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Temperature-dependent transport properties of FeRh
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The finite-temperature transport properties of FeRh compounds are investigated by first-principles density-
functional-theory-based calculations. The focus is on the behavior of the longitudinal resistivity with rising
temperature, which exhibits an abrupt decrease at the metamagnetic transition point, T = T,,, between ferro-
and antiferromagnetic phases. A detailed electronic structure investigation for 7 > 0 K explains this feature
and demonstrates the important role of (i) the difference of the electronic structure at the Fermi level between
the two magnetically ordered states and (ii) the different degree of thermally induced magnetic disorder in the
vicinity of 7,,, giving different contributions to the resistivity. To support these conclusions, we also describe
the temperature dependence of the spin-orbit-induced anomalous Hall resistivity and Gilbert damping parameter.
For the various response quantities considered, the impact of thermal lattice vibrations and spin fluctuations on
their temperature dependence is investigated in detail. Comparison with corresponding experimental data shows,

in general, very good agreement.
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I. INTRODUCTION

For a long time the ordered equiatomic FeRh alloy has
attracted much attention owing to its intriguing temperature-
dependent magnetic and magnetotransport properties. The
crux of these features of this CsCl-structured material is
the first-order transition from an antiferromagnetic (AFM) to
ferromagnetic (FM) state when the temperature is increased
above T,, =320 K [1,2]. In this context the drop in the
electrical resistivity that is observed across the metamagnetic
transition is of central interest. Furthermore, if the AFM
to FM transition is induced by an applied magnetic field,
a pronounced magnetoresistance (MR) effect is found ex-
perimentally with a measured MR ratio of ~50% at room
temperature [2-4]. The temperature of the metamagnetic
transition as well as the MR ratio can be tuned by the addition
of small amounts of impurities [2,5-8]. These properties make
FeRh-based materials very attractive for future applications
in data storage devices. The origin of the large MR effect
in FeRh, however, is still under debate. Suzuki et al. [9]
suggest that, for deposited thin FeRh films, the main mech-
anism stems from the spin-dependent scattering of conducting
electrons on localized magnetic moments associated with
partially occupied electronic d states [10] at grain boundaries.
Kobayashi et al. [11] have also discussed the MR effect in
the bulk ordered FeRh system, attributing its origin to the
modification of the Fermi surface across the metamagnetic
transition. So far only one theoretical investigation of the
MR effect in FeRh has been carried out on an ab initio
level [12].
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II. COMPUTATIONAL DETAILS

The present study is based on spin-polarized electronic
structure calculations using the fully relativistic multiple
scattering Korringa-Kohn-Rostoker (KKR) Green’s function
method [13,14] with the framework of spin density functional
theory. For the self-consistent calculations a parametrization
for the exchange and correlation potential based on the
general gradient approximation (GGA) [15] has been used.
For the charge and potential representation the atomic sphere
approximation (ASA) has been applied. For the wave functions
and corresponding matrices of the KKR formalism the cutoff
value /n.,x =3 has been used for the angular momentum
expansion.

The central advantage of the KKR formalism is that it gives
direct access to the retarded single-particle Green’s function
G*(¥,7',E), which is given by [16-18]

G*(F.F.E)= ) ZNF.E)TNA(E)ZY(FE)

AN
— S ) ZAF VG E)O(r, — 1)
A
+ I EVZ G DO, =), ()

where the spatial vectors 7 andj " are assumed to be within the
atomic cell centered at sites R,,, R,, respectively. Within the
fully relativistic formulation used here the combined quantum
number A = (x,u) stands for the relativistic spin-orbit and
magnetic quantum numbers « and u, respectively [19].
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Accordingly, Z, and J} are four-component wave functions
obtained as regular and irregular solutions to the single-site
Dirac equation for the isolated potential well V" centered
at site n, respectively. The symbol “x” as a superscript of
Z', and Jj indicates the left-hand-side solution to the Dirac
equation. Dealing with a magnetically ordered system within
the framework of spin density functional theory, the potential
V" is spin dependent. As a consequence Z, = X, Z",, (and
also J}) stands for a superposition of various partial waves
with spin-angular character A’ [20,21]. Finally, the quantity
IX’}\ is the so-called scattering path operator that represents
the transfer of a wave coming in at site n” with character A’ to
a wave outgoing from site n with character A and all possible
scattering events taking place in between [17].

The scheme sketched above to calculate the retarded
Green’s function gives direct access to the density of states
(DOS) n(FE) via the expression

Im TR 3
n(E) = —;/(G (r,r,E)).dr. 2

Information on the electronic structure more detailed than
that given by the DOS is given by the Bloch spectral function
(BSF) A B(/?, E). In terms of the retarded Green’s function, this
quantity is defined via

- I ..
Ag(k.E) = —;m 3 explik - (R, — Rl

x /(G+(? + Ry.7 + Ry, E).d’r,  (3)

where again the angular brackets specify an appropriate
configurational average. For a perfectly ordered system the
BSF would be a set of Dirac delta functions, Ag(k,E) =
ZV S(E — E,;y), and for E = E it would trace out the Fermi
surface. For a system with thermally induced spin fluctuations
and lattice displacements the BSF has features with finite width
from which the mean-free-path length of the electrons can be
inferred.

The present approach used for the electronic structure
calculations allows us to calculate the transport properties at
finite temperatures on the basis of the linear response for-
malism using the Kubo-Stfeda expression for the conductivity
tensor [22,23],

Ji . .
Oy = mTr (julGT(EF) — G~ (Ep)1jyG (EF)

— WG (ERJIGT(EF) — G (Ep)l)e, “

where Q is the volume of the unit cell, N is the number
of sites, fu is the relativistic current operator, and G*(Ey)
are the electronic retarded and advanced Green’s functions,
respectively, calculated at the Fermi energy E . In Eq. (4) the
orbital current term has been omitted as it provides only small
corrections to the prevailing contribution arising from the first
term in the case of a cubic metallic system [24-26].

The Gilbert damping parameters « are calculated using a
Kubo-Greenwood-like equation [27]:

h N R
A); Tr(T,Im G*(Ep)T,Im GT(EF))e, (5)

N

Cpp =
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with the torque operator 7, 1 given by the expression

A

T/L = :3[& X éz],u,Bxc(?) s (6)

with &, being the direction of magnetization and B,.(F) being
the spin-dependent part of the potential.

The angular brackets (- - - ). (if applicable) in all expressions
above specify the average over temperature-induced spin
fluctuations and lattice vibrations treated within the alloy
analogy model described in the Appendix A.

III. RESULTS

First, we focus on the finite-temperature properties of the
electrical resistivity of FeRh. In order to take into account
electron-phonon and electron-magnon scattering effects in
the calculations, the so-called alloy analogy model [27,28]
is used. Within this approach the temperature-induced spin
(local moment) and lattice excitations are treated as local-
ized, slowly varying degrees of freedom with temperature-
dependent amplitudes. Using the adiabatic approximation in
the calculations of transport properties and accounting for the
random character of the motions, the evaluation of the thermal
average over the spin and lattice excitations in Eq. (4) is
reduced to a calculation of the configurational average over
the local lattice distortions (averaged within the unit cell)
and magnetic moment orientations, (- - - )., using the recently
reported approach [27,28], which is based on the coherent
potential approximation (CPA) alloy theory [29-31].

To account for the effect of spin fluctuations, which
we describe in a way similar to what is done within the
disordered local moment (DLM) theory [32], the angular
distribution of thermal spin moment fluctuations is calculated
using the results of Monte Carlo (MC) simulations. These
are based on ab initio exchange coupling parameters and
reproduce the finite-temperature magnetic properties for the
AFM and FM states in both the low-temperature (T < T,,) and
high-temperature (T > T,,) regions very well [33]. The inset
in Fig. 1(a) shows the temperature-dependent magnetization
M(T) for one of the two Fe sublattices aligned antiparallel
(parallel) to each other in the AFM (FM) state, calculated
across the temperature region covering both AFM and FM
states of the system. The different behavior of the magnetic
order M (T) in the two phases has important consequences for
the transport properties, as discussed below.

Figure 1(a) shows the calculated electrical resistivity as a
function of temperature p,,(7T), accounting for the effects of
electron scattering from thermal spin and lattice excitations,
and compares it with experimental data. There is clearly
a rather good theory-experiment agreement, especially con-
cerning the difference pAf™(T,,) — pFM(T,,) at the AFM/FM
transition, 7, = 320 K. The AFM state’s resistivity increases
more steeply with temperature when compared to that of the
FM state, which has also been calculated for temperatures
below the metamagnetic transition temperature (dotted line).
Note that the experimental measurements have been performed
for a sample with 1% intermixing between the Rh and Fe
sublattices, leading to a finite residual resistivity at 7 — 0
K, and as a consequence, there is a shift of the experimental
pxx(T) curve with respect to the theoretical one [34].
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FIG. 1. (a) Calculated longitudinal resistivity (solid circles: AFM
state, open circles: FM state) in comparison with experiment [2]. The
dashed line represents the results for Fey49Rhgs;, while the dash-
dotted line gives results for (Fe-Ni)y 49Rhy 51 with the Ni concentration
x = 0.05 to stabilize the FM state at low temperature. The inset
represents the relative magnetization of one Fe sublattice as a function
of temperature obtained from MC simulations (AFM: solid circles,
FM: open circles) and the experimental magnetization curve M(T)
(dashed line). (b) Electrical resistivity calculated for the AFM (solid
symbols) and FM (open symbols) states accounting for all thermal
scattering effects (circles) as well as accounting for effects of lattice
vibrations (diamond) and spin fluctuations (squares) separately. The
inset shows the temperature-dependent longitudinal conductivity for
the AFM and FM states due to only lattice vibrations.

We can separate out the contributions of spin fluctuations
and lattice vibrations to the electrical resistivities, ,of;lc(T)
and pYi°(T), respectively. These two components have been
calculated for finite temperatures while keeping the atomic
positions undistorted to find p°(T') and with fixed collinear
orientations of all magnetic moments to find p)®(T), respec-
tively. The results for the AFM and FM states are shown in
Fig. 1(b), where again the FM (AFM) state has also been
considered below (above) the transition temperature 7,,. For
both magnetic states the local moment fluctuations have a
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dominant impact on the resistivity. One can also see that both
components, p™(7’) and p}i’(T), in the AFM state have a
steeper increase with temperature than those of the FM state.

The origin of this behavior can be clarified by referring
to Mott’s model [35] with its distinction between delocalized
sp electrons, which primarily determine the transport prop-
erties owing to their high mobility, and the more localized
d electrons. Accordingly, the conductivity should depend
essentially on (see, e.g., [36]) (i) the carrier (essentially, sp
character) concentration n and (ii) the relaxation time t ~
[Vszcmn(E )17, where Vi is the average scattering potential
and n(E) is the total density of states at the Fermi level. This
model has been used, in particular, for qualitative discussions
of the origin of the giant magnetoresistance (GMR) effect
in heterostructures consisting of magnetic layers separated
by nonmagnetic spacers. In this case the GMR effect can
be attributed to the spin-dependent scattering of conduction
electrons, which leads to a dependence of the resistivities
on the relative orientation of magnetic layers, parallel or
antiparallel, assuming the electronic structure of nonmagnetic
spacer remains unchanged. These arguments, however, cannot
be straightforwardly applied to CsCl-structured FeRh, even
though it can be pictured as a layered system with one-
atom-thick layers, since the electronic structure of FeRh
shows strong modifications across the AFM-FM transition as
discussed, for example, by Kobayashi ez al. [11] to explain the
large MR effect in FeRh.

We use the calculated density of states at the Fermi level as a
measure of the concentration of the conducting electrons. The
change in the carrier concentration at the AFM-FM transition
can therefore be seen from the modification of the sp DOS at
the Fermi level. The element-projected spin-resolved sp DOS
ng,(E), calculated for both FM and AFM states at different
temperatures, is shown in Fig. 2. At low temperature, for
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FIG. 2. Comparison of the temperature-dependent densities of
states (DOSs) for the FM and AFM states of FeRh for T = 40-400 K:
(a) Fe s DOS, (b) Fe p DOS, (c) Rh s DOS, and (d) Rh p DOS.
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both Fe and Rh sublattices, the sp DOS at Ef is higher in
the FM state than in the AFM state, n} M (Er) > njf™(EF).
This gives the first hint concerning the origin of the large
difference between the FM and AFM conductivities in the
low-temperature limit [see inset for o' in Fig. 1(b)]. In
this case the relaxation time 7 is still long owing to the
low level of both lattice vibrations and spin fluctuations,
which determines the scattering potential V... For both
magnetic states the decrease in the conductivity with rising
temperature is caused by the increase of scattering processes
and consequent decrease of the relaxation time. At the same
time, the conductivity difference, Ao (T) = o)FM(T) —
oV AFM(T), reduces with an increase in temperature. This
effect can partially be attributed to the temperature-dependent
changes in the electronic structure (disorder smearing of the
electronic states) reflected by changes in the density of states
at the Fermi level [34] (see Fig. 2). Despite this, up to the
transition temperature, T = T,,, the difference Ao (T') is rather
pronounced, leading to a significant change in the resistivity
atT =T,.

One has to stress that in calculating the contribution
of spin moment fluctuations to the resistivity, the different
temperature-dependent behaviors of the magnetic order in
the FM and AFM states must be taken into account. This
means that at the critical point, T = T,,, the smaller sublattice
magnetization in the AFM state describes a more pronounced
magnetic disorder when compared to the FM state, which leads
to both a smaller relaxation time and shorter mean free path.
The result is a higher resistivity in the AFM state.

The different mean-free-path lengths in the FM and AFM
states at a given temperature can be analyzed using the BSF
Ap(k,E), calculated for E = E, since the electronic states at
the Fermi level give the contribution to the electrical conduc-
tivity. For a system with thermally induced spin fluctuations
and lattice displacements the BSF has features with finite
width from which the mean-free-path length of the electrons
can be inferred. Figure 3 shows an intensity contour plot for
the BSF of FeRh averaged over local-moment configurations
appropriate for the FM and AFM states just above and just
below the FM-AFM transition, respectively. Figure 3(a) shows
the AFM Bloch spectral function, whereas Figs. 3(b) and 3(c)
show the sharper features of the spin-polarized BSF of the FM
state, especially for the minority-spin states. This implies a
longer electronic mean free path in the FM state in comparison
to that in the AFM state, which is consistent with the drop in
resistivity.

Finally, we discuss the behavior of the electrical resistivity
of FM-ordered FeRh in the vicinity to the Curie temperature.
First of all, once the temperature has been raised above
the Curie temperature and the system is in a magnetically
disordered state, there is no longer a contribution from the
spin fluctuations to the increase in the resistivity p(7) when
T is increased further. The transition to the PM state results
therefore in an abrupt decrease of the rate of increase of p(T')
with temperature (see Fig. 1). This effect, observed also in
Fe and Ni, has been discussed previously [28]. Below T,
the sharp increase of the resistivity as the Curie temperature
is approached is a consequence of the fast increase in the
amplitude of transverse spin fluctuations in this temperature
region. Figure 4 demonstrates the impact of thermally induced
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FIG. 3. Bloch spectral function (in units of states/Ry) of FeRh
calculated (a) for the AFM state at T = 300 K and for the FM
state resolved into (b) majority-spin and (c) minority-spin electron
components, calculated for 7 = 320 K. The finite width of this feature
determines the electronic mean free paths.

magnetic disorder on the electronic structure, leading to an
increase in smearing of the electron energy bands when the
temperature changes from 600 to 700 K. As discussed above,

155139-4



TEMPERATURE-DEPENDENT TRANSPORT PROPERTIES OF ..

- T T T 3
o — T=600K
- sk == T=700K
P — T=600K
%16k —-T=700K B =Y/
g 77V
- 208f - 7
M /
C i f f = f } =
Q 2.4+ - 1
g N
Z 1.6 4 - q .
g ~ | )/ Y UM
i 0.8 E - f /\\'\‘;
0 ( 1 1 0 { 1 1
£ 6 ) %) 2 43 6 4 2 2
energy (eV) energy (eV)

FIG. 4. Element-resolved BSF on (a) Fe and (b) Rh sites in FeRh
calculated for the FM (left) and PM (right) states at finite temperatures
T =600 K and T =700 K, respectively; (c) comparison of the
element-resolved Fe (left) and Rh (right) DOS calculated for the
FM (solid line) and PM (dashed line) states at finite temperatures
T =600K (M/My=0.66)and T = 700 K (M /M, = 0).

this observation is connected to the shortened lifetime of
the electronic states that causes an increase in the electrical
resistivity. Clearly, the differences in the p(7") behavior in the
vicinity of T¢ for different systems stem from specific features
of their electronic structures relevant to their PM states. For
example, there is (i) magnetic “local-moment” disorder in the
case of pure Fe, (ii) a Pauli paramagnetic state in the case of
pure Ni, and (iii) magnetic local-moment disorder on the Fe
sublattice and disappearance of spin polarization on the Rh
sublattice in the case of FeRh. Figure 4(b) demonstrates the
induced spin splitting of the Rh electronic states in FeRh, in
particular around the Fermi level, at T < T¢ (T = 600 K,
left panel). This splitting disappears above T¢ (T = 700 K,
right panel), so that the Rh DOS increases at the Fermi level
[Fig. 4(c), right panel]. This leads in turn to the sharp increase
in the resistivity as the critical temperature is approached
since p(T) is inversely proportional to the relaxation time
T, i.e., p(T)~ [Vszcmn(EF)] (see discussions above). It is
also worth mentioning the combined effect of both scattering
channels that arise from spin fluctuations and lattice vibrations.
The latter contribution is rather small (see Fig. 1), and
consequently, p(T) has a temperature dependence determined
essentially by the spin fluctuations. In the case of Fe [28],
on the other hand, both contributions are comparable, and
lattice vibrations lead to a rather pronounced smearing of the
electronic states at Er when the temperature approaches 7T¢,
which conceals the impact of the electron scattering from the
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FIG. 5. (a) The temperature dependence of the anomalous Hall
resistivity for the FM state of (Fegg5Nigos)Rh in comparison with
experimental data [11]; (b) Gilbert damping parameter as a function of
temperature: theory accounting for all thermal contributions (squares)
in comparison with the experimental results for a thick-film system
(50 nm; open diamonds) [37] and for an FeRh thin film deposited
on a MgO(001) surface (upward and downward triangles). Upward
and downward triangles represent data for heating (h) and cooling (c)
cycles, respectively (for details see Appendix B). The inset represents
the results for the individual sources for the Gilbert damping, i.e.,
lattice vibrations (circles) and spin fluctuations (diamonds). The
total « values calculated for the FeRh crystal without (cub) and
with tetragonal (tetra) distortions (c/a = 1.016) are shown by open
and solid squares, respectively. Gilbert damping for the FM phase
is shown by dashed lines in the temperature region below the
metamagnetic transition temperature.

spin fluctuations. As a result, the total p(7) has an almost
linear increase up to T¢.

In particular concerning technical applications of FeRh, it
is interesting to study further temperature-dependent response
properties. In Fig. 5(a) we show our calculations of the
total anomalous Hall resistivity for FeRh in the FM state,
represented by the off-diagonal term p,, of the resistivity
tensor, and compare it with experimental data [11]. As the
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FM state is unstable in pure FeRh at low temperatures,
the measurements were performed for (Feg ggsNig 035)Rh, for
which the FM state has been stabilized by Ni doping. The
calculations have been performed both for the pure FeRh
compound and for FeRh with 5% Ni doping, (Feq ¢sNig 0s5)Rh,
which theory finds to be ferromagnetically ordered down to
T = 0 K. As can be seen, the magnitude of p,,(7T') increases in
amore pronounced way for the undoped system. Nevertheless,
both results are in rather good agreement with experiment.

In addition to temperature-dependent transport properties
linear response calculations with the inclusion of relativistic
effects enable us to present results for Gilbert damping, which
plays a crucial role for spin dynamics. The experimental data
shown in Fig. 5(b) by triangular symbols represent results
for rather thin FeRh films (d = 10 nm) deposited on top of
a MgO(001) substrate (see experimental details described in
Appendix B). Upward and downward triangles in Fig. 5(b)
represent the Gilbert damping obtained for heating and cooling
cycles, respectively. The FeRh unit cell with a lattice constant
V2 times smaller than that of MgO is rotated around the
z axis by 45° with respect to the MgO cell. Because of
this, a compressive strain occurs in the FeRh film. From the
experimental data [38], this implies a tetragonal distortion of
the FM FeRh unit cell with c/a = 1.016.

The « calculations have been performed for the FM state
taking into account all temperature-induced effects, i.e., spin
fluctuations and lattice vibrations [28,39]. As one can see in
Fig. 5(b), these results are in good agreement with the ex-
perimental value (shown by a diamond) for a thick (bulk) film
where o was measured as 0.0012 at 7 = 420 K [37]. However,
the calculated o values are smaller by a factor of 3 when
compared to the experimental data measured for the thinner
10-nm film. Accounting for the tetragonal distortion results in
arather weak change for the calculated «, as can be seen in the
inset of Fig. 5(b) (solid squares). Therefore, the discrepancies
between theory and experiment have to be attributed partially
to surface and finite-size effects, as discussed, for example, by
Barati et al. [40], which are not accounted for within the present
calculations. Another reason for the discrepancies can be
associated with the inhomogeneities presented in the sample.
Note also that the measurements represented in Fig. 5(b)
have been performed in the vicinity of the metamagnetic
AFM-FM transition. In this temperature region the FM state
is not uniform, as discussed, for example, by Baldasseroni
et al. [41], who observed the mixed-phase (FM+AFM) state
close to the T, transition temperature. Evidently, this can also
lead to an increase in the Gilbert damping in this temperature
region when compared to the pure FM state considered in the
calculations.

The separate contributions to the Gilbert damping due to
spin fluctuations and lattice vibrations are shown in the inset
of Fig. 5(b) for a range of temperatures extended to low tem-
peratures beyond those measured by experiment. As discussed
in the literature, magnetization dissipation at low temperature
is well described via the breathing Fermi-surface model for
pure elemental materials and ordered compounds [28,39,42].
In this regime the temperature dependence of the Gilbert
damping is directly connected to the relaxation time parameter
of the electronic subsystem, which in turn is determined by
the dominating spin-conserving electron scattering that arises
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from lattice vibrations, V2., and spin fluctuations, V2 . In
this low-temperature regime (as discussed in Appendix C),
o~ [szib + Vﬂzu]_l. The thermally induced increase in the
amplitude of lattice vibrations and spin fluctuations results
in an increase in the effective scattering cross section for the
electrons and hence a decrease in the Gilbert damping. Based
on the expressions given in Appendix C, one can consider
individual contributions from different scattering channels at
low temperature. Thus, since o ~ (oz‘;,l + Otﬂ_ulc)’1 ,one can say
that the higher rate of decrease with rising temperature for o
is associated with the scattering mechanism which has the
larger scattering cross section. In particular, at 7 =~ 200 K,
the Gilbert damping associated with spin fluctuations is
appreciably smaller than that due to lattice vibrations [see
inset in Fig. 5(b)]. This implies a large decrease at T < 200 K
of o(T) with an increase in T, as seen in the inset in Fig. 5(b).
This clearly shows (see Appendix C) the dominant role of spin
fluctuations for the Gilbert damping in the low-temperature
regime, leading to a similar behavior for the total Gilbert
damping [squares in Fig. 5(b)]. Moreover, it can be seen
that the total @ accounting for both scattering channels is still
smaller in the low-temperature regime owing to the increased
effective scattering cross section.

The “resistivitylike” behavior at higher temperatures, i.e.,
a growing with rising temperature, reflects the increasing role
of the interband transitions which determines a dominating
spin-flip dissipation mechanism [43]. In this regime, as seen
in Fig. 5(b), the increase in the total Gilbert damping with
rising temperature is predominantly determined by electron
scattering from lattice vibrations, demonstrating the leading
role of this scattering channel for the Gilbert damping at high
temperatures. Note that the spin fluctuations in the temperature
region shown in Fig. 5(b) lead to a weak decrease of «(7") with
an increasing temperature, indicating a small contribution to
the spin-flip dissipation mechanism.

IV. SUMMARY

In summary, we have presented ab initio calculations for the
finite-temperature transport properties of the FeRh compound.
A steep increase in the electric resistivity has been obtained
for the AFM state, leading to a pronounced drop in resistivity
at the AFM to FM transition temperature. This effect can be
attributed partially to the difference in the electronic structure
of FeRh in the FM and AFM states, as well as to a faster
increase in the amplitude of spin fluctuations caused by
temperature in the AFM state. Further calculated temperature-
dependent response properties such as the anomalous Hall
effect (AHE) resistivity and the Gilbert damping parameter for
the FM system also show good agreement with experimental
data. This gives additional confidence in the model used to
account for thermal lattice vibrations and spin fluctuations.
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APPENDIX A: TREATMENT OF THERMAL LATTICE
DISPLACEMENT AND SPIN FLUCTUATIONS

To account for the impact of the thermal lattice vibrations
and spin fluctuations, the alloy analogy model is used in
the present work. The multiple-scattering theory allows us to
describe the uncorrelated local thermal atomic displacements
and spin moment deviations from their equilibrium, within
the single-site CPA alloy theory. This implies the reduction
of the calculation of the thermal average to the calculation
of a configurational average in full analogy with random alloy
systems [28]. Within this approach the coherent scattering path
operator is defined as

Ny

Zcepa = 2 XoXfToyrs

v=1

(AD)

with summation over all types of local lattice vibrations and
spin fluctuations with the corresponding probabilities x, and
X [28]. The underline indicates matrices with respect to the
combined index A. The z,, operators are defined through the

corresponding single-site scattering matrices ti‘}c [28]:

ty=U(AR)RE)LRE)UAR)™. (A2)

Here R(é) is a rotation matrix for the transformation from
the local to the global frame of reference. The so-called U-
transformation matrix U (AEZ) for each atomic ¢ site in the
unit cell is given by [44,45]

ULLr(Aﬁg) =4 Zilﬂuil, CriLr jl”(
L//

ARY|K) Y (8),

(A3)

where L = (I,m) represents the nonrelativistic angular mo-
mentum quantum numbers, j;(x) is a spherical Bessel function,
Y, (7) is real spherical harmonics, Cy 1~ is the corresponding
Gaunt number, and k = JE is the elecﬁronic wave vector. The
amplitude of atomic displacements | A R{ | is represented by the
temperature-dependent rms displacement ((u2)7)'/? according
to

Ny

> % ARUD| = (u2),. (A4)
v=1

Basically, the mean-square displacement of the atom g along
the direction u (4 = x,y,z) can be evaluated within phonon
calculations [46]. However, in the present work we have
used the approach based on Debye’s theory with the Debye
temperature ®p taken from experiment [47]. In this case
the individual mean-square displacements for different atomic
types in the unit cell are not well defined. Moreover, their
relative magnitudes can change as a function of temperature
as a consequence of different ratios of the amplitude of
displacements for different types of atoms, associated with
acoustic and optical phonon modes in the limit of small
wave vector g, as well as with the phonon modes with q
approaching the boundary of the Brillouin zone G/2 (see,
e.g., Ref. [46]). Because of the lack of such information,
we have used an approximation based on the averaged
mean-square displacement. This implies that the mean-square

PHYSICAL REVIEW B 95, 155139 (2017)

displacements for both types, Fe and Rh, are equal and are
given by the expression [48,49]

) :l 3h? ®@©p/T) 1
miT 47T2MkB®D @D/T 4

with ®(®p/T) being the Debye function. In spite of the
simplicity, this approach gives results in rather good agreement
with experimental data for disordered alloys as well as for
ordered compounds, as was shown previously [39,50]. As a
consequence of the above-mentioned temperature-dependent
properties of the mean-square displacements, the difference
between the experimental and theoretical resistivities for the
ordered FeRh compound [see Fig. 1(a) in the main text] can
be partially attributed to the present simplification used for the
evaluation of mean-square displacements.

}, (A5)

APPENDIX B: EXPERIMENTAL DETAILS
OF GILBERT DAMPING

FeRh films were grown on (001)-oriented single-crystal
MgO substrates using dc magnetron sputtering. The base
pressure of the chamber was 2x 1075 Pa. The substrates
were kept at 573 K for 30 min. Then 10-nm FeRh were
deposited with a growth pressure of 0.7 Pa Ar corresponding
to stoichiometric Fes;Rhyg films [51]. The sputtering power is
30 W for 3-inch FesoRhsg targets. Afterwards, the films were
heated to 1023 K and annealed for 100 min. When the films
were cooled down to room temperature, they were capped with
5-nm Al in situ.

The experimental data were obtained by field-swept fer-
romagnetic resonance measurements of a 25-nm FeRh film
grown on MgO(001) and capped by 5-nm Al in the out-of-
plane configuration for frequencies from 5 to 24 GHz. The
temperature was controlled by heating through the substrate,
and the measured absorption spectra were fitted to a Lorentzian
line shape [52] in order to obtain the linewidth AH. The
damping parameter o was determined from the frequency
dependence of AH, as demonstrated by Mancini et al. [37]
and Heinrich et al. [53].

APPENDIX C

To discuss the temperature-dependent behavior of Gilbert
damping in more detail one can represent the expression in
Eq. (5) in terms of the Bloch spectral function A(E lzn)
following the corresponding discussions by Kambersky [54]
and Gilmore et al. [55]. According to these authors, the
leading contribution to the Gilbert damping in the low-
temperature limit is associated with the intraband scattering
given by [54,55]

&3k .
tinea ~ 3 [ s I
x /dEA(E,i?,;«)A(E,i?,@(—M), (C1)
dE
with

wl;,n
(E — Eg, 2 +uw?

A(E k,n) =
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where I',,
operator and w]z

is the matrix element of the transverse torque
is related to the imaginary part of the the
scattering self-energy [54]. In the present work we discuss
two contributions due to various electron scattering channels,
i.e., due to lattice vibrations with ImEIl{’fE ~ (tg’i:)‘l and due

to spin fluctuations with ImZI;ﬁ‘:1 ~ (rlg‘;)‘l, and the relaxation

times, rkv‘b and ‘L’ Y, corresponding to the different scattering
channels. With thls w?  can be represented by the effective

ko
relaxation time (z°f)~! = (¢¥i®)~! 4 (¢M™)~!. As was shown
in Refs. [54,55], after integration over the energies, Eq. (C1)

can be reduced to

d*k
Uintra ™ Teffo o )3

According to the discussions above, we have t
[Vin(Er)] 'and TV ~ [VVIbn(Ep)] ! leading to the follow-
ing dependence: o ~ Ter ~ [VVlb + Vﬂzu]’l. The expression in
Eq. (C2) can also be reduced to the form used for discussions
of the Gilbert damping within the breathing Fermi-surface
model [55-57] that describes well the temperature-dependent
behavior «(T) in the low-temperature regime.

T (k). (C2)

flu

PHYSICAL REVIEW B 95, 155139 (2017)

The interband contribution in terms of Bloch spectral
function is given by the expression [54,55]

d*k
Qinter ™ Z/ o )3
f(E)

/dEA(E k.n)A(E k m)(—d—>. (C3)

T (k)

At low temperature this contribution increases with tem-
perature as Qjper ~ ~[V2 vib T Vﬁu] [54,55] and above a
certain temperature T becomes the dominating part of the
Gilbert damping. This leads to the minimum for «(7) at
T,,, which is determined by both V3, and Vj, scattering
amplitudes in the case of the total o and by only Vi, or Vg,
scattering amplitudes in the case of individual contributions
due to lattice vibrations and spin fluctuations, respectively,
resulting in different positions of the minima in these three
cases. Finally, it should be noted that the contributions to tper
due to lattice vibrations and spin fluctuations are additive,
in contrast to ®ina. In this case, one gets an increase with
temperature of the total «(7) larger than in the case of separate
contributions due to different scattering channels.
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