = e±2iθ (εrr − εθθ ± 2iεrθ ), Y± = e±iθ (εrz ±
iεθz), {J∓,Jz} = 1

2 (J∓Jz + JzJ∓), J± = (Jx ± iJy)/
√

2, and
Ji is the Cartesian angular momentum operators for a particle
with spin 3/2 and εij the components of the stress tensor [see
Eq. (A2)].

III. ACOUSTIC-PHONON DISPERSION

For an evaluation of the Hamiltonian (1) and, in conse-
quence, the matrix elements (2) and (3), it is necessary to
know the dependence of the phonon displacement u as well as
the phonon frequencies on the core/shell spatial symmetry. In
the framework of elastic continuum approach, the equation of
motion for the acoustic phonon modes takes the form [43]

ρω2u − ∇ · σ = 0, (5)

with ρ the mass density, ω the phonon frequency and σ the
mechanical stress tensor. Following Hooke’s law, σ = C · ε,
with ε the strain tensor, C the elastic stiffness tensor and the
results being compiled in Appendix A, the equation of motion
for the acoustic phonon takes the form

ρω2u = ∇(
ρv2

L
∇ · u

) + ∇ × (
ρv2

T
∇ × u

)
. (6)

The solution of (6) consists of one longitudinal (L) uL and two
transverse (T ) uT1 ,uT2 fields, i.e., u = uL + uT1 + uT2 . Since
the system is not homogeneous, in general, uL, uT1 , uT2 are
coupled by the matching boundary conditions at the interface.
Thus the acoustic dispersion relations for the L and T branches
are not independent and the normal modes become a hybrid
combination of L, T1, and T2 phonon vibrational motions.

It is important to remark that the equation of motion (6)
for r < rc, or rc < r < rs , corresponds to an isotropic model
where an average velocity for the sound is assumed. An anal-
ysis of the phonon calculations and more general expressions
including the anisotropy are presented in Appendix A. It
is shown there the phonon frequency calculations present a
discrepancy of 10% in comparison with the isotropic model.

In cylindrical geometry, the solution of Eq. (6) has full
axial symmetry; hence, the displacement vector in cylindrical
coordinates can be cast as u = (ur,uθ ,uz) exp i(nθ + kzz). In
consequence, and following the method of solution described
in Refs. [44,45], one can derive a general basis of solutions for
(ur,uθ ,uz), namely,⎛

⎜⎝
ur

uθ

uz

⎞
⎟⎠ = A

L

⎛
⎜⎝

q
L
rcf

′
n(q

L
r)

i nrc

r
fn(q

L
r)

ikzrcfn(q
L
r)

⎞
⎟⎠ + A

T1

⎛
⎜⎝

kzrcf
′
n(q

T
r)

i
nkzrc

rq
T

fn(q
T
r)

−iq
T
rcfn(q

T
r),

⎞
⎟⎠

+A
T2

⎛
⎜⎝

nrc

r
fn(q

T
r)

iq
T
rcf

′
n(q

T
r)

0

⎞
⎟⎠ , (7)

where n = 0, ± 1, ± 2, . . . labels for the azimuthal motion, kz

is the z component of the phonon wave vector, and q
L
(q

T
) is

given by

q2
L

(
q2

T

) = ω2

v2
L

(
v2

T

) − k2
z . (8)
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In Eq. (7), if x2 > 0 (x2 < 0), the function fn(x) is taken
as Bessel Jn (or Infeld In) for 0 � r � rc and as linear
combination of Jn and Neumann Nn functions of integer order
n (or combination of In(x) and MacDonald Kn(x)) [46] for
rc � r � rs . From (7), it is easy to check that ∇ · uL = −(q2

L
±

k2
z )A

L
rcfn(q

L
r)ei(nθ+kzz) (sign + for the Bessel functions and

− for the modified Bessel functions) with ∇ · uT1 = ∇ · uT2 =
0 and ∇ × uL = 0, underlying the transverse and longitudinal
character of the fields uT1 , uT2 and uL.

The eigenfrequencies of the phonon modes are obtained by
imposing appropriate boundary conditions. As in the case of
optical phonons, the strains at the interface play an important
role on the phonon frequencies (see Ref. [47]). For the
acoustic phonons, the effects of lattice mismatch between
Ge and Si are taken into account through the continuity of
the normal component of the stress tensor. We consider a
free boundary at the shell surface, σ · er |rs

= 0. Besides, the
mechanical displacement and the normal component of the
stress tensor should be continuous at the core/shell interface,
i.e., u|r−

c
= u|r+

c
and σ · er |r−

c
= σ · er |r+

c
. We point out that in

the case of free standing homogeneous nanowires the basis of
solutions (7) match those reported in Ref. [35].

The calculation for the acoustical modes in NWs with
cylindrical symmetry is a complicated task. In general, the
phonon displacement u has all three components (uT1 , uT2

and uL), since none of the coefficients A
L
, A

T1
, and A

T2

is zero, therefore, it cannot be decoupled into independent
motions. Fixing n and kz, the constants A

L
, A

T1
, and A

T2

are fully determined by the matching condition at r = rc and
by the boundary condition of free standing NWs at r = rs .
Due to the cylindrical symmetry we cannot characterize the
motions as pure torsional, dilatational or flexural modes. The
resulting modes are combination of transverse and longitudinal
characters. Nevertheless, from the symmetry of general basis
(7), we are able to obtain the following results: (i) for n = 0
and kz = 0, we are in the presence of three independent L,
T1, and T2 uncoupled modes with amplitudes ur (r), uz(r) and
uθ (r), respectively; (ii) for n = 0 and kz 	= 0, the longitudinal
and transverse T1 motions, L − T1, are coupled, while T2

vibrational mode remains uncoupled; (iii) for n 	= 0 and
kz = 0, the T1 transverse phonon mode is independent, while
the other two, L and T2, are mixed; and (iv) for n 	= 0 and
kz 	= 0 the longitudinal, the transverse T1 and T2 motions are
coupled. Below, we focus on the most relevant case of phonons
with axial symmetry, n = 0.

A. Phonons with kz = 0

As stated above, the present case shows three uncoupled
vibrations, L, T1, and T2. The longitudinal modes correspond
to radial breathing mode (RBM) and their eigenfrequencies
are ruled by the secular equation

Fs(γ λ
L
x/)[Gs(λL

x)J1(x) − ρrFc(x)N1(λ
L
x)]

−Gs(γ λ
L
x/)[Fs(λL

x)J1(x) − ρrFc(x)J1(λ
L
x)] = 0, (9)

where c (s) labels the core (shell) region, x = ωrc/vLc
,

λ
L

= v
Lc

/v
Ls

, γ = rs/rc, ρr = ρs/ρc, Fi(x) = v2
Li

xJ0(x) −
2v2

Ti
J1(x), and Gi(x) = v2

Li
xN0(x) − 2v2

Ti
N1(x) (i = s,c). The

RBM modes have been studied in the past for both nanotubes
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FIG. 1. Frequencies of the first five breathing modes as a function
of the ratio rc/rs for fixed shell radius rs = 5 nm in Si/Ge (left) and
Ge/Si (right) NWs grown along the [110] crystallographic direction.
The limits of Ge and Si nanowires are shown by red and blue
diamonds, respectively (see text).

[48,49] and semiconductor NWs [50,51]. Because of their
particular relevance it becomes necessary to focus on these
modes in Ge/Si and Si/Ge core/shell nanowires. It is expected
that the frequencies of the RBM modes, described by Eq. (9),
are strongly dependent on the material composition, λ

L
=

v
Lc

/v
Ls

and size ratio, γ = rs/rc. Firstly, note from (9) that
the two limiting cases rc = 0 and rc/rs = 1 are given by the
secular equation Fi(zi) = 0 with zi = ωr0/vLi

(i = s,c) and
r0 the radius of the wire, i.e., the homogeneous NW disper-
sion relation is recovered for shell or core semiconductors.
Figure 1 shows the frequency dependence on the core/shell
ratio rc/rs , with the limiting cases rc = 0 and rc/rs = 1
shown by diamonds. In the calculations, we employed the
following data for Si [Ge]: v

L
= 9.36 [5.39] × 105 cm s−1,

v
T

= 5.25[3.30] × 105 cm s−1 [52], ρ = 2.33 [5.32] g cm−1

[53]. The oscillations observed in Fig. 1 of ω as a function of
the ratio rc/rs can be explained by the interference between
shell and core structures. Thus, for small values of rc/rs ,
the influence of the shell on the core phonon amplitude
becomes stronger enhancing the oscillations. Moreover, the
lower phonon frequencies are less affected showing almost
a flat dispersion as a function of rc/rs , while the higher
excited modes are more sensitive and displaying pronounced
oscillations. The same trend is obtained for the T1 and T2

phonon modes (see Fig. 2).
The confined eigenfrequencies, ω(kz = 0), for the T2 modes

can be obtained from the general expression

xsJ1(xc)P22(xs) + ρr

λ2
T

xcJ2(xc)P12(xs) = 0. (10)

Here, xc[xs] = rc

√
(ω/v

Tc
[v

Ts
])2 − k2

z , λ
T

= v
Ts
/v

Tc
, and

Pn,m(x) = Jn(x)Nm(γ x) − Jm(γ x)Nn(x). Also, in the partic-
ular case when kz = 0, is possible to get an explicit expression
for the T1 frequency mode.

Figure 2 displays the dependence on 2π/rc of the uncoupled
L, T1, and T2 phonon frequency modes for fixed shell thickness
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FIG. 2. The same as Fig. 1 for the uncoupled L, T1, and T2 phonon
modes as a function of 2π/rc, for fixed shell thickness � = rs − rc =
5 nm.

� = rs − rc. In the limit rc → ∞, we recover the phonon
frequencies for pure Si and Ge wires. As rc → ∞, we
find that the phonon frequency resembles the typical linear
acoustic bulk phonon dispersion as a function of the phonon
wave vector. The spatial confinement renormalizes the sound
velocity and we can rewrite, for large values of rc, that
ω(j )

L,T
= (2π/rc)v(j )

L,T
(j = 1,2, . . .) with different slope v(j )

L,T
for

each mode. Notice that the cylindrical symmetry breaks the T1

and T2 degeneracy and two different sound velocities, v(j )
T1

and

v(j )
T2

, appear.

B. Phonon dispersion with kz �= 0

Following the secular Eq. (10), in Fig. 3, we display the
pure confined transverse T2 phonon dispersion. For sake of
comparison the bulk phonon dispersions, ωGe (kz) and ωSi (kz),
are represented by blue and red dashed lines, respectively.
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FIG. 3. Phonon dispersion for uncoupled T2 modes as a function
of the phonon wave vector kz in units of π/rs . (Left) Si/Ge and (right)
Ge/Si NWs. Dashed lines represent the bulk dispersion relations for
Si and Ge. Open diamonds are solutions of Eqs. (11) and (12).

For small values of kz, it is possible to get useful analytical
solutions. It should be remarked that in the case of Ge/Si, if
the set of the values (ω,kz) lies in the region ωGe (kz) < ω <

ωSi (kz), the parameter xc is real while xs becomes a complex
number. The opposite occur for Si/Ge NWs. Accordingly, for
the Ge/Si we get that the function Pnm(xs) ⇒ Pnm(|xs |) =
In(|xs |)Km(γ |xs |) − Im(γ |xs |)Kn(|xs |).

The numerical solution of Eq. (10) shows a strong modifica-
tion of the Si and Ge bulk phonon group velocities (see Fig. 3),
which depend on the surrounding material, i.e., if the shell is
composed by softer or harder material than the core semicon-
ductor, the resulting group velocity has lower or higher values.
For example, in Ge/Si core/shell NWs, the shell compresses
the Ge core lattice while for Si/Ge the shell is compressed by
the core. Similar result have been achieved in Ref. [18].

Assuming small values of the wave number kz, Eq. (11) is
obtained from Eq. (10). Thus the dispersion relation valid for
Ge/Si (xc real, xs complex number) and Si/Ge (xc complex
number, xs real) follows. This enables to better visualize the
dependence of sound speed on materials parameters:

ω = v
Tc

√
1 +

(
λ2

T
− 1

)
(γ 4 − 1)ρr

(γ 4 − 1)ρr + 1
kz = v

T
kz. (11)

This equation shows that the lower modes present linear
dependence in kz, with a renormalized sound velocity v

T
that

takes into account the ratio between shell and core radii, as
well as the densities and transverse velocities. Equation (11)
suggests the way to modify the sound velocity as a function of
the geometric factors ranging between the values vGe

T
and vSi

T
.

The same expression has been found in Ref. [33].
In the domain (ω,kz) where xc and xs are both real functions,

Eq. (10) provides the dispersion relation for small values of kz,

ω
T2

(kz) = ω
T2

(0) + 1

2

v2
Ts

ω2
T2

(0)
k2
z , (12)

where ω
T2

(0) is the confined phonon frequency of the core/shell
NWs for kz = 0. In Fig. 3, the solutions given by Eqs. (11)
and (12) are represented by open diamonds. By comparison
with the numerical calculation of Eq. (10), it can be seen that
explicit expressions (11) and (12) are good approximations for
kz(π/rs) � 1.

Another subset of solutions corresponds to the hybridized
longitudinal and transverse motions. Figure 4 shows phonon
dispersion of mixed L − T1 modes for γ = 1.25. The longitu-
dinal (L) and transverse (T1) labels are taken from the character
of the mode at kz = 0. For the sake of comparison, the phonon
dispersions for the homogeneous Si and Ge cylindrical wires
are shown in Fig. 4. Here, the corresponding longitudinal
and transverse modes are represented by red solid and red
dash-dots lines, respectively. Due to the strain effect at the
interface, it can be seen in the Fig. 4 that for the Ge/Si core/shell
NW the phonon frequencies lye above the Ge wire, while the
opposite is obtained for the Si/Ge NW, where ωSi values are
well above the core/shell Si/Ge phonon frequencies. At kz

approaching zero, the lower mode presents a linear dependence
of ω

L−T1
on the wave number kz with certain effective sound

velocity v
L−T1

that depends on the radii rc and rs [54,55].
The bendings appearing in the Fig. 4 are manifestations of
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FIG. 4. The same as Fig. 3 for the mixed L − T1 modes. Phonon
dispersion relations for homogeneous Si and Ge cylindrical wires
are represented by red solid (longitudinal modes) and dashed-dot
(transversal modes) lines. Full diamonds represent the anticrossings
between two nearby modes as explained in the text.

the strongest coupling between L and T1 modes. The mixed
character of the states avoid crossing points in the phonon
dispersion relation, i.e., the repulsion between near modes
with the same symmetry occurs. This effect is observed in all
dispersion relations having an important consequence in the
electron-phonon Hamiltonian He-ph (see discussion below).
In Fig. 4, some anticrossings associated with the mixing
between L and T1 states, have been indicated by full diamonds.
The proximity of the levels belonging to the same space of
solution or with the same symmetry is avoided by the repulsion
between the phonon states. At the anticrossings, a strong
mixing between L and T1 states occurs and an exchange of
character of the constants A

L
and A

T1
is obtained as a function

of kz.
Notice that higher excited states for kz ∼ 0 do not present

strong mixing effect and the phonon dispersion relation can
be described by simple parabolic law, ω

L(T1) (kz) = ω
L(T1) (0) +

β2
L(T1)

k2
z . Here, β

L(T1) measures the curvature of the phonon
dispersion and ω

L−T1
(0) are the NW phonon frequencies for

kz = 0. We arrived to the same results for the homogeneous Si
and Ge cylindrical wires.

IV. SCATTERING RATE

Due to translational and cylindrical symmetries, the matrix
element Mα′,α can be cast as follows:

Mα′,α = Se−phδm′,m+nδk′,k+kz
, (13)

where the angular momentum and linear momentum con-
servations are written explicitly. Se-ph = 〈m′|He-ph |m〉 is the
scattering amplitude due to the electronic transition assisted
by an acoustical phonon, between the electron or hole states
|m′〉 → |m〉 (see Appendices B and C). For the phonon
eigenvectors un,kz

, we choose the normalization condition∫
ρ(r)|un,kz

(r)|2dV = h̄

2ωn(kz)
, (14)

with ωn(kz) the acoustic-phonon dispersion of the core/shell
problem. Let us discuss a general formulation for the electron-
acoustic deformation potential Hamiltonian HE-DP and an
evaluation of the scattering amplitudes for the electrons and
holes.

A. Electron-LA Hamiltonian

According to Eq. (2), a transverse or torsional mode does
not induce volume change and only the longitudinal acoustic
motion uL(r) contributes to electron-phonon Hamiltonian
HE-DP. Hence, by assuming A

L
as independent constant in

Eq. (7), we have

HE-DP = a(�1c)∇ · uL

= −
√

h̄ω3
n(kz)

4πr2
c Lρcv4

L

a(�1c)

Nn,kz

fn(q
L
r)ei(nθ+kzz), (15)

where Nn,kz
=

√∫ γ

0 ρ(z)|un,kz
(z)|2zdz/(ρcA2

Lc
) is the normal-

ization constant for the dimensionless phonon amplitude
|un,kz

(z)|. In Fig. 5, the characteristic contour map for the
electron-LA Hamiltonian (15) is shown for the Ge/Si NWs. We
choose the first four modes of Fig. 4 where ωn=0(kz = 0) 	= 0.
According to the general basis of solutions (7), for n = 0,
the longitudinal displacement vector uL have non-zero radial
and axial components. Figures 5(a)–5(d) correspond to the
uncoupled confined frequencies ω(1)

L
, ω(1)

T1
, ω(2)

T1
, and ω(2)

L
for

kz = 0 of the L and T1 motions. In the panels (a) and
(d), one finds, for r = 0, the stronger spatial localization
in correspondence with the longitudinal character of these
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r/r
s
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(b)(a)

(c) (d)

FIG. 5. Contour plots of the Hamiltonian (15) in units of HOE as
a function of the dimensionless wave number kz/(π/rs) and radius
r/rc for the phonon modes (a) ω(1)

L
, (b) ω(1)

T1
, (c) ω(2)

T1
, and (d) ω

(2)
L of

the Ge/Si core/shell NW (see text). In the calculation, we fixed kz = 0
and z = 0.
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modes. In panel (a), we observe, as kz increases, that the T1

component becomes stronger, in particular for kz > 1.1 the
contribution of the ω(1)

L
mode to HE-DP is almost zero. The

same is observed in panel d) for the state L(2), but the limiting
value is kz > 1.8. These two values of kz are in correspondence
with the anticrossings shown by full diamonds in Fig. 4 for the
L(1) and L(2) phonon states. Note in Fig. 4 that for kz ∼ 2.8,
an anticrossing occurs and the L(2) mode presents stronger
L character and, in consequence, the spatial distribution of
HE-DP is enhanced. In panel (b), the observed strong spatial
localization of HE-DP at r = 0 with kz ≈ 0.2 is explained by the
reduction of the coefficient A

T1
as a function of kz, in the state

T
(1)

1 . Due to the anticrossing between the states T
(1)

1 and T
(2)

1 for
kz ≈ 2, the ω(1)

T1
mode is almost transverse and its contribution

to the spatial distribution fn=0(q
L
r)|

ω=ω
(1)
T1

decays to zero. At

the same time, the mode T
(2)

1 increases the AL amplitude, and
HE-DP at ω = ω(2)

T1
increases in the region 1.9 < kz < 2.9 as

seen in Fig. 5(c). Thus the phonon dispersion of the Ge/Si
NWs for a given ratio of rs/rc has a preponderant influence on
the spatial distribution of HE-DP as a function of kz.

Taking into account the Eqs. (15), (B1), and (C2), the
electron scattering amplitude can be written as

SE-DP = 1

r2
c

〈
Fm′

e

∣∣HOE

ωn

v
L
Nn,kz

fn

∣∣Fme

〉
, (16)

where HOE = −a(�1c)
√
h̄ωn=0(kz = 0)/4πr2

c L0ρcv
2
L
. From

Eq. (16), immediately follows that phonon modes with n = 0
assist electron intrasubband transitions, m′

e = me, while for
n 	= 0 intersubband transitions with m′

e 	= me occur. Note
that in the case of homogeneous wire, 〈Fm′

e
|fn|Fme

〉/r2
c

corresponds to the electron form factor or overlap integral
between the normalized radial electronic states and the phonon
function fn of the quantum wire. For comparison, we consider
Eq. (16) for a homogeneous wire. Assuming the size-quantum
limit (strong spatial confinement) where electrons populate the
lowest subband (m′

e = me = 0 and n = 0) and intersubband
transitions |p′

e〉 → |pe〉 are discarded, the scattering amplitude
at kz = 0 reduces to

SH
E-DP = HOE

(
r2
c q2

L

4
δ4 − δ2 + 1

)− 1
2 〈J0(pe)|J0(q

L
)|J0(pe)〉

r2
c J 2

1 (perc)J0(q
L
rc)

,

(17)

with δ = v
L
/v

T
.

It is instructive to compare the behavior of the electron
scattering amplitudes for core/shell Si/Ge and Ge/Si NWs.
Figure 6 displays the reduced scattering amplitude SE-DP/HOE

as a function of the ratio rc/rs for both core/shell NWs. In the
calculation for the Si/Ge [Ge/Si] NWs, we fixed the value
of HOE with the parameters of Si [Ge] semiconductor. For
each structure, in the quantum limit approach, the first three L

modes of the structure with frequencies ω(j )
L

(j = 1,2,3) 	= 0
at kz = 0 are considered. In the figure, the form factor, using
Eq. (17) and rc = 5 nm, is represented by dashed lines.
In Si/Ge NWs, electrons are confined in the core whereas
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0.0
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4.8
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-D
P
(H

O
E)

rc/rs

Ge/Si

Si/Ge

FIG. 6. Electron scattering amplitude for the excited frequencies
ω(1)

L
, ω(2)

L
, and ω(3)

L
(see text) as a function of the ratio rc/rs . Dashed

lines: homogeneous wires as given by Eq. (17). (Top) Si/Ge and
(bottom) Ge/Si.

in Ge/Si NWs they are in the shell. For the evaluation of
Eq. (16), we employed the results displayed in Appendix B.
In the upper panel of Fig. 6 (Si/Ge NWs), the influence of
the shell of Ge on the SE-DP is shown. If rc = rs , we have a
quantum wire of Si and SE-DP/HOE as described by Eq. (17).
If rc/rs 	= 1, we are in the presence of a Si/Ge core/shell
system. Thus we can observe that the value of SE-DP, for the
ω(1)

L
modes, firstly increases, reaching a maximum for γ (1)

max =
(rc/rs)(1)

max ≈ 0.4 and for γ < γ (1)
max the quantity SE-DP/HOE

reaches asymptotically the homogeneous Si wire value. In the
case of ω(j )

L
(j = 2,3), the reduced scattering amplitude grows,

reaching a maximum value near (rc/rs)(2)
max ≈ 0.23. For γ <

γ (2)
max, SE-DP/HOE decreases to the limiting value of Eq. (17). In

the lower panel of Fig. 6 (Ge/Si NWs), the wire of Ge is reached
at rc = rs . From the figure, we can observe the strong influence
of the shell on the SH

E-DP for rc/rs < 0.8 besides oscillations
of SE-DP around the SH

E-DP values, a fact reflecting the oscillatory
behavior of the phonon modes with γ (see Fig. 1). A similar
result for the electron scattering amplitude has been reported
in Ref. [56] for Si nanowires.

B. Hole-acoustical-phonon Hamiltonian

By employing the solutions for the phonon amplitudes (7),
the matrix representation of the angular momentum J = 3/2
[57,58] and the strain relations given in Appendix A, the hole
scattering amplitudes for the Hamiltonian (4) can be cast as

SH-BP = 〈
bF

(i)
m′

h

∣∣HBP

∣∣bF (i)
mh

〉
, (18)

155317-6



ELECTRON–ACOUSTIC-PHONON INTERACTION IN . . . PHYSICAL REVIEW B 95, 155317 (2017)

where i = hh+, lh+, lh−, and hh−,

SH-BP =

"
a1iFmh+n

a2iFmh+n+1

a3iFmh+n+2

a4iFmh+n+3

∣∣∣∣∣∣∣∣∣

† ⎛
⎜⎜⎜⎝
T+ Y− X− 0

Y+ T− 0 X−

X+ 0 T− −Y−

0 X+ −Y+ T+

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣

a1iFmh

a2iFmh+1

a3iFmh+2

a4iFmh+3

#

, (19)

T± = −
[
A

L

([
a(�15v) ± 1

2
b(�15v)

]
ω2

v2
L

∓ 3

2
k2
z b(�15v)

)
fn(q

L
r) ± 3

2
A

T1
b(�15v)kzqT

fn(q
T
r)

]
,

Y± = ∓i
√

3b(�15v)

[
A

L
kzqL

fn±1(q
L
r) ∓ 1

2

[
A

T1

(
q2

T
− k2

z

) + A
T2

kzqT

]
fn±1(q

T
r)

]
,

X± =
√

3

2
b(�15v)

[
A

L
q2

L
fn±2(q

L
r) + (

A
T1

kzqT
− A

T2
q2

T

)
fn±2(q

T
r)

]
. (20)

From Eqs. (18), (20), and the basis of solutions (7), we
extract the following conclusions. (a) For phonon states with
n = 0 and kz = 0, we have three independent hole-phonon
interaction Hamiltonians, accounting for the three uncoupled
subspaces, L, T1, and T2, with eigenfrequencies ω

L
, ω

T1
, and

ω
T2

, respectively. Evaluating (20) at ω = ω
L

and using the fact
that A

L
	= 0 and A

T1
,A

T2
= 0, we see that the Hamiltonian

(18) couples the diagonal intraband hole sates |i〉 ⇒ |i〉 and
the weak coupling interband between |lh±〉 ⇔ |hh∓〉 states;
if we choose ω = ω

T1
where A

L
,A

T2
= 0 and A

T1
	= 0, we

are in the presence of interband transitions |lh±〉 ⇔ |hh±〉.
Also, for ω = ω

T2
with A

L
,A

T1
= 0 and A

T2
	= 0, results in

scattering |lh∓〉 ⇔ |hh±〉. (b) Fixing n = 0 and kz 	= 0 there
are two independent subspaces, L − T1 and T2. The first one
couples L and T1 motions, while the second corresponds to
pure T2 transverse phonons. Similar expressions are obtained
for homogeneous wires by choosing properly the function
Fmh

(r) and fn(r) inside the cylinder.
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FIG. 7. Reduced valence-band scattering amplitude SH-BP/HOH

for Ge/Si NWs as a function of the ratio rc/rs . For kz = 0 and n = 0,
the two sets of independent subspaces are displayed (see text): (top)
transverse phonons with frequencies, ω

(j )
T2

(j = 1,2,3), and (bottom)
longitudinal modes and frequencies ω(j )

L
. Dashed lines: homogeneous

Ge NW.

In the size-quantum limit and not too large values of
kz, the Luttinger-Kohn (LK) Hamiltonian splits into two
independent 2 × 2 matrices, coupling (|hh+〉, |lh−〉) or (|hh−〉,
|lh+〉) Bloch states (see Appendix C). For kz = 0 and angular
momentum quantum number n = 0, the scattering amplitude
(19) splits into two independent terms, which correspond
to the subspaces L and T2 of the hole-phonon interaction
Hamiltonian.

Figure 7 is devoted to the hole scattering amplitude (19) in
units of HOH = −a(�15v)

√
h̄ωn=0(kz = 0)/4πr2

c L0ρcv
2
L0

for

the first three T2 transverse modes (upper panel) and three
L longitudinal modes (lower panel) of the Ge/Si structure as
a function of the ratio rc/rs . In the calculation we assumed
that the lower hole state is completely confined in the core
(hard wall potential approximation). As in Fig. 6, dashed
lines represent the form factor for Ge NW with a radius of
5 nm. Here, the influence of the shell is solely due to Ge/Si
phonon spectrum. From the figure, we observe that SH-BP for
the longitudinal modes are one order of magnitude larger than
the transverse ones, reflecting the strength of coupling between
hole states. In the case of T2, we have a coupling between
|hh〉 and |lh〉, while for the L we are in the presence of the
diagonal transitions |hh〉 → |hh〉 and |lh〉 → |lh〉. Another
feature is the strong oscillation of the SH-BP for transverse
modes with respect to the L phonons. The T2 vibrations couple
the cylindrical function of second order, while for the L modes,
SH-BP is proportional to the Bessel function J0. In addition, a
useful result can be extracted from Fig. 7, that is, we can
obtain the minimum value of rc/rs where the hole-phonon
Hamiltonian for core/shell NWs can be considered as a pure Ge
wire. Notice that this result depends on the type of interaction;
for L modes, rc/rs � 0.6 and for T2 modes, rc/rs � 0.8.

V. CONCLUSION

In summary, we have studied the acoustical phonon dis-
persions, the phonon displacement vectors and the electron-
and hole-acoustical phonon Hamiltonians in core/shell Ge/Si
and Si/Ge NWs. Our results show the influence of the core
radius and shell thickness of Si-Ge based nanowires on the
phonon frequencies and electron-phonon and hole-phonon
interaction Hamiltonians. Due to the presence of the shell,
the phonon frequencies exhibit oscillations as a function of
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the ratio rc/rs leading to a strong influence on the interaction
Hamiltonians and scattering amplitudes. The gapless phonons
have a tuned renormalized group sound velocities in terms of
the geometrical factor rc/rs . Also, it is shown that scattering
amplitudes for the conduction and valence bands can be
handled by the shell thickness. The obtained results can be
viewed as a basic tool for exploration of electron and hole
transport phenomena and Brillouin light scattering, as well
as for device applications of these one-dimensional Ge/Si and
Si/Ge core/shell nanostructures. The systematic derivation and
explicit, relatively simple, solutions of the electron and Bir-
Pikus hole deformation potential Hamiltonians, incorporating
the characteristics of the phonon modes for the wave number
kz = 0, present straight applications to the resonant Raman
scattering processes in core/shell NWs. Thus, searching at
different light scattering configurations of the Brillouin and
Raman processes, it is possible to study the dependence of the
L and T2 phonon modes on the spatial confinement and the
intrinsic stress at the interface.
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APPENDIX A: STRESS TENSOR

For Ge and Si semiconductors with diamond structure, the
relation between stress and strain, σ = C · ε, in cylindrical
coordinates, r = (r,θ,z) can be written as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σrr

σθθ

σzz

σrθ

σrz

σθz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

εrr

εθθ

εzz

2εrθ

2εrz

2εθz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A1)
where the Cij are the elastic stiffness coefficients and the
components of the strain tensor in terms of the phonon
displacement vector u = (ur,uθ ,uz) are given by

εrr = ∂ur

∂r
; εθθ = 1

r

(
∂uθ

∂θ
+ ur

)
;

εzz = ∂uz

∂z
, εrθ = 1

2

(
1

r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r

)
; (A2)

εθz = 1

2

(
∂uθ

∂z
+ 1

r

∂uz

∂θ

)
; εrz = 1

2

(
∂ur

∂z
+ ∂uz

∂r

)
.
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FIG. 8. T2 phonon frequencies as a function of the phonon wave
vector kz for n = 0. Solid lines correspond to the isotropic model.
Red dashed lines represent the calculations as given by Eq. (A4)
along [110] direction including the anisotropy effect.

Considering isotropic bulk materials the acoustic phonon
branches at � point are degenerate and we have that C11 = ρv2

L
,

C44 = ρv2
T
, and C12 = ρv2

L
− 2ρv2

T
with v

T
(v

L
) the transverse

(longitudinal) sound velocity. Accordingly the stress tensor is
reduced to

σ = ρ
(
v2

L
− 2v2

T

)
(∇ · u)I + 2ρv2

T
(∇u), (A3)

where I is the identity matrix. In general, the vibrational modes
are anisotropic along different crystallographic directions. To
carry out the effect of anisotropy, we must modify the isotropic
continuum model (A3) including the complete form of the
stress tensor. We can write σ = σS + σ (1), where σS is given
by Eq. (A3) with v2

T
→ v2

T
= (v2

T1
+ v2

T2
)/2 and for σ (1), we

have

σ (1) = ρ�v2
T

⎛
⎜⎝

εθθ −εrθ −εrz

−εrθ εrr εθz

−εrz εθz εzz

⎞
⎟⎠ ,

and �v2
T

= v2
T1

− v2
T2

. Taking advantage of the fact that the

relation �v2
T
/v2

T
= 0.23 and 0.24 for Si and Ge, respectively,

we can consider the tensor σ (1) as small perturbation relative
to σS . Following the procedure developed in Refs. [44,59], we
obtain the frequencies of the modes including the anisotropy
as ω2 = ω2

S + �ω2, where

�ω2 = 〈uS |P̂ |uS〉
〈|uS |2〉 . (A4)

Here, ωS and uS represent the eigenfrequency and eigenvector
solution of Eq. (5) and the operator P̂ being defined as

P̂ = ρ�v2
T

⎛
⎜⎜⎝

k2
z + n2

r2
in
r
p̂+

r −ikz∂r

in
r
p̂−

r −p̂+
r ∂r + 1

r2 − k2
z − nkz

r

ikzp̂
+
r − nkz

r
−p̂+

r ∂r − n2

r2 − 2k2
z

⎞
⎟⎟⎠ , (A5)
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with p̂±
r = ∂r ± 1

r
. Using Eq. (A4), we obtain for the modes

along [110] direction with n = 0 and kz = 0 that the anisotropy
does not affect the longitudinal modes L and �ω

L
= 0, while

for the transversal T1 and T2 modes, ω
T1 ,T2

= 1.1ωS(T1,T2) are
shifted 10% in comparison to the isotropic case for both Ge/Si
and Si/Ge NWs. Figure 8 displays the effect of the anisotropy
on the decoupled T2 (n = 0) phonon spectrum for Si/Ge and
Ge/Si NWs. The solid lines represent the calculation assuming
the isotropic model while the anisotropic case is shown by red
dashed lines. In both NWs, we observe a upshift, less than
10%, from the T2 frequency modes with the correction (A4).
Similar calculations can be performed for any crystallographic
direction and phonon modes.

APPENDIX B: ELECTRON WAVE FUNCTION

In the framework of the envelope function approximation,
the electron wave function |�αe

〉 in cylindrical symmetry can
be written as

〈r|�αe
〉 = 1√

2Vc

Fm(r)ei(mθ+kez), (B1)

where Vc = πr2
c L0 is the core volume, L0 is the normalization

length, mh̄ (m = 0,1,2, . . .), and ke are the z component of the
angular momentum and electron wave number, respectively,
and Fm(r) the radial wave function. Considering bound states,
we are in presence of two cases [6,11].

(a) Si/Ge NW, where the states are confined in the core.
Hence it is possible to show that

Fm(r) =
{

A(1)
m Jm(pcr); 0 � r � rc

A(2)
m Q−

m,m(|ps | r); rc � r � rs

, (B2)

with

Q±
m,n(x) = Im(x)Kn(γ x) ± In(γ x)Km(x),

A(1)
m = 1

2

√
Q+

m+1,m(|p̃s |)Q+
m−1,m(|p̃s |)

√
Jm+1(p̃c)Jm−1(p̃c)

p̃s

p̃c

Wm(|p̃s |),

(B3)

A(2)
m = 1

2
Wm(|p̃s |), (B4)

and

Wm(p̃s) =
[
Q−

m+1,m(|p̃s |)Q−
m−1,m(|p̃s |)

− γ 2Q−
m+1,m(γ |p̃s |)Q−

m−1,m(γ |p̃s |)

+Q+
m+1,m(|p̃s |)Q+

m−1,m(|p̃s |) |p̃s |2
p̃2

c

]− 1
2

. (B5)

(b) In the case of For Ge/Si core/shell, the electronic states
are localized in the shell and the above equations are reduced
to

Fm(r) =
{

A(1)
m Im(|pc| r) ; 0 � r � rc

A(2)
m Pm,m(psr) ; rc � r � rs

, (B6)

with the coefficients A(i)
m (i = 1,2) equal to

A(1)
m = 1

2

1√
Im+1(|p̃c|)Im−1(|p̃c|)

Rm(p̃s), (B7)

A(2)
m = 1

2

1√
Pm+1,m(p̃s)Pm−1,m(p̃s)

|p̃c|
p̃s

Rm(p̃s), (B8)

and

Rm(p̃s)

=
[
1 − |p̃c|2

p̃2
s

(
1 − 4

π2p̃2
s

1

Pm+1,m(p̃s)Pm−1,m(p̃s)

)]− 1
2

.

As stated above, c(s) labels the core (shell) semiconductor
and pc(ps) is related to the electron energy by the equation

Ee = �E(c,s)
g + h̄2p2

c,s

2m
(c,s)
t

+ h̄2k2
e

2m
(c,s)
l

, (B9)

with p̃c(p̃s) = pcrc(psrc) and ml (mt ) the longitudinal (trans-
verse) conduction electron mass at � point of the Brillouin
zone [60]. In Eq. (B9), Ee = E(c,s)

g − Estrained takes into
account the gap energy correction due to the intrinsic strain at
the interface [61,62] and �E(c,s)

g is the band offset between the
core and shell measured from the bottom of the band. For NWs
along [110] growth direction, the band gap �E(c,s)

g � 300 meV
[11]. In our calculations we have assumed �E(c,s)

g independent
of γ . There is a third option, not considered here, where both,
pc and ps are real, and the radial wave function Fm(r) presents
an oscillatory behavior in both the core and shell parts, which
correspond to higher excited states of the core/shell NWs.

APPENDIX C: HOLE WAVE FUNCTION

For a description of the hole states in the valence band, we
consider the LK Hamiltonian model neglecting the coupling
from the split-off band. This Hamiltonian provides a good
description for heavy-hole and light-hole states and the
coupling between them due to �15v degeneracy of valence
bands at � point. Along the [110] direction and assuming
the axial approximation, γ2 � γ3, the 4 × 4 Hamiltonian can
be written as [57,63,64]

HLK = h̄2

m0

⎛
⎜⎜⎜⎝

Dhh A− B− 0

A∗
− Dlh 0 B−

B∗
− 0 Dlh A∗

+
0 B∗

− A+ Dhh

⎞
⎟⎟⎟⎠ , (C1)

where

Dhh = − (γ1 + γs)

2
{k̂+,k̂−} − (γ1 − 2γs)

2
k̂2
h,

Dlh = − (γ1 − γs)

2
{k̂+,k̂−} − (γ1 + 2γs)

2
k̂2
h, (C2)

A± = ∓
√

3γ̂ k̂±k̂h; B± = −
√

3

2
γt k̂

2
±,

γ̂ = (γ2 + γ3)/2, γs = (γ2 + 3γ3)/4, γt = (3γ2 + 5γ3)/8, γ1,
γ2, and γ3 are the Luttinger parameters. The total Hamiltonian
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for the valence band can be cast as H = HLK + V (r) with V (r)
the NWs confinement potential. The wave function 〈r|�αe

〉, as
given by Eq. (B1), represents a basis for the effective 4 × 4
LK Hamiltonian. Since the Bloch states, |hh+〉, |lh+〉, |lh−〉,
and |hh−〉 are mixed by the effects of the cylindrical symmetry
and the non-zero matrix elements A± and B± in Eq. (C2), we
can write the general solution of the wave function 〈r|�αh

〉
with a special sequence of the angular quantum number m

for each hole state. Thus, by exploring the symmetry of the
Hamiltonian (C1), the exact wave function for the hole state
〈r|�αh

〉 can be written as

〈
r
∣∣�(i)

αh

〉 = bF
(i)
m (r)ei(mθ+khz)

=

⎛
⎜⎜⎜⎜⎝

a1iFm(phhr)|hh+〉
a2iFm+1(phlr)eiθ |lh+〉
a3iFm+2(phlr)e2iθ |lh−〉
a4iFm+3(phhr)e3iθ |hh−〉

⎞
⎟⎟⎟⎟⎠ ei(mθ+khz), (C3)

where p
hh(lh) is related to the heavy (light) hole energy by the

expression

Ehh(lh) = −�E(c,s)
g − h̄2

2mhh(lh)

(
p2

hh(lh) + k2
h

)
, (C4)

and mhh(lh) = 1/(γ1 − (+)2γs). As in the case of the conduc-
tion band in Ehh(lh), we consider the band gap correction.

The vector coefficients ai |i〉 (i = hh+,lh+,lh−,hh−) in (C3)
are [65]

a†hh+ = ahh+

(
− 1√

3

(
1 + 4k2

h

p2
hh

)
,−2kh

phh

,1,0

)
,

a†lh+ = alh+

(
−

√
3,−2kh

plh

,1,0

)
,

a†lh− = alh−

(
−2kh

plh

,
1√
3

(
1 + 4k2

h

p2
lh

)
,0,1

)
,

a†hh− = ahh−

(
−2kh

phh

,−
√

3,0,1

)
,

where the wight coefficients ahh+ , alh+ , alh− , and ahh− give a
measure of the mixtures of Bloch states |i〉 = |hh+〉, |lh+〉,
|lh−〉, and |hh−〉. Imposing continuity of the wave function
〈r|�(i)

αh
〉 and its derivative at the core/shell interface r = rc and

choosing the boundary condition 〈r|�(i)
αh

〉 |r=rs
= 0, we find

the normalized eigensolutions and eigenenergies for the hole
states.

In the case of Ge/Si core/shell NWs, the hole are mostly
confined in the core and the valence band offset is of the
order 0.5 eV [6,11,66]. Thus, in the limit of strong spatial
confinement, we can assume a hard wall potential and the
holes are completely confined in the core. In the evaluation of
the hole energy and wave function, we employed for Si[Ge]
the values γ1 = 4.22[13.4], γ2 = 0.39[4.24], γ3 = 1.44[5.69],
a(�15v) = −5.0[−5.2] eV, and b(�8v) = −2.3[−2.4] eV [53].
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