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Anomalous optical diffraction by a phase grating induced by a local field effect
in semiconductor quantum dots
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We demonstrate the use of laser-induced phase gratings to control the emission characteristics of self-assembled
semiconductor quantum dots. The microscopic Coulomb interaction between the photoinduced charge densities
in a dot, referred to as the local field effect, affects the macroscopic optical properties of a dot ensemble
even with inhomogeneous broadening, and forms a phase grating by spatially modulating the exciton resonant
frequency. In the low excitation regime, the diffracted light intensity (observed using photon echoes) gradually
rose with time delay—a result very different from the conventional instantaneous response to pulse excitation.
With increasing excitation intensity, the response of the diffracted signal became more immediate and exhibited
a biexponential decay. The change in the temporal profile can be systematically explained by analyzing the
dynamics of the phase grating. Our findings suggest an optical switching mechanism using this intrinsic property
of semiconductor quantum dots.
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I. INTRODUCTION

A grating with a spatially periodic structure diffracts light
into different propagation directions. There are two kinds of
gratings: amplitude gratings and phase gratings. An amplitude
grating realizes light diffraction by periodically modulating
the amplitude of light passing through or reflected by the
grating [1]. On the other hand, a phase grating (such as a
surface relief grating) imprints a spatially periodic phase shift
onto a light field [1]. Therefore a phase grating can diffract
light into various directions. The diffracted light intensity
depends on the phase contrast [1]. When two laser pulses with
different wave vectors are applied to a material, the refractive
index and the absorption coefficient are spatially periodically
modulated, forming a grating, referred to as a laser-induced
grating [2–4]. The diffracted light is usually observed as
transient grating signals [5–8], photon echoes [9–15], and
four-wave-mixing signals [8,16–20]. As illustrated in Fig. 1(a),
in the case of an ensemble of electronic states, such as
two-level systems, the coherent interaction of the polarization
excited by the first pulse with wave vector k1 and the light
field of the second pulse with k2 spatially modulates the
population difference ρD = ρee − ρgg between the excited
state ρee and the ground state ρgg , inducing a population
grating ρD ∝ cos(k2 − k1) · x [4,11], as shown in Fig. 1(c). In
the framework of nonlinear optics [11], the optical diffraction
at resonance by the population grating is described by the
electric field caused by the nonlinear polarization, which is
generated by the interaction between the light incident on
the population grating and ρD . Therefore the electric field
has the same spatial distribution as the population grating.
In this sense, the population grating behaves as an amplitude
grating [7]. In semiconductor quantum dots (QDs), electronic
states, i.e., excitons, lead to an additional effect, because
anisotropically shaped QDs show exciton doublet fine struc-
ture in their photo-luminescence spectrum [21], demonstrating
that the electron-hole exchange interaction inside the single
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excitons renormalizes the exciton resonance itself [22,23].
The exchange interaction is a Coulomb interaction between
photoinduced charge densities [22–26], which are connected
with the polarization densities, as ρ(r) = −∇ · p(r). In a QD,
as illustrated in Fig. 1(a), the microscopic charge densities spa-
tially distributed in the single exciton interact with each other.
In other words, the local field generated by ρ(r) interacts with
p(r ′), which composes the excitonic polarization. Therefore
the Coulomb interaction in the single exciton dynamically
shifts the resonant frequency ωr of the exciton itself with a
change in the polarization. This is known as a local field effect
(LFE) occurring within QDs [15,27–30]. According to the LFE
theory [28,29], the shift of ωr simply depends on the exciton
population difference ρD . Therefore, as shown in Fig. 1(c),
the population grating spatially periodically modulates the
resonant frequency ωr ∝ cos(k2 − k1) · x, indicating that the
time-evolution of the modulated frequency induces a phase
grating. The phase contrast m is proportional to time t , as
m ∝ ωrt ; the relationship is the same as that in frequency
modulation and phase modulation. Therefore the propagation
direction and the light intensity diffracted by the phase grating
are expected to vary anomalously with time. Anomalous light
diffraction in localized exciton systems in a single quantum
well has been reported as an experimental signature of local
fields [13]. However, in well-defined conventional QDs, such
anomalous diffraction has not yet been observed. In addition,
the dynamic phase grating induced by the resonant frequency
shift of electronic states has never been discussed before.

In this paper, we report the observation of a laser-induced
dynamic phase grating in self-assembled QDs. We observed
the light diffraction as a two-pulse photon echo (PE) response,
which showed strong dependence on the excitation intensity.
The diffraction by the phase grating induced by the LFE
is discussed using simple calculations, which reproduce the
observations quantitatively, as well as qualitatively. Both the
observations and the calculations indicate that the dominant
grating for the diffraction shifts from the phase to the
population grating with increasing excitation intensity. We also
analyze the higher-order PE signal originating from the phase
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FIG. 1. (a) Illustration of the grating induced by the two-laser-
pulse excitation and the diffraction of the second pulse as a PE signal
along 2k2 − k1 in the reflection geometry. (b) Schematic drawing of
the Coulomb interaction of the photoinduced charge densities in a
single exciton in a QD. (c) Illustration of a population grating for
homogeneous QD systems with the same resonant frequency and a
change in ωr induced by the LFE before (dashed line) and after (solid
line) the excitation.

grating. Our experimental findings and simple calculations
demonstrate novel optical coherent transients based on QDs,
and indicate that the microscopic Coulomb interaction in a
QD strongly affects the macroscopic optical property of the
QD ensemble even with inhomogeneous broadening.

II. SAMPLE AND EXPERIMENTAL METHODS

The sample used in this work was a single layer of
self-assembled QDs fabricated by molecular beam epitaxy
on a GaAs (311)B substrate. After the 360-nm growth of
Al0.17Ga0.83As as a buffer layer, In0.4Al0.1Ga0.5As QDs were
grown by the Stranski-Krastanov growth mode, and then a
200-nm Al0.17Ga0.83As layer was grown as a capped layer.
The QDs had a dome shape and their density was ∼1.1 × 1010

cm−2. The photoluminescence (PL) peak at 3.5 K was located
at 1.565 eV, and the inhomogeneous broadening arising
from the size distribution was ∼40 meV. A more detailed
characterization can be found in Ref. [15].

The experiment was carried out by means of a two-pulse
PE technique. The light source was a mode-locked Ti:Sapphire
laser with a repetition rate of 76 MHz. The temporal duration
and spectral width of the laser pulses were ∼1.4 ps and
∼0.5 meV, respectively. The center photon energy was set
to the PL peak at 1.565 eV. The laser pulses were divided into
two beams, which were parallel linear-polarized and focused
on the same spot on the sample. The beam spot had a Gaussian
profile with a full width at the half maximum of ∼65 μm.
The PE signal along 2k2 − k1 in the reflection geometry, as
illustrated in Fig. 1(a), was fed into a monochromator. The
PE intensity was recorded as a function of the time delay τ

between the first and second pulses.

III. RESULTS AND DISCUSSION

Figure 2(a) shows the PE intensity detected as a function
of τ for the various intensities of the first pulse I1 = I0, 3I0,

FIG. 2. (a) PE intensity detected as a function of τ for various I1

when I2 = 360I0, where I0 ∼ 8 nJ cm−2 per pulse. (b) Calculated PE
intensity as a function of τ when θ2 = 0.8π .

40I0, and 360I0, when the second pulse intensity I2 was set
to I2 = 360I0, where I0 ∼ 8 nJ/cm2/pulse. In all scans, a
large peak at zero time delay was observed. We attribute the
large peak to the GaAs substrate because the carriers in bulk
crystals show a fast dephasing time [12]. In the I1 = I0 scan
in Fig. 2(a), the PE intensity rose until τ ∼ 600 ps, and then
began to decay exponentially. With increasing I1, the peak
position moved toward zero time delay. At the highest I1,
the temporal profile showed an instantaneous response to the
excitation, followed by a biexponential decay. The decay time
constant of the signal in the longer τ regime was slightly
shorter with increasing I1. In the weak excitation regime,
the decay time was estimated to be ∼750 ps, while it was
∼650 ps for higher I1. These two values indicated that the
dephasing time T2 could be evaluated to be T2 = 2.6 ∼ 3.0 ns
in our excitation range. We estimated the relation between I1

and the corresponding pulse area θ1 using the Rabi oscillations
in our previous report [15], which has used the same sample
and experimental setup. The excitation intensities I1 = I0, 3I0,
40I0, and 360I0 could be calibrated to be θ1 ∼ 0.04π , 0.07π ,
0.26π , and 0.8π at the center of the beam spot, respectively,
and the pulse area of the second pulse could be estimated as
θ2 ∼ 0.8π .

As alluded to before, the observed PE response exhibits
a unique dependence on τ . In the framework of LFE
theory [28,29], the Coulomb effect in a QD takes part in
the optical nonlinearity by shifting the exciton resonance
ωr = ω0 − �ωρD , where ω0 denotes the resonant frequency
without LFE, and �ω represents the depolarization shift,
which is given by �ω = Nxμ

2/h̄εhV using the dipole moment
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μ, the volume V , the depolarization tensor Nx of a QD, and
the dielectric constant of the host material εh [27–29]. The
subscript x in Nx represents the polarization direction.

First, we discuss the experimental results using a pertur-
bative treatment, which successfully explains the role of the
phase grating induced by the LFE in the PE response for
small θ1, although we used large θ2 in our experiment. For
high excitations, we use numerical calculations as will be
discussed later. We start with homogeneous QD systems by
assuming that QDs are spatially distributed with uniformity
and that ρD(t < 0) = −1, i.e., the exciton in each QD has
the same resonant frequency ωt<0

r = ω0 + �ω before the
excitation by the first pulse at t = 0. The population grating
induced by the two-pulse excitation can be written by ρD(t >

τ ) = θ1θ2 cos ϕ − 1 in the low excitation regime [11]. ϕ

indicates the phase difference between the two incident pulses
ϕ = (k2 − k1) · x + δωτ , where x and δω denote the location
of a QD and a detuning term δω = ωr − ωL using the laser
frequency ωL, respectively. The resonant frequency after the
second pulse changes to ωt>τ

r = ω0 + �ω − �ωθ1θ2 cos ϕ.
Therefore the LFE gives a spatially periodic frequency shift to
the exciton resonance through the population grating.

When we view the oscillations e−iωt>τ
r (t−τ ) from the rotating

frame of ωt<0
r = ω0 + �ω, the time-evolution of the frequency

modulation forms a phase grating as φg = −�ωθ1θ2 cos ϕ ×
(t − τ ). Supposing that the PE signal appears at t = 2τ ,
the phase contrast is proportional to τ . Therefore, as shown
in Fig. 3, the low phase contrast at τ ∼ 0 creates small
amplitude oscillations with a period � = 2π/ | k2 − k1 | in
the imaginary part of the phase factor Im(e−iφg ), which gives
extremely small diffraction efficiency. Then, the amplitude
of Im(e−iφg ) gradually increases with τ , which enhances the
diffraction efficiency leading to a rise in the diffracted signal.
When the contrast is close to ∼π , the oscillations with a period
� in Im(e−iφg ) attain their maximum amplitude, which realizes
maximum diffraction of the second pulse into 2k2 − k1. On
the other hand, the real part begins to oscillate with a period
�/2, which diffracts into 3k2 − 2k1. A further increase in
the contrast decreases the component with a period �, while
giving an increase in the oscillations with real and imaginary

FIG. 3. (Left) Illustration of the phase grating φg induced by the
LFE at t = 2τ . (Right) The real and imaginary parts of the phase
factor e−iφg .

spatial periods of �/2 and �/3, respectively. Therefore the
phase grating changes the diffraction direction of the second
pulse as a function of τ .

The above qualitative analyses can be theoretically de-
scribed using the Jacobi-Anger expansion as

e−iφg =
∑

n

inJn(�ωθ1θ2(t − τ )) einϕ, (1)

where Jn represents the Bessel function of the first kind. Using
perturbation theory [11], the nonlinear polarization for the
diffraction in the rotating frame can be written as

PNL ∝ ρD(t > τ ) θ2eik2·x−iφg . (2)

Therefore the diffraction efficiency along (n + 1)k2 − nk1 is
given by Jn, which depends on time.

Let us focus on the diffraction along 2k2 − k1. When
we use arbitrary pulse areas for the excitation, ρD(t > τ ) in
Eq. (2) can be rewritten by ρD(t > τ ) = sin θ1 sin θ2 cos ϕ −
cos θ1 cos θ2. Therefore there are two components to the signal.
One is the signal directly diffracted by the population grating,
which corresponds to the diffraction by an amplitude grating
and yields a conventional PE signal. The signal field amplitude
is proportional to the contrast of the population grating, i.e.,
sin θ1 sin θ2. The other is generated by the first-order diffraction
given by the phase grating. For the phase grating, the signal
field depends on the spatial mean value of the population
〈ρD(t > τ )〉 in the population grating because the phase
grating signal is generated by the term independent of the wave
vector in ρD(t > τ ), i.e., − cos θ1 cos θ2, which corresponds to
〈ρD(t > τ )〉.

We can find the PE signal at t = 2τ as a δ-function-like
signal by integrating over the linewidth of the inhomogeneous
broadening, which is assumed to be infinity for simplicity. The
signal intensity is calculated as

IPE ∝ ∣∣iθ1θ
2
2 J0(�ωθ1θ2τ ) − θ2J1(�ωθ1θ2τ )

∣∣2
. (3)

The first term represents the diffraction by the population
grating and the second term results from the phase grating.
Because small θ1 gives J0 → 1 and J1 → �ωθ1θ2τ/2, the
dominant signal arises from the phase grating, when �ωτ 	
1. Thus the phase grating induced by the LFE is the cause of the
signal at short times τ . At longer τ , the PE response is affected
by a dephasing process, which shows an exponential decay.
When θ1 is increased, the rise time is faster, which moves the
signal peak to shorter τ . We note here that the phase grating
induced by the LFE is important for the optical response even
in the third-order optical nonlinearity, when the dephasing rate
is negligibly smaller than �ω. On the other hand, for the larger
dephasing rate, the phase grating is masked by the linewidth.
Therefore the resonant frequency shift can be neglected in
the nonlinear optical response, as can be seen in quantum
wells [18,19,31,32] and dense two-level systems [20,32].

For large θ1, we calculated the PE response using the Bloch
equation for the LFE [28] by a nonperturbative treatment.
Figure 2(b) shows the calculated PE response along 2k2 − k1

for various θ1 when θ2 = 0.8π and h̄�ω = 22 μeV. The
amount of h̄�ω has been obtained in our previous report [15].
In the calculation, we assumed a δ-function-like pulse for
the excitation, which gives the condition μEi(t)/h̄ 	 δω,�ω,
where Ei(t) is field amplitude of the i-th pulse. With this
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assumption, we could analytically calculate the polarization
along 2k2 − k1 in presence of the LFE, when the arbitrary
pulse areas were used for the excitations. We introduced
the effects of T2 = 2.8 ns, which is the mean value of T2

in our excitation range, and the lifetime T1 = 2.0 ns [15]
by adding damping terms to the Bloch equation. In our
measurement, the monochromator with a narrow entrance
slit spatially extracted the approximately one-dimensional
component from the focused image of the signal on the slit.
Therefore we numerically integrated the PE intensity over
the one-dimensional component of the signal image when the
excitation beam spot had a Gaussian profile, which modifies a
coherent optical response of QDs [14]. θ1 and θ2 in Fig. 2(b)
represent the pulse areas of the first and second pulses at the
center of the excitation beam spot, respectively.

The calculated curves, as a whole, reproduce the change
in the experimental profile using the experimentally estimated
values of θ1,2. Therefore the calculations agree well quantita-
tively, as well as qualitatively. In the perturbative treatment,
the temporal profile is described by J1,2(�ωθ1θ2τ ). Therefore
large θ1,2 shorten the oscillation period of J1,2, implying that
the temporal profile has the form of a damped oscillation.
However, a Gaussian beam profile gives the oscillations of
J1,2 different periods depending on the location of the QD in
the beam spot. Thus the summation of curves with different
periods over the signal image greatly reduces the visibility of
the oscillations in the temporal profile. In addition, at longer
τ , the population grating decays with the energy relaxation,
which decreases the phase contrast, i.e., φg → 0. Therefore the
optical response of the QDs is close to that of two-level systems
with increasing τ , which also contributes to the reduction in
the visibility and gives an exponential decay reflecting the
dephasing process.

With increasing θ1, the contrast of the population grating
is higher, while 〈ρD(t > τ )〉 → 0. Therefore the population
grating dominantly diffracts the second pulse, which generates
the PE signal immediately after the excitation. However, the
phase grating induced by the LFE takes part in the diffraction
by the population grating as the diffraction efficiency of J0,
which can be seen in Eq. (3). The highest I1 in the experiment
gives an extremely short oscillation period to J0, which makes
the slope of the beginning of the oscillations much steeper
than that of the exponential decay caused by the dephasing
process. Therefore the PE intensity rapidly deceases during
an initial transient period of length ∼500 ps, after which it
settles into a slower exponential decay, resulting in the overall
biexponential decay profile seen in the high excitation regime.

In Fig. 2(b), the calculated curve for θ1 = 0.26π shows
small oscillations, which originate from the oscillations of
J0,1 imperfectly-eliminated by the beam profile. We infer that
the calculated curve would be more suitably reproduced by in-
troducing a distribution of �ω, which reduces the visibility by
dispersing the oscillation periods. However, we speculate that
the distribution is not trivial, because �ω depends on μ, V , and
Nx [27–29]. Therefore we expect that a detailed analysis of the
distribution and an advanced theoretical treatment are needed
for a more accurate reproduction. Nevertheless, the qualitative
agreement with the observations and our simple calculations
indicates that the observed change in the PE response can be
attributed to the phase grating induced by the LFE.

Next, we discuss the higher-order PE signal along
(n + 1)k2 − nk1. Equation (1) indicates that the phase grating
gives the nth-order phase difference nδωτ arising from the
detuning, together with n(k2 − k1). Therefore the nth-order
signal can be found at t = (n + 1)τ by integrating over the
inhomogeneous broadening. In addition, Eqs. (1) and (2)
indicate that the higher-order signal does not contain a J0

component. Thus the temporal profile is expected to show a
rise in the signal following the excitation even under high
excitations. A change in the rise time depending on the
excitation intensity is, therefore, to be expected.

We briefly mention the spectrum measurement of the
exciton resonant frequency shift induced by the LFE using
single-dot spectroscopies. Experiments using a continuous
wave (CW) laser generally give a high-resolution spectrum.
In the LFE, the high excitation in resonance with the exciton
effectively increases ρD , and significantly shifts the resonance.
However, the high optical field generated by a CW laser gives
rise to a stationary dressed state, which dominates the spectrum
shape [33–35]. Therefore it is better to use transient techniques
for measuring the spectrum after pump irradiation at high pow-
ers, because the transient method is solely affected by the LFE.
In addition, �ω is proportional to Nx . The tightly-localized
isotropic wave functions of the excitons, like in spherical QDs,
produce a large value of Nx [29]. On the other hand, disklike
QDs give Nx ∼ 0 for the in-plane polarization direction
parallel to the sample surface [27], yielding no resonance shift,
and Nx ∼ 1 for the direction normal to the surface [27]. Cavity
systems are not suitable because the radiative line-broadening
prevents the observation of the small resonance shift.

Finally, our findings here provide a novel scheme for
optical switching devices using an intrinsic property of
QDs. The phase grating induced by the LFE, as discussed
above, dynamically diffracts light into various directions,
suggesting that the propagation direction of a light field can
be manipulated by actively controlling the phase contrast. We
expect that such a device will be realized using techniques
of coherent manipulation for quantum states, such as Rabi
oscillations [13–15,36–38] and phase-locked pulse pairs [38–
40], which can directly manipulate the population difference
shifting the exciton resonance frequency.

IV. CONCLUSION

In conclusion, we observed an anomalous PE response
in the InAlGaAs/AlGaAs QDs. The temporal profile of the
PE signal strongly depended on the excitation intensity.
The change in the temporal profile could be systematically
explained by analyzing the phase grating induced by the
LFE. The microscopic Coulomb interaction in a QD strongly
affects the macroscopic optical property of a QD ensemble
even with inhomogeneous broadening. We also discussed
the higher-order PE signal diffracted by the phase grating.
Our findings are important for further development of optical
devices based on QDs.
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