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Lattice thermal conductivity evaluated using elastic properties
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Lattice thermal conductivity is one of the most important thermoelectric parameters in determining the
energy conversion efficiency of thermoelectric materials. However, the lattice thermal conductivity evaluation
requires time-consuming first-principles (quasi)phonon calculations, which limits seeking high-performance
thermoelectric materials through high-throughput computations. Here, we establish a methodology to determine
the Debye temperature �, Grüneisen parameter γ , and lattice thermal conductivity κ using computationally
feasible elastic properties (the bulk and shear moduli). For 39 compounds with three different prototypes (the
cubic isotropic rocksalt and zinc blende, and the noncubic anisotropic wurtzite), the theoretically calculated
�, γ , and κ are in reasonable agreement with those determined using (quasi)harmonic phonon calculations or
experimental measurements. Our results show that the methodology is an efficient tool to predict the anharmonicity
and the lattice thermal conductivity.
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I. INTRODUCTION

Thermoelectric materials play many promising roles in
solving problems of energy and environment. They can directly
convert heat into electricity, and the conversion efficiency
is characterized by the thermoelectric figure of merit ZT =
S2σT/κ , where S is the Seebeck coefficient, σ is the electrical
conductivity, and κ is the thermal conductivity. κ includes
the electronic (κele) and lattice vibration (the dominating
part, κL) contributions. The lattice thermal conductivity κL

is, in principle, independent of the rest of the parameters
(S, σ , and κe) and can be easily tuned using different
methodologies. One of the methodologies to obtain the
low thermal conductivity is seeking materials with ordered
crystal structures exhibiting strong lattice anharmonicity [1],
such as AgSbTe2 [2], Cu3SbSe3 [3,4], Cu12Sb4Se13 [5], and
Cu12Sb4S13[6]. Recently, Zhao et al. [7] discovered that SnSe
has a maximum ZT of ∼2.6 at ∼900 K. The authors suggested
that the high thermoelectric figure of merit was attributed to
the extremely low lattice thermal conductivity of the SnSe
crystals due to strong anharmonicity. Thus, understanding and
evaluating the lattice thermal conductivity are important to
seeking high-performance thermoelectric materials.

The current lattice thermal conductivity evaluations involve
the first-principles phonon calculations, such as the full
iterative solution to the phonon Boltzmann transport equation
[8] (ShengBTE [9]) or the first-principles Debye-Callaway
model combination with the relaxation-time approximation
[4,10,11]. In previous studies of Cu3SbSe3 [4] and SnSe
[1,7,12], the authors suggested that the strong lattice anhar-
monicity results from weak interatomic interactions, i.e., the
weak Sb-Se and Sn-Se bonds in Cu3SbSe3 and SnSe, respec-
tively. The weak interatomic interactions usually indicate that
the crystal structure can be easily deformed under mechanical
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stress, resulting in the soft lattice or weak elastic properties.
Zeier et al. roughly suggested the slow sound speed reflecting
the low thermal conductivity [13]. Clarke [14] has derived
a minimum thermal conductivity formula as a function of
Young’s modulus: the low thermal conductivity benefits from
the small Young’s modulus. The author applied the formula to
identify thermal barrier coating candidates for extremely high
temperature applications. However, this formula is not suitable
for understanding the lattice thermal conductivity at a specific
temperature.

Since acoustic modes play an important role in the heat
transfer in semiconductors [15], Slack [15,16] provided an
approach to express the lattice thermal conductivity (κL, or κ

for simplicity) at a temperature of the form

κL = A
Maδn

1/3�3

γ 2T
, (1)

where Ma , δ3, n, �, γ , and A are the average atomic
mass, the volume per atom, the number of atoms in the
primitive unit cell, the acoustic Debye temperature, the acous-
tic Grüneisen parameter, and A = 2.43×10−8

1− 0.514
γ

+ 0.228
γ 2

, respectively.

The formula has been widely used in the lattice thermal
conductivity evaluation [2,3,15,17,18]. The Debye tempera-
tures and Grüneisen parameters of acoustic branches can be
accurately determined using phonon dispersions either from
lattice dynamic calculations or experimental measurements
[15,17]. These acoustic parameters are denoted as �ω and γω.
The Grüneisen parameter γω represents the strength of lattice
anharmonicity of a compound. It requires the quasiharmonic
phonon calculations or the experimentally measured thermal
expansion coefficient. Without these, Xiao et al. [19] recently
used an efficient formula that is the function of the elastic
property, the Poisson ratio ν or the sound velocity, to estimate
the Grüneisen parameter, and it seems that the formula results
in reasonable Grüneisen parameters for four compounds (PbS,
PbSe, PbTe, and SnSe). However, we find that the formula is
not suitable for many other compounds (see below). Thus, it
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FIG. 1. Geometries of three prototype structures: rocksalt (RS),
zinc blende (ZB), and wurtzite (WZ), from left to right.

is still a big challenge to efficiently evaluate the Grüneisen
parameter (or the lattice anharmonicity) of a compound.

To avoid first-principles (quasi)harmonic phonon calcula-
tions, we develop a methodology to efficiently estimate the
Grüneisen parameter and lattice thermal conductivity based on
the first-principles-determined elastic properties (the speed of
sound, bulk modulus, and shear modulus). For 39 compounds
with three different prototype structures [rocksalt (RS), zinc
blende (ZB), and wurtzite (WZ); Fig. 1], they represent a
variable lattice thermal conductivity behavior, 0.4–350 W/mK
at 300 K from the experimental measurements [17]. These
well-studied data are good candidates to calibrate the results
from developed methodologies, such as the theoretically cal-
culated lattice thermal conductivity by solving the linearized
phonon Boltzmann equation [20] or using the Debye-Callaway
approach [17]. For the above compounds, our elastic-property-
estimated Grüneisen parameter, Debye temperature, and lattice
thermal conductivity are in reasonable agreement with those
using the lattice dynamic calculations and the experimental
measurements. Our work establishes a straightforward method
to estimate the Grüneisen parameter (or anharmonicity) of a
compound using computationally feasible elastic properties.

II. METHODOLOGY

We perform the first-principles calculations with density
function theory using the Vienna Ab initio Simulation Package
(VASP) [21]. The interactions between electrons are described
by the projector augmented-wave (PAW) method [22]. The
electronic exchange-correlation functional is accounted for
by the generalized gradient approximation of Perdew, Burke,
and Ernzerhof (GGA-PBE) [23]. The energy cutoff for the
plane-wave expansion is 500 eV. The Brillouin zones are
sampled by Monkhorst-Pack k-point meshes [24] for all
compounds with meshes chosen to give a constant density of k

points (30 Å
3
). The geometry is relaxed until the total energy

is less than 10−5 eV and the forces are below 0.01 eV/Å.
The elastic constants (C or cij ) are calculated from the
strain-stress relationship [25]: σs = C · ε, where σs,C, and ε

are the engineering stress vector, the stiffness matrix, and the
strain vectors, respectively. According to the Voigt-Reuss-Hill
(VRH) theory in a macroscopic system [26], the corresponding
elastic properties, such as the bulk modulus B and shear
modulus G, can be evaluated from the elastic constants. The
VRH approach is a useful methodology to calculate the elastic
modulus for cubic isotropic compounds, such as PbS, PbSe,
and PbTe [19]. Even for the anisotropic compounds (such as
MgO and CaF2), the elastic moduli calculated with the VRH

approach are still in good agreement with the experimental
measurements [27]. Anderson [28] suggested that the VRH
approximation is quite accurate after applying it to 200 crystals
of different classes. Therefore, we will use the approach to
calculate the elastic modulus.

The sound velocities of the longitude (vL) and shear (vS)
waves and the corresponding averaged velocity va can be
written as [28,29]

vL =
√

B + 4/3G

ρ
, vS =

√
G

ρ
,

va =
[

1

3

(
1

v3
L

+ 2

v3
S

)]− 1
3

, (2)

where ρ is the density of a compound. Additionally, the Debye
temperature �e can be expressed by using the sound velocity,

�e = h

kB

[
3m

4π

] 1
3

van
−1/3. (3)

Here, h, kB , and m are the Planck constant, Boltzmann
constant, and number of atoms per volume. The Debye
temperature calculated with the elastic properties characterizes
the total vibrational spectrum. (Details are given in the
Supplemental Material [30].) However, the lattice thermal
conductivity calculation needs the Debye temperature only
for acoustic branches. Thus, n−1/3 in Eq. (3) is used to
roughly separate the acoustic branches from the total vibration
spectrum [16,31]. Since we use the primitive cell to carry out
simulations, n is the number of atoms in the primitive cell.

III. ELASTIC PROPERTIES

For the 39 compounds with the RS, ZB, and WZ prototypes
considered in our work, 26 compounds have experimentally
measured elastic constants (see Table S1 in the Supplemental
Material). These compounds include the well-studied thermo-
electric materials: PbS, PbSe, PbTe, CdS, and CdSe. The corre-
sponding experimental elastic moduli (the bulk modulus B and
the shear modulus G) are estimated using the Voigt-Reuss-Hill
approximation. The theoretically calculated elastic properties
are in good agreement with the experimental measurements
(see Table S1 in the Supplemental Material). This confirms that
the theoretically calculated elastic properties are reasonable,
and we will use the same computational methodology for
the mechanical properties of compounds without experimental
measurements.

In order to catch the general trend between the elastic
property and the lattice thermal conductivity, the compounds
in Table S1 in the Supplemental Material involve not only
semiconductors but also some insulators (such as NaCl). We
notice that for the same prototype, the mechanical properties
(B and G) become smaller as the anion/cation radius becomes
larger (the anion/cation goes down in the periodic table along
a given column, e.g., BNaI < BNaBr < BNaCl and BPbTe <

BPbSe < BPbS, BRbCl < BKCl < BNaCl and BCdS < BZnS).
The larger the atomic radius is, the less electronegative
(electropositive) the cation (anion) becomes. The soft
mechanical properties with large radius are due to the strong
Coulomb potential screening, resulting in the weak interatomic
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binding. The atoms in such a system (such as PbTe) can easily
be deviated from their equilibrium positions with increasing
temperature, which could lead to intriguing properties, such
as the ferroelectric behavior in PbTe [32]. The weak atomic
bond suggests strong anharmonicity and low lattice thermal
conductivity, as discussed in Refs. [4,7,13], which is consistent
with the experimentally measured thermal conductivity
trend (see Table S2 in Supplemental Material): κNaI <

κNaBr < κNaCl, κPbTe < κPbSe < κPbS, κRbCl < κKCl � κNaCl,
and κCdS < κZnS.

IV. THERMAL PROPERTIES EVALUATED
USING ELASTIC PROPERTIES

From the above calculations, we could qualitatively es-
timate the trend of lattice thermal conductivity using the
elastic properties (B and G). However, to compare with the
experimentally measured thermal conductivity, we need to
quantitatively calculate the conductivity. To do so, we need
the acoustic Debye temperature and Grüneisen parameter to
calculate the lattice thermal conductivity [Eq. (1)]. As we
mentioned before, the (quasi)phonon calculations are required
to accurately estimate these thermal properties (� and γ ).
To release the computational burden, we alternatively use the
elastic properties to efficiently obtain � and γ . For the acoustic
Debye temperature, �e [Eq. (3)] is used to approximate the
accurate Debye temperature (such as the one determined using
the phonon density state, �ω).

A. Debye temperatures

The theoretically calculated Debye temperatures �e of
our 39 compounds with three prototype structures (RS,
ZB, and WZ) are in good agreement with the phonon-
determined Debye temperatures �ω (Fig. 2 and Table S2 in the
Supplemental Material). To further confirm the validation of
Eq. (3), we choose one experimentally and theoretically well
studied promising high-performance compound, SnSe [7],
with the Pnma space group; its theoretically calculated bulk

FIG. 2. Debye temperature determined by phonon density of
states �ω [15,17] versus the Debye temperatures determined by the
elastic property �e [Eq. (3)] for three prototype structures (RS: black
squares; ZB: red dots; WZ: blue stars). The gray line is the ideal case
of �ω = �e. Data are given in the Supplemental Material (Table S2).

and shear moduli are 24.1 and 13.9 GPa, respectively. The
corresponding averaged sound velocity [Eq. (2)] va = 1718
m/s, which is in good agreement with the phonon-calculated
1915 m/s (averaged velocities along all directions in the
Brillouin zone from Ref. [7]). The Debye temperature of
SnSe calculated using Eq. (3) is 84 K, which is in reasonable
agreement with that determined using the phonon calculations
(∼60 K).

B. Grüneisen parameters: γν

After treating the acoustic Debye temperature using the
elastic properties, we turn to the acoustic Grüneisen parameter,
or anharmonicity of a system. The sound velocity indicates the
strength of interatomic interactions: the weaker the interaction
is, the lower the sound velocity becomes, and the larger the
Grüneisen parameter might be. Thus, for simplicity, the sound
velocity presents a hint of anharmonicity strength (or the
magnitude of the Grüneisen parameter). From previous works,
the relationship between the Poisson ratio ν and the Grüneisen
parameter can be expressed as [33–36]

γν = 3

2

(
1 + ν

2 − 3ν

)
, ν = 1 − 2(vS/vL)2

2 − 2(vS/vL)2
. (4)

Obviously, the sound-velocity-determined Grüneisen method
is computationally more feasible than the quasiharmonic
phonon calculations. Xiao et al. [19] used the formula to
investigate the Grüneisen parameters γν of four compounds
(PbS, PbSe, PbTe, and SnSe) and found they are in good
agreement with the quasiharmonic phonon-calculated results
γω. However, an obvious shortcoming of using Eq. (4) to
determine the Grüneisen parameter is that it depends only
on the ratio of vS to vL (vS/vL) and cannot describe the
contributions from the absolute sound velocities (vS or vL). For
two compounds (A and B), if the sound velocity of compound
A is two times faster than that of compound B, compound
B in principle has a large Grüneisen parameter. However,
Eq. (4) results in the same unphysical Grüneisen parameter
for the two compounds due to the same ratio of vS to vL or the
Poisson ratio. Therefore, it is better to first check the suitability
of the equation [Eq. (4)] for other compounds with different
prototype structures (RS, ZB, and WZ; see Table S2 in the
Supplemental Material). These compounds have Grüneisen
parameters γω determined by the lattice dynamic (or phonon;
see Table S2 in the Supplemental Material). We notice that γω

of ZB and WZ are similar but clearly different from those of
RS. This results from the different local geometries of the three
prototypes (Fig. 1): There are six nearest neighbors (NN) in the
RS structure but four NN in the ZB and WZ structures. Since
the lattice dynamic property is dominated by the neighboring
atoms or the number of bonds, the anharmonicity or the
Grüneisen parameters of RS and ZB (or WZ) should be
different. The explanation provides a useful guideline to
roughly categorize the Grüneisen parameter according to the
local geometry.

We then plot the Poisson-ratio-determined Grüneisen pa-
rameter γν versus γω for compounds with RS, ZB, and
WZ structures [Fig. 3(a) and Table S2 in the Supplemental
Material]. We can see that all the data in Fig. 3(a) split
into two groups: One is for RS and the other is for ZB
and WZ. For the compounds with the RS structure, γν is

155206-3



TIANTIAN JIA, GANG CHEN, AND YONGSHENG ZHANG PHYSICAL REVIEW B 95, 155206 (2017)

FIG. 3. Grüneisen parameter determined (a) using the Poisson
ration γν [Eq. (4)] and (b) using the B/G change with volume
γe [Eq. (5)] for three prototype structures (RS, ZB, and WZ)
versus the Grüneisen parameter determined using the lattice dynamic
calculations γω. The gray region is the γe error bar (0.23). Data are
given in the Supplemental Material (Table S2).

in excellent agreement with γω. This explains the reasonable
Grüneisen parameters γν of PbS, PbSe, and PbTe presented in
Ref. [19] since these compounds belong to the RS structure.
However, for the other prototype structures (ZB and WZ),
the Poisson-ratio-determined Grüneisen parameters γν are far
above γω, indicating Eq. (4) is not a general method for all
compounds. This agrees with the conclusion of Belomestnykh
[35] that Eq. (4) is oversimplified to use to estimate the
Grüneisen parameters for all compounds. It is necessary to
establish a distinct methodology to efficiently and accurately
estimate the Grüneisen parameter.

C. Grüneisen parameters: γe

We have to return to the original Grüneisen parameter
definition. The Grüneisen parameter γi characterizes the
relationship between phonon frequency ωi and volume V

change and can be defined as [37]

γi = − V

ωi

∂ωi

∂V
. (5)

The phonon frequency ωi is proportional to the sound velocity
vi in the long-wave limit (or at the center of Brillouin zone):
ωi = viq, where q is the wave vector. Substituting ωi and the

longitude and shear sound velocities [Eq. (2)] into Eq. (5), we
can derive the equations for the longitude (γ e

L), shear (γ e
S ), and

averaged (γe) acoustic Grüneisen parameters:

γ e
L = −∂lnωL

∂lnV
= −∂vL|q|

∂lnV
= −1

2

V

B + 4G
3

∂
(
B + 4G

3

)
∂V

− 1

6
,

γ e
S = −∂lnωS

∂lnV
= −∂vS |q|

∂lnV
= −1

2

V

G

∂G

∂V
− 1

6
, (6)

γe =
√[(

γ e
L

)2 + 2
(
γ e

S

)2]/
3,

where ∂(|q|ρ1/2)
∂lnV

= 1
6 . Thus, from our derived acoustic

Grüneisen formula, γe characterizes the relationship between
the elastic properties (B and G) and volume V change. To
evaluate γe, we compress the volume of a system by 4% and
calculate the change in the elastic properties with volume. [In
Table S3 in the Supplemental Material, we choose different
volume changes (3%–6%) and find that the corresponding
Grüneisen parameter is just slightly different.]

From the theoretically calculated γe of all three prototype
compounds (RS, ZB, and WZ; Table S2 in Supplement
Material), the Grüneisen parameter γe determined from the
elastic properties (B and G) is in reasonable agreement
with the phonon-determined result [Fig. 3(b)]. This is unlike
the Poisson-ratio-determined Grüneisen parameter [γν in
Eq. (4)], which is suitable only for the RS structure [Fig. 3(a)].
For two compounds (PbS and GaN), their γe are different
from γω, which might be due to an optical-mode-influenced
B/G change with volume or a strong electron correlation
effect (such as in GaN). The evaluated error bar of γe

is γe = 1
N

∑N
i=1 |γ i

ω − γ i
e | = 0.23 [the gray region in

Fig. 3(b)]. The agreement between γe and γω is because B

and G correctly average the important acoustic branches
around the center of the Brillouin zone, and Eq. (6) captures
the important frequency change with volume. All compounds
of the three prototypes are based on high-symmetry lattices
(the cubic isotropic RS and ZB and the noncubic anisotropic
WZ). Without loss of generality, we further apply our
B/G-determined Grüneisen parameter method [Eq. (6)] to
the noncubic anisotropic layered SnSe compound, and the
calculated γe = 3.32 is consistent with the quasiharmonic
phonon-calculated value of 3.26. Particularly, the B/G

calculation is computationally cheaper than the quasiharmonic
approximation. Therefore, Eq. (6) can be used as an efficient
anharmonicity or Grüneisen parameter evaluation tool.

D. Lattice thermal conductivity

Inserting the acoustic Debye temperature �e and Grüneisen
parameter γe determined using the elastic properties (B and G)
into the lattice thermal conductivity formula performed using
the Slack model [Eq. (1)], we can calculate the lattice thermal
conductivity κe of all compounds with the three prototype
structures at T = 300 K (see Table S2 in the Supplemental
Material). From the experimental measurements [17], these
compounds exhibit a wide range of lattice thermal conductivity
behavior, 0.4–350 W/mK at 300 K. The experimentally mea-
sured thermal conductivity is the total conductivity, including
the lattice thermal conductivity and electronic thermal con-
ductivity. For the compounds we considered (semiconductors
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FIG. 4. Theoretically calculated lattice thermal conductivity κe

[Eq. (1)] using the elastic properties (B and G) versus the experimen-
tal measurement κexp. The error bars on some points are considering
the experimental measurement uncertainty. Data are given in the
Supplemental Material (Table S2). The logarithmic scale is used to
clearly represent the plot.

and insulators all having low carrier densities), the electronic
contribution is so small that it can be ignored. Therefore, it
is reasonable to compare the theoretically calculated lattice
thermal conductivity with the experimentally measured total
thermal conductivity. The theoretically calculated κe are in
reasonable agreement with the experimental measurements
(κexp at T = 300 K) in the whole thermal conductivity range
(see Fig. 4), and this trend is consistent with the one solving
the full solution of the linearized phonon Boltzmann equation
[20]. For several compounds (such as ZnS), the large difference
between κe and κexp could possibly result from (a) the optical
branch contributions in the thermal conductivity, which are
not considered in the Slack model [Eq. (1)]; (b) the defect
contributions, which occur in the experimentally measured
samples but not in the theoretically used perfectly ordered
crystalline; or (c) the possible experimentally measured
uncertainty. Additionally, for the noncubic anisotropic SnSe
compound, the elastic-property-determined lattice thermal
conductivity κe is 0.2 W/mK, which is in reasonable
agreement with the experimental measurement (∼0.5 W/mK)

and is in good agreement with that (∼0.3 W/mK) calculated
using the first-principles Debye-Callaway approach [7].

IV. CONCLUSIONS

We have established a methodology that can be used to
calculate the lattice thermal conductivity using the computa-
tionally feasible elastic properties (the bulk and shear moduli)
and applied the method to 39 binary compounds with three
different prototypes (including the cubic isotropic rocksalt
and zinc blende and the noncubic anisotropic wurtzite). The
theoretically calculated Debye temperature, Grüneisen param-
eter, and lattice thermal conductivity are in good agreement
with those determined using the (quasi)harmonic phonon
calculations or the experimental measurements. However,
the elastic properties (such as the bulk and shear moduli)
average the elastic constants only along certain directions
(Cij , i,j = x,y, and z). Cij cannot consider all high-symmetry
directions in the Brillouin zone as phonon calculations do.
Thus, some important acoustic contributions might be missed
in the approach. This might specifically lead to a large error for
strongly anisotropic systems with low-symmetry lattices (such
as the triclinic lattice) plus unusual atomic arrangements (such
as forming a large void space). Further work is necessary to
understand and overcome the limitation. Nevertheless, the soft
mechanical properties induce the low Debye temperature and
strong anharmonicity or large Grüneisen parameter due to the
easy deformation of crystal structures under stress. Our method
provides an efficient, feasible (computationally cheaper) way
to estimate the anharmonicity and lattice thermal conductivity
and has benefits for seeking not only low-thermal-conductivity
compounds for high-performance thermoelectric materials
but also high-thermal-conductivity compounds for thermally
conductive materials.
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