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Stability and instability towards delocalization in many-body localization systems
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We propose a theory that describes quantitatively the (in)stability of fully many-body localization (MBL)
systems due to ergodic, i.e., delocalized, grains, that can be, for example, due to disorder fluctuations. The theory
is based on the ETH hypothesis and elementary notions of perturbation theory. The main idea is that we assume
as much chaoticity as is consistent with conservation laws. The theory describes correctly—even without relying
on the theory of local integrals of motion (LIOM)—the MBL phase in one dimension at strong disorder. It yields
an explicit and quantitative picture of the spatial boundary between localized and ergodic systems. We provide
numerical evidence for this picture. When the theory is taken to its extreme logical consequences, it predicts that
the MBL phase is destabilised in the long time limit whenever (1) interactions decay slower than exponentially
in d = 1 and (2) always in d > 1. Finer numerics is required to assess these predictions.
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I. INTRODUCTION

The contrast between localized and thermalizing (ergodic)
many-body systems is an exciting theme in condensed matter,
touching upon foundations of thermodynamics. The topic goes
back to the seminal work [1] but there has been revival due
to some theoretical advances [2–5], powerful numerics [6–8],
and the exciting experimental possibilities with cold atoms
[9,10]. Most authors define many-body localization (MBL)
as a property of the eigenfunctions at finite energy density:
there is a full set of local conserved quantities—LIOM’s “local
integrals of motion” [11–13]. We start from this definition even
if it is surely not literally applicable to all systems that have
been labeled as MBL (e.g., systems with a mobility edge,
including in particular systems with no quenched disorder)
and definitely not to all systems that exhibit MBL-like dynam-
ical features [14], e.g., classical disordered oscillator chains
[15–17].

This means in practice that our discussion is about strongly
disordered lattice quantum systems. We ask whether and how
the localization in these strongly disordered systems is stable
when we couple them to zero-dimensional, ergodic grains that
are large but finite, in particular much smaller than the localized
system. Such a setup occurs naturally in disordered systems
where the ergodic grains arise from regions with anomalously
weak disorder, see Fig. 1.

The Hamiltonian of an ergodic system (or, simply, a bath) is
essentially described by random matrix theory (RMT) through
the eigenstate thermalization hypothesis (ETH) [18,19]. Real-
space renormalization theories for MBL and ergodic inclusions
have been formulated [20–22] but they are rather mesoscopic
than microscopic and not formulated in the language of
RMT. This is at first sight logical since RMT is intrinsically
connected with chaos and ergodicity. Nevertheless, we point
out that a simple RMT theory is able to describe the breakdown
of thermalization towards MBL in 1D. In this point of view,
localization emerges as an instability of RMT.

The motivation for our theory grew out of the bizarre
observation that is by now well-known to many people in
the field of MBL: the “avalanche” or “Ice-9” [23] scenario.
If a bath is coupled to a spin weakly, but strong enough to

thermalize that spin, then the combined spin + bath system
becomes ergodic and one is inclined to describe it simply by a
random matrix. Doing so, the composed system looks like the
original bath, except that its Hilbert space dimension is doubled
and its level spacing is (roughly) halved. Therefore it is now
an even more powerful bath. Iterating this argument blindly
one is led to conclude that any localization must be destroyed
by a large enough ergodic grain that can serve as the original
bath! Obviously, we do not believe this scenario to be correct
as it would rule out localization in strongly disordered 1d spin
systems, where it has been almost proven [12]. The RMT used
in the present paper is subtle enough to avoid this fallacy
by tracking the evolution of the structure factors (spectral
functions) of the added spins. The narrowing of these structure
factor eventually brings the avalanche to a halt in 1d systems.
More generally, our theory is able to describe correctly the
stability of strong localization to ergodic grains in all cases
where we know the answer: d = 1 interacting systems, and
noninteracting systems.

Yet, the most striking prediction of the RMT theory
developed in the present paper is that the avalanche scenario
has a core of truth: any degrees of freedom that are added
to a bath and that do get effectively thermalized by the bath,
also fully contribute to that bath. By this we essentially mean
that it is the level spacing of the joint system, which is hence
smaller than that of the bath alone, that determines whether
other weakly coupled degrees of freedom get thermalized or
not. This leads to a simple, universal theory of thermalization,
where the bath is characterized by a single dimensionless
parameter G that is essentially defined as matrix element level
spacing. This should be contrasted with the question about
timescales of thermalization or transport [24,25], which is
more complicated.

As a consequence, our RMT theory describes explicitly the
spatial interface between an ergodic and a MBL system. In our
theory, the crossover region is fully thermal, but the structure
(spectral) factors of operators supported in that region become
very narrow as their support approaches the MBL system.

An intruiging prediction of our theory is that a localized
system with interactions that decay slower than exponentially
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FIG. 1. The spins in the red region are closer to each other than
in the surrounding blue-green region, hence they interact stronger.
This stronger interaction leads to an “ergodic grain” in the red region.
What is the effect of this grain on its localized environment?

with distance, is not stable with respect to large ergodic
grains, though the thermalization time for such a system can
still be enormously large, thus making it localized for all
practical purposes. Counterintuitive as it might be, the idea
that a few degrees of freedom can delocalize a much larger
number of localized degrees of freedom, has by now been
put forward already by several authors [26–29]. Numerics for
larger systems is however needed to nail down this instability.
Also higher-dimensional localized systems would be unstable
within our theory.

Outline

In Sec. II, we develop our random matrix theory for
coupling spins to a bath. Then, in Sec. III, this theory is applied
iteratively to the ergodic grains coupled to localized material.
Section IV focuses on the interface region between ergodic
grain and localized material. We gather our numerical results
and checks in Sec. V. The appendices contain technical issues
that can be skipped in a first reading.

II. BATH+SPIN PROBLEM

Our method is to consider an ergodic system, that we
call “bath”, coupled locally to small systems, 1/2-spins for
concreteness. As such, our setup is very familiar from open
quantum systems, see, e.g., [30–33] for specifics of baths
coupled to localized systems.

The point is, however, that we ask for detailed information
on the eigenstates of the joint system, which will then be
used to regard the joint system as a bath itself. For the sake of
simplicity, we assume that energy is the only locally conserved
quantity. We write the Hamiltonian as

H = HS + HB + HSB,

acting on HB ⊗ HS (“bath” ⊗ “spin”), and, as conventional,
we slightly abuse notation by writing HS = 1 ⊗ HS , HB =

HB ⊗ 1, etc. To fix thoughts, we choose

HS = hσ z
S , HSB = gV ⊗ σx

S

with V a local operator acting in the bath (e.g., a σx operator
on the site adjacent to the spin S), a coupling strength g and
field h. We denote the eigenbasis of HS by |s〉. Additional
interaction terms such as g′V ′ ⊗ σ z

S can be considered as well
and do not introduce as such any substantial new difficulty;
see Secs. III A and III D.

A. Properties of the bath: ETH

Let us denote in general by |b〉,E(b) the eigenvectors and
energies of the bath Hamiltonian HB . The important properties
of the bath concern the matrix elements Vb,b′ = 〈b|V |b′〉 in the
b basis. We assume the ETH in the following form:

Vb,b′ = 1√
ρ

√
v(ω)ηb,b′ , b �= b′. (1)

Here, ηb,b′ are random variables of mean zero and unit
variance, ρ is the density of states at maximum entropy (see
later), and v(ω) is a positive function of ω = E(b) − E(b′) with
units of 1/energy, smooth on the scale of the level spacing.
The dependence on the energy E = (E(b) + E(b′))/2 is less
relevant since we naturally assume that v depends smoothly
on the energy density ε = E/N , hence we omit it from the
notation. The ETH also provides information on the diagonal
elements, namely,

Vb,b = 〈b|V |b〉 = 〈V 〉ε, 〈b|V V ∗|b〉 = 〈V V ∗〉ε, (2)

where 〈·〉ε indicates the thermal ensemble at energy density
ε = E(b)/N . By subtracting constants, we can simplify and
set 〈V 〉ε = 0 at the relevant energy density. By (2), we have
the following relation between the introduced quantities:∑

b′
|Vb,b′ |2 = 〈V V ∗〉ε.

If, as we primarily have in mind, V is of the simple form
V = σx

B , then 〈V V ∗〉ε = 1 if ε is at maximum entropy, as we
will anyhow assume below. Using that v varies on a scale much
larger than the level spacing and that the density of states is
constant (see below), we can also write

〈V V ∗〉ε =
∫

dωv(ω), (3)

and likewise, we can identify v(ω) with the dynamic structure
factor at zero momentum:

〈V (t)V ∗〉ε =
∫

dω v(ω)eiωt

for t small enough so that single levels are not resolved,
i.e., ρt 	 1, since we have assumed v to be smooth. Treating
ρ = ρ(E) as a constant is in general not a valid approxima-
tion as ρ(E) ∝ es(ε)N where the entropy density s(ε) varies
smoothly with ε. Hence

ln(ρ(E + �E)/ρ(E)) = s ′(ε)�E + s ′′(ε)(�E)2/N,

the primes referring to derivatives with respect to (w.r.t.) ε.
From this, we see that at maximum entropy, i.e., s ′(ε) = 0, we
can yet treat ρ(E) as a constant. Generalizing our arguments
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to other values of the energy density is straightforward, and it
brings no new insight, therefore we stick to the above setting.

For baths with a local structure, the function v decays
rapidly at large ω [34]; v(ω) � Ce−|ω|/ξ can be proven
rigorously [35] with ξ of the order of the total energy per site.
The behavior at small ω � ξ reflects the long-time transport
properties, i.e., v(ω) ∼ ωd/2−1 for a diffusive system and
v(ω) = const. below the Thouless energy, see [36–38] for
details. For our purposes, these features are not important and
for the moment, it suffices to think of v as a simple bump
function with halfwidth ξ .

B. Basic RMT hypothesis

Our basic hypothesis describes the eigenstates of H based
on three basic principles: (1) hybridization condition (matrix
element � level spacing), (2) energy conservation, and (3)
RMT is assumed whenever compatible with (1) and (2). Let us
make this more precise. The energy difference between the 2
spin states s = ±1 is 2h, so the relevant matrix element of the
perturbation is of size g

√
v(2h)/ρ, by (1), whereas the level

spacing between states with opposite spin s is 1/ρ. Hence the
condition for hybridization is

G ≡ g
√

v(2h)ρ � 1. (4)

If the hybridization condition is not satisfied, then the spin
is not thermalized by the bath and the coupled eigenstates
are determined by perturbation theory. If the hybridization
condition is satisfied then we propose a form for the new
eigenstates, namely,

ψ = 1√
2ρ

∑
b,s

√
k(ω) η(s,b) |s,b〉, ω = E(s,b) − E.

As before, the η(s,b) are independent and identically dis-
tributed (i.i.d.) random variables with zero mean and unit
variance. E(s,b) = hs + E(b) is the energy of the eigenstate
|s,b〉 = |s〉|b〉 with respect to the uncoupled Hamiltonian
HS + HB . The hybridization function k � 0 is assumed to
be smooth on the scale of the level spacing 1/ρ. It satisfies
the normalization

∫
dωk(ω) = 1, ensuring that ||ψ || = 1, and

it has dimension energy−1. The factor 2ρ is the density of
states of the B + S system (recall ρ is the density of the
bath). This ansatz expresses that the new eigenstates are
random superpositions of uncoupled eigenstates, up to energy
conservation which is expressed by the fact that the function k

is cutoff at large |ω| � w, where we have defined a halfwidth
w. It is natural to assume that for |ω| � w, the function k is
essentially flat. In the next section, we refine the information
on the function k, but for most of our applications such detailed
information is not necessary: all that really matters is that w

does not depend on the total Hilbert space dimension (or,
equivalently, not on ρ).

C. The hybridization function k

Let us start by describing some general features of the
hybridization function k. For |ω| � ξ , it is easy to argue that
k inherits the exponential decay of v. For some applications
of our theory (see Sec. III D), we will also need to know the
shape of k for intermediate w 	 |ω| 	 ξ . Simple reasoning

based on perturbation theory (see also Sec. II E) yields that
k(ω) ∼ ω−2, and it is therefore natural to propose for k a
Lorentz shape

k(ω) = 1

πw(1 + (ω/w)2)

(obviously the exponential faloff e−|ω|/ξ should be incorpo-
rated but this is not essential for our applications). Numerical
tests, see Appendix A, confirm the asymptotic k(ω) ∼ ω−2.
Figure 7 shows the hybridization curve for a real bath; we
see that this curve has some structure for |ω| � w, so the
Lorentzian form is merely an idealization.

It remains thus to explain how to compute the halfwidth
w. What rule to apply turns out to depend on the value of the
inverse correlation time in the bath at the frequency 2h, i.e., on
the characteristic ω0 over which v changes appreciably around
ω = 2h. We distinguishes two cases: Fermi’s “golden rule”
(FGR). The FGR implies w = g2v(2h) provided that the rate
w is smaller than the inverse correlation time in the bath ω0.
In this paper, the FGR will be applicable most of the time, at
least when taking into account a caveat that we postpone to
Sec. II E. Note that as long as ξ is not smaller than 2h, the
approximation v(2h) ≈ 1/ξ is reasonable and we have hence
simply w ≈ g2/ξ . See Appendix A for numerical confirmation
of the FGR expression for the width w.

Quasiadiabatic regime. One cannot apply consistently the
FGR if the predicted hybridization width w becomes larger
than ω0. However, the situations where the FGR does not apply
play only a secondary role in our theory, and the discussion
below can be skipped in a first reading (in particular, in the
next paragraphs of this section, we will always assume that
FGR holds whenever needed).

Breakdown of the FGR arises if v has a very sharp peak
around ω = 2h, i.e., if w = g2v(2h) � ω0 (where w is the
‘erroneous’ width given by the FGR); since ω0 is given by
1/v(2h) on the top of the peak, this reads also v(2h) � 1/g.
For us, a situation where the FGR does not apply will most
prominently show up through interaction terms of the type
σ z

i σ z
j (for i and j nearest neighboring sites), see Sec. III A.

This can also happen with a σx
i operator, though it results then

from a very sharp resonance between near spins, see Sec. III D.
To avoid changing setup, let us, however, stick to this case here,
and let us assume that g � ω0. It is convenient to model the
action of the bath on the external spin by a time-dependent
Hamiltonian, i.e., to assume that the evolution of the spin is
governed by the Hamiltonian

HS(t) = g cos(2ht)ϕ(t)σx
S + hσ z

S ,

where ϕ is a (stochastic) function of time such that the time
correlation 〈ϕ(t)ϕ(0)〉 decays as e−ω0t . For the intermediate
time scales ω0t 	 1, the dynamics is dominated by the
oscillatory factor cos(2ht), and it is convenient to move to
the rotating frame to get rid of this oscillation (since the
external frequency is exactly tuned with the energy gap of
the spin, the rotating frame is nearly given by the vectors
|α±〉 = ei2ht |↑〉 ± e−i2ht |↓〉). In this basis, one may now
compute the rate at which the dynamics flips |α±〉 to |α∓〉.
Since the evolution of the system is quasiadiabatic, and that
the Hamiltonian evolves at rate ω0, one expects flips to also
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occur at rate ω0, see Ref. [39]. Hence in this case, one gets
also for the hybridization width w = ω0.

D. New structure factor

Let us determine the matrix elements of a bath operator
V upon adding the spin when the new eigenfunctions are as
described in the previous section via a hybridization function
k. This is a straightforward calculation starting from

Vψ,ψ ′ =
∑
s,b,b′

〈ψ |b,s〉Vb,b′ 〈b′,s|ψ ′〉, (5)

where we used that V acts on the bath only and ψ,ψ ′ are
eigenfunctions (at energies E,E′) of the coupled system. We
use that V had a vanishing diagonal in the b basis and, at
least at maximal entropy, this remains so in the new basis [40].
For the off-diagonal, we replace Vb,b′ ,〈ψ |b,s〉,〈b′,s|ψ ′〉 by
their explicit (random) expressions. Pretending that all random
variables are independent, we get that the variance of Vψ,ψ ′ is
given by

〈|Vψ,ψ ′ |2〉 = 2
1

4ρ

∫
dω1dω2 k(ω1)k(ω2)v(ω − ω1 − ω2),

where ω = E − E′ and the factor 2 in front originates from the
sum over the spin variable s. Making again an independence
assumption, we conclude that the new system satisfies again
ETH in the sense of (1) with density ρ ′ = 2ρ and structure
factor

v′(ω) = (k  v  k)(ω), (6)

where (a  b)(ω) ≡ ∫
dω1a(ω1)b(ω − ω1) is a convolution of

functions.
The upshot is that the function v′ is given by v smoothened

twice with halfwidth w. In particular, if g2/ξ 	 ξ , which is
the case we have in mind, then the two functions v′ and v

are nearly the same. Of course, as the density of states ρ

is doubled, this means that the typical matrix element of V

did become smaller by a factor
√

2. On the one hand, this is
a very intuitive conclusion: the new spin has made the bath
more powerful by increasing its effective dimension. On the
other hand, the conclusion that the structure factor of a bath
operator is unaffected by the coupled spin that is potentially
much slower than the bath correlation time, does not hold up to
scrutiny [41]. Indeed, the correlation function 〈V (t)V 〉ε should
acquire long lived oscillations with frequency ω = ±2h due
to the slow spin. Below, in Sec. II E, we explain how this
feature emerges within our formalism upon refining the RMT
assumption. Since this does not affect our results, we however
ignore this in the rest of the paper.

Finally, let us now also determine the structure factor of
an operator on the coupled spin, V = σx

S , i.e., 〈b,s|V |b′,s ′〉 =
δb,b′δs,−s ′ . Instead of (5), we start now from

Vψ,ψ ′ =
∑
s,b

〈ψ |b,s〉〈b, − s|ψ ′〉 (7)

Using analogous steps as the derivation of (6), we find for the
new structure factor

v′(ω) = 1
2 (k  k)(ω + 2h) + 1

2 (k  k)(ω − 2h). (8)

This represents two bumps centered at ±2h of halfwidth 2w.
Note that

∫
v′ = 1 (since

∫
k = 1), which is consistent with∫

v′ = 〈V V ∗〉ε, see (3). The expression (8) can simply be
obtained from (6) by putting v(ω) = 1

2δ(ω + 2h) + 1
2δ(ω −

2h), which can indeed be considered as the structure factor of
σx

S with respect to the uncoupled Hamiltonian HS + HB .

E. Backreaction correction

As already remarked above, our theory misses a backreac-
tion effect that creates spikes in the bath structure factor. We
investigate now a refinement of the theory that does allow to
recover those spikes.

We write in general H0 = HS + HB and the corresponding
energies as E(b,s). We choose a target energy E and we let
P be the spectral projection associated to H0 of the interval
[E − w,E + w] with some halfwidth w that we will assume
to be the same as the halfwidth introduced above, even though
this is not necessary for the upcoming lemma. Also, we write
P̄ = 1 − P . Our main tool is the following simple principle,
whose proof follows directly from the eigenvalue equation.

Lemma 1. Schur complement formula. Let ψ be an
eigenvector of H with eigenvalue E and Pψ �= 0,P̄ψ �= 0,
then P̄ (E − H )P̄ is invertible on P̄HSBPψ and

P̄ψ = 1

P̄ (E − H )P̄
P̄HSBPψ. (9)

This formula expresses a useful structural relation between the
spectral regions close to and far from the energy E.

An obvious way to take this relation into account is to
retain the random matrix form of the eigenstates ψ inside
the interval [E − w,E + w], i.e., for Pψ , but to relate P̄ψ ,
i.e., outside the interval [E − w,E + w], to Pψ by the above
Lemma II E. This means that we no longer assume that all
η(b,s) in Sec. II B are independent, but just those inside the
interval [E − w,E + w]. Hence we write ψ = Pψ + P̄ψ and
we postulate

Pψ := 1√
2ρ

∑
b,s

√
k0(ω)η(b,s)|b,s〉, (10)

where again ω = E − E(b,s), η(b,s) are independent random
variables with mean zero and unit variance, and we have
introduced a cutoff hybridization function k0(ω) := χ (|ω| �
w)k(ω). The remainder P̄ψ is then obtained by (9). This model
for ψ refines the proposal in Sec. II B. Within this model, let us
now calculate v′(ω), the updated structure factor of σx

B , i.e., we
refine the result of Sec. II D. We start from the decomposition

〈ψ |σx
B |ψ ′〉 = 〈Pψ |σx

B |P ′ψ ′〉 + 〈Pψ |σx
B |P̄ ′ψ ′〉

+ 〈P̄ψ |σx
B |P ′ψ ′〉 + 〈P̄ψ |σx

B |P̄ ′ψ ′〉. (11)

Here the primed projectors P ′,P̄ ′ = 1 − P ′ are associated to
ψ ′; i.e., they are centered on E′ instead of E. The new effect
can be seen most easily on the second (or third) term. Using
Lemma II E and plugging HSB = gσx

S σ x
B , we get

〈Pψ |σx
B |P̄ ′ψ ′〉=

∑
b,b′,s,s ′

〈Pψ |b,s〉K(b,s|b′,s ′)〈b′,s ′|P ′ψ ′〉

(12)
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with the first and last factors given still by the RMT ansatz and

K(b,s|b′,s ′) = g〈b,s|σx
B

1

P̄ ′(E′ − H )P̄ ′ P̄
′σx

S σ x
B |b′,s ′〉.

Whereas we know that the diagonals 〈ψ |σx
B |ψ〉 vanish (see

Sec. II D), there is in general no reason why K(b,s|b′,s ′)
should vanish for b = b′. These partially diagonal terms yield
contributions to the structure factor v′ that are not directly
related to v but are instead peaks of halfwidth 2w around ω = 0
and ω = ±2h. To be specific, up to the lowest nonvanishing
order in g, we find, see Appendix B, the following contribution
to v′:

W k0  δ(·±2h)  k0, W ≡
(

g

max ξ,|h|
)2

, (13)

i.e., two peaks with weight W and halfwidth 2w, from the
smoothing with k0 (the fact that we get here k0 instead of k

is most likely irrelevant). These peaks are located at the Bohr
frequencies of the external spin ±2h, fully in line with the
intuition from the time-domain.

The contributions from K(·) with b �= b′, together with
the first term in (11), basically recreate the previously found
form of v′(ω), up to normalization (see below). In fact, the
calculations coming here can also be used to justify the choice
of the width, i.e., the FGR, see Appendix B.

Putting all pieces together, we find within our refined model,
and up to lowest nontrivial order in g, that the structure factor
v′ is given by

(1 − 2W) k  v  k + W k0  δ(·±2h)  k0. (14)

The factor (1 − 2W) is due to the overall normalization
∫

v′ =
1. In the relevant case w 	 ξ , the new peaks are less smooth
than the structure factor of the original bath, but then W 	 1.
Hence then the strength of the smooth part of the bath has been
slightly depleted by the appearance of narrow peaks.

Let us discuss the implications of the refinement presented
above as we will apply the theory iteratively, in Sec. III. First,
as we will now be dealing with a situation where the structure
factor v is a sum of a smooth part vsm and a more irregular
part with narrow spikes virr, with

∫
virr 	 ∫

vsm, we have
to reconsider the reasoning in Sec. II C on the hybridization
width. In such a case, it can happen that the Fermi’s “golden
rule” is applicable for vsm but not for v itself and then we have
w ≈ g2vsm(2h) (a superficial justification of this is given in
Appendix B).

Secondly, since we will couple spins with rapidly decaying
couplings gi to the same bath, we will get a depletion of
the smooth structure factor by the factor

∏
i(1 − 2Wi) with

Wi ≡ ( gi

max (ξ,|hi |) )
2. Because of the rapid decrease of gi , this

factor will still be close to 1 and so the overall depletion effect
remains small. Hence the conclusion is that the refinement
proposed in this section, does not have any implications for
us, and we will henceforth ignore it.

F. Limitations of our theory

Our theory makes some uncontrolled assumptions. In
particular, apart from the refinement introduced in Sec. II E
[42], we assume that the matrix elements of a bath operator V

as well as the parameters η(b,s) featuring in the hybridization

function are all mutually independent. This assumption is
definitely the main source of nonrigor.

Locality. In effect, our theory provides an expression for the
eigenstates of the coupled system as a random superposition
of the states of the uncoupled system, taking into account
conservation laws. Upon iterating, these putative eigenstates
are random superpositions of products over sites. This picture
can never fully capture locality. The same problem occurs
if one would use the Berry conjecture [43] (eigenstates
are random superpositions of plane waves with appropriate
momenta) as a cartoon for ETH in many-body systems. The
rapid decay of the structure factor v(ω) as ω → ∞ is not
captured by this cartoon and it needs to be imposed explicitly.
Also our theory sometimes misses the decay of structure
factors: If we build up an ergodic chain of lenght � by coupling
spins with g ∼ h ∼ ξ , then our theory predicts that each
coupled spin broadens by a similar amount the structure factors
and eventually some local operators have a width of order �,
analogously to a featureless random matrix with the same
bandwidth. More generally, this issue leads to a clear error if
the total broadening is comparable or larger than the original
width ξ of bath operators, which occurs, roughly speaking,
if

∑
i g

2
i � ξ 2 with gi the coupling strengths of added

spins.
For our purposes, we can largely circumvent this issue. The

first reason for this is that, resorting to the LIOM representation
for the localized part of the system, we can encode most of
the locality through the exponential decay in space of the
coupling of LIOMs to the bath. Obviously the problem of
encoding the locality inside the bath and its close vicinity
remains unresolved in that way, but this is of little practical
relevance since the size of baths that we will consider (i.e.,
ergodic spots in an otherwise localized material) are very small
as compared to the distance among them.

The second, somehow deeper, reason is that we can actually
devise a careful way to apply our theory so as to avoid
inconsistent results. Indeed, in d = 1, we will actually manage
to exhibit locality without using the representation by LIOMs
in the localized phase (see Sec. III D) so that the first reason
does not apply. As we will see there, it is actually still possible
to correctly encode the locality of a single spin coupled to a
bath, i.e., we get a realistic frequency decay for the structure
factor of this spin. The problem only comes if we we first
couple many spins one be one, then represent the eigenstates
as a superposition of product states, and finally try to recover
the locality properties of a spin incorporated at the beginning of
the procedure. As argued above, this is bound to fail. However,
in the cases that we had to deal with, this problem just didn’t
show up, since we never had to evaluate the structure factor
of a spin after that other spins have been coupled to the
system.

Proximity effects. These are effects [44,45] whereby a
localized system localizes the bath by inducing effective
disorder terms via the coupling. These effects arise when
the coupling to the localized system dominates the ergodic
bath Hamiltonian. If we keep coupling spins with coupling
strenghts gi directly to a finite bath, then proximity effects
will occur when (

∑
i g

2
i )1/2 becomes comparable to the total

bath energy but our theory is unable to detect this. This scenario
is however not realized in the systems studied in this paper.
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FIG. 2. (Top) A chain of weakly disordered spins—the ergodic grain—is coupled to a chain of strongly disordered spins—the MBL system.
(Middle) The system is modelled by weakly disordered spins coupled to LIOMs (no coupling between the LIOMs any more). Note that all
LIOM’s are coupled only to the rightmost spin. (Bottom) The weakly disordered spins are sometimes modeled by a random matrix.

III. STABILITY AGAINST ERGODIC GRAINS

A. Stability of one-dimensional localization

We apply our theory to a bath of �b spins attached to a
strongly localized spin chain of length � at its right. However,
instead of considering � weakly coupled disordered spins, we
invoke the LIOM theory and we consider � uncoupled l spins.
The l-spin operators are denoted by τ

x,y,z

i instead of σ
x,y,z

i ,
and the τ z

i commute with the Hamiltonian of the �-stretch.
This Hamiltonian does hence not contain any more terms that
flip the τ z.

The LIOMs are exponentially localized in the following
sense. One can expand the quasilocal operators τi (we omit
the superscripts x,y,z since they play no role here) in strictly
local operators as τi = ∑

I�i τi,I , where I are lattice intervals,
i.e., sets of consecutive points on the lattice, containing i. In
the localized phase, these operators decay exponentially in
norm for typical realizations of the disorder. We define the
localization length (in lattice units) as

1

ζ
= lim

|I |→∞
1

|I |
〈

ln
1

‖τi,I‖
〉
, (15)

where |I | is the number of lattice sites in the interval I , and
where 〈·〉 denotes the average over the disorder.

When a bath of �b spins is coupled to the localized systems
of � localized spins, the strictly local coupling of the leftmost
of the � spins to the bath, gives rise to a nonlocal, though
exponentially decaying, coupling of the l spins to the bath, see

Fig. 2. This setup is captured by the Hamiltonian

H = HB +
�∑

i=1

hiτ
z
i +

�∑
i=1

giσ
x
0 ⊗ τ x

i , (16)

with decaying couplings

gi = g1e−(i−1)/ζ .

Note that all the l spins are coupled to the same bath operator
σx

0 and that g1 is the coupling strength of the leftmost physical
spin to the bath.

The following kind of terms were suppressed in our model
Hamiltonian (16): (1) nonlocal LIOM-energy terms like, e.g.,
τ z
i τ z

i+1, and (2) bath couplings affecting multiple LIOMs like
σx

0 ⊗ τ x
1 . . . τ x

i . These terms are indeed generically present in
genuinely interacting systems. Nevertheless, we prefer to first
ignore them and to study the Hamiltonian (16) taken literally,
so as to focus on the main point of our argument. Let us stress
that, even so, the Hamiltonian as defined by (16) is neither free
nor integrable, since the bath Hamiltonian HB is assumed to
obey ETH, so that the full system remains interacting through
the influence of the bath. In a second step, we briefly indicate
how to incorporate additional interaction terms.

Localization for the Hamiltonian (16). We take hi ∼ ξ with
ξ the halfwidth of the structure factor v of the bath operator
σx

0 . This is realistic if the bath is made up from similar spins
as the localized chain. Of course, the hi should be disordered
but this is not important any longer in (16): the strong disorder
has already been used to derive this model Hamiltonian, and
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it is reflected in g1 	 ξ and ζ 	 1. In particular, we may use
the FGR to compute the hybridization width.

We proceed inductively, setting first gi = 0 for i > 1. That
puts us precisely in the case discussed at length in Section II,
with V = σx

0 . The hybrdization condition (4) will be clearly
satisfied if �b is large enough and we obtain eigenstates ψ of
the B + S1 system. The next step is to view the B + S1 system
as a the bath and to couple it to S2 through V = σx

0 . If �b is
large enough, the hybridization condition is again satisfied and
we can proceed. The only way that our scheme can stop is if at
some point the hybridization condition is violated. To evaluate
the hybrdization condition we need to determine at each step
the new density of states ρ ′ and structure factor v′ from those
at the previous step ρ,v. Naturally, ρ ′ = 2ρ and from (6) in
Sec. II D we deduce that, roughly, v′ ≈ v: the structure factor
stays roughly the same since the sum of widths of all the
hybridization functions is small compared to the width of v:∑

i g
2
i /ξ 	 ξ . This means that the G parameter defined in (4)

gets updated as

G ′ = Ge−a, a ≡ 1/ζ − ln(2)/2 � 0,

where the inequality a � 0 follows from strong disorder
ζ 	 1. It follows that G� = e−a�G1. Since G ≈ (g0/ξ )2�b/2, by
ETH for the original bath, we conclude that the hybridization
condition breaks down at � = �c with

�c ≈ ln 2

2/ζ − ln 2
�b (17)

and this length is hence an estimate for the size of the crossover
region. In a more general estimate, the factor ln 2 should of
course be replaced by an entropy density.

Note that our estimate differs from the more simple guess
whereby one considers only the thermalizing effect of the
original bath with length �b; such an estimate leads to a
crossover region of size

�c ≈ ζ
ln 2

2
�b.

More importantly, our estimate implies that LIOM’s can not
have an arbitrarily large localization length, as defined by
Eq. (15), because if 2/ζ � ln 2, then the localization is not
stable with respect to ergodic grains.

Additional interaction terms. Let us briefly discuss what
happens in the presence of additional terms in the Hamiltonian
(16). When dealing with the i th l spin, we have a Hamiltonian
of the form

V x
b ⊗ τ x

i + V z
b ⊗ τ z

i .

Besides the coupling σx
0 ⊗ τ x

i that we dealt with already, the
term V x

b ⊗ τ x
i includes terms of the form σx

0 ⊗ τ x
1 . . . τ x

i . The
term V z

b comes from the interaction terms among l spins,
i.e., τ z

i−1τ
z
i , and more generally τ x

1 . . . τ z
i . The consideration of

these terms mainly induces the two following modifications:
(a) Breakdown of the FGR. Let us deal with the term V z

b ⊗ τ z
i

alone, and let us imagine that it is simply given by τ z
i−1τ

z
i . This

operator does not flip the l spin at i, hence the eigenstates are
now of the form |b↑,↑〉 or |b↓,↓〉, where ↑ and ↓ represent
the state of the l spin at i. The operator τ z

i−1 only hybridizes
the states within the bath in a way that depends on the state
of τi . However, far away from the original bath, the structure

factor of the operator τ z
i−1 will have a narrow peak at origin,

because the (i − 1)th l spin is so weakly coupled to the original
bath. Hence the FGR will not apply, and one has instead to
estimate the hybridization width by 1/v(0) as we argued in the
second part of Sec. II C. This is in fact not an issue: one simply
needs to apply the correct rule as to avoid an absurdly large
hybridization width.

(b) Breakdown of the product structure. Let us now add the
operator V x

b ⊗ τ x
i , on top of V z

b ⊗ τ z
i . The basis made of the

states |b↑,↑〉 and |b↓,↓〉 does not enjoy the product structure
anymore. This again is as such not an issue as the theory
developed in the previous section did not actually rely on
this. This said, when computing the structure factor of τ x

i , one
should keep in mind that there is no strict orthogonality relation
among the states |b↓〉 and |b↑〉. Instead, one should use the
narrow hybridization width obtained in (a) to recover a result
in agreement with the upshot obtained for the Hamiltonian
(16) without any extra terms.

B. Instability of MBL for subexponentially decaying
interactions

The above analysis directly implies that a spin chain
with subexponentially decaying interactions [46,47] is not
stable wit respect to ergodic grains. Indeed, if such a system
were MBL, then the LIOM operators should presumably
have a subexponential tail as well [48] and we can model
their interaction with an ergodic grain by taking the gi in
(16) to decay subexponentially. In this case, however, the G
parameter flows to infinity if �b is large enough, i.e., if the
grain is sufficiently large. A first step towards verifying this
is described in Sec. V, where we consider a random matrix
corresponding to a 6-spin bath coupled weakly to a chain of
8 LIOM spins with decay factor e−1/ζ = gi+1/gi = 3/4, for
which �c = ∞ according to the above estimates (i.e., we do
not even consider subexponentially decaying interactions but
exponential ones with a too slow decay rate for localization
to persist). Despite the LIOM chain being localized, we see
that the resulting system indeed behaves rather accurately as
an ergodic system with dimension 26+8.

Finally, note that if we would change the model, so as
to have very slowly decaying gi , then proximity effects, see
Sec. II F, can indeed localize the ergodic grain. We do not
discuss this as such models can probably not emerge as LIOM’s
of local localized Hamiltonian [49,50].

C. Instability of MBL for higher-dimensional systems

The higher-dimensional setup is in effect similar to the case
of subexponentially decaying couplings. Consider a spherical
ergodic grain of with radius �b, surrounded by LIOM’s coupled
to it with strength decaying exponentially in distance r ,
gr ≈ g0e−r/ζ . The nearby LIOM’s will get thermalized and
according to our theory above, any thermalized LIOM fully
contributes to the bath. The number of LIOM’s with distance
r � � is

N� = Cd (�b + �)d − �d
b

with Cd the volume of a unit d-dim sphere. When these LIOM’s
have been thermalized, the bath density of states has been
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increased by a factor 2N� , which grows superexponentially in
� if d > 1. This overwhelms hence the effect of exponentially
decreasing couplings. Said a bit differently, if there were a
crossover region extending up to a distance �c from the bath,
and beyond that region MBL would persist, then there is a
thermal volume (bath+crossover region) Vth(�c) = Cd (�b +
�c)d . The condition that spins outside the ergodic region are
not hybridized is then

Vth(�c) ln 2 − 2

ζ
lc � 0. (18)

This equation has a finite solution for �c either when �b is
small enough compared to ξ , or for d = 1 as soon as [51]
ξ < 1/ ln 2.

Of course, this estimate is known already as an upper bound
on the crossover region; it is, for example, the main reason why
the analysis of [12], in which the crossover region is called
“collar” is restricted to d = 1. The point in the present paper is
however that within our theory, the volume Vth is not an upper
bound, but the actual volume of a fully ergodic region.

As a note of caution, we remark that the d > 1 setup
is not entirely free of the problem discussed in Sec. II F
locality. Already when coupling the first layer of spins around
a spherical ergodic grain of diameter �b, the structure factors in
the grain grow like �

d/2
b if we were to apply our theory literally.

Finally, we note that our conclusions echo the analysis in
Ref. [30], where a careful investigations of structure factors
led to a division of MBL systems in “weak” and “strong”
MBL, where only d = 1 systems with exponentially decaying
interactions can be “strong MBL”. Our analysis suggests,
however, that “weak MBL” systems are delocalized.

D. Stability of MBL without LIOM’s

In this section, we rederive the stability of one-dimensional
MBL that was established in Sec. III A. However, we do not
use the powerful LIOM representation for the localized spins.
Instead, we develop our reasoning here for physical spins
instead of l spins. The possibility of doing so demonstrates
the versatility of the theory.

Hence we consider again the Hamiltonian (16), but now
written in terms of the physical σ operators:

H = HB +
�∑

i=1

hiσ
z
i + g

�∑
i=1

σx
i−1 ⊗ σx

i (19)

with again σx
0 a bath operator, cf. (16), and hi random fields,

i.i.d. random variables uniformly drawn from [−h,h] with
g/h 	 1, i.e., strong disorder. Let us denote by vi,i = 0,1, . . .

the structure factor of the operator σi , these are relevant
because they couple to spin i + 1. For v0, we take a bump
function with halfwidth ξ ∼ h (as before), and the other vi are
to be determined. We write wi for the width of the hybridization
function by which the i’th spin is coupled to the preceding
ones. So, assuming the FGR applies (see below) we have

wi = g2vi−1(2hi). (20)

The structure factors vi,i � 1 are given through (6) as

vi(ω) = 1

2πwi

(
1

1 + (
ω+2hi

2wi

)2 + 1

1 + (
ω−2hi

2wi

)2

)
(21)

because the convolution of two Lorentz distributions with
halfwidth wi is again a Lorentz distribution with halfwidth
2wi . The above two relations (20) and (21) in determine
inductively all structure functions. Let us neglect resonances
by pretending that all neighboring fields are sufficiently
different:

min |hi − hi−1|,|hi + hi−1| ≈ h/2.

Keeping then only the largest of two terms in (21) and using
that h/wi � 1, we get

wi = g2vi−1(2hi) ≈ g2wi−1

πh2
. (22)

So the upshot is that the hybrdization width decreased by a
factor of order (g/h)2 (the calculation is not precise enough
to take the prefactor π seriously). Iterating this and recalling
that w0 = ξ , we get

wi = vi−1(2hi) = ξ (g/h)2i ,

i.e., an exponentially decaying width for the structure factors.
By comparison with III A, the decay rate ln(h/g) is a natural
estimate for the inverse of the localization length ζ .

We recall that the whole iterative calculation makes sense
only as long ETH is satisfied, hence as v is smooth on the scale
of the level spacing. This means that this procedure breaks
down when wi = 1/ρi where ρi = 2iρ0 ≈ 2i+�b/ξ , hence the
breakdown is at i = �c with

2�b (2(g/h)2)�c = 1,

which yields the same conclusion as (17) upon identifying
e−ζ = g/h.

Let us now return to the validity of the FGR in this situation.
The scale ω0 over which v changes at ω can be estimated by
ω0 ≈ v(ω)

|v′(ω)| , so the FGR condition w 	 ω0 reads (for coupling
the i + 1-th spin)

g2|v′
i(2hi+1)| 	 1.

For i = 0, this means g 	 ξ , which was assumed, and for
i � 1, it boils down to(

g

wi

)2

	
(
1 + M2

i

)2

Mi

, Mi ≡ min |2hi+1 ± 2hi |
wi

,

which is indeed satisfied in the treatment above (except at
resonances).

Finally, we notice that the Hamiltonian (19) does not
contain any interaction terms such as σ z

i σ z
i+1, that are naturally

present in one-dimensional systems to break their integrability,
and it would be definitely desirable to deal with them as well.
This can be done, at the cost of some modifications, that are
basically the same as the one explained in the last part of
Sec. III A. This said, we would like to stress the fact that it is
here really crucial to take account of the fact that the FGR may
not apply. Indeed, in order to proceed with our derivation, one
must make sure that the width of the structure factors of a local
operator at distance i from the bath decays as e−i/ζ . Contrary to

155129-8



STABILITY AND INSTABILITY TOWARDS . . . PHYSICAL REVIEW B 95, 155129 (2017)

what happened for σx
i σ x

i+1 couplings, the σ z
i σ z

i+1 will be “res-
onant”, i.e., the structure factor of σ z

i will have a peak at origin
(once inserted into the bath) with width proportional to e−i/ζ ,
and, since the operator σ z

i+1 does not flip the spin, this peak will
dominate the coupling. For this reason, the FGR does not apply.
Instead the width of the resulting hybridization is proportional
to the width of the peak, i.e., to e−i/ζ . Thus one concludes that
the addition of the σ z

i σ z
i+1 will indeed not lead to a broadening

of the structure factor and our derivation can proceed.

IV. STRUCTURE OF THE INTERFACE REGION

Let us discuss the most striking properties of the spatial
interface region between an ergodic and an MBL system,
referred to as the crossover region in Sec. III. First of all,
our theory describes this interface region as fully thermal or
ergodic: ETH holds for all local operators in the crossover
region. However, the onset of localization is revealed by the
narrowing of structure factors. Indeed, adopting the framework
of Secs. III A and III B, the structure factor vi of an operator
located at the i’th added spin, has two main peaks of halfwidth
wi of the order

wi ≈ g2
i /ξ ≈ e−2(i−1)/ζ g2

1/ξ.

This follows from applying the formula (8) and it matches
with the alternative derivation presented in Sec. III D. To avoid
confusion, we stress that previously the symbol w was reserved
for the (half)width of hybridization functions. Since the widths
are exponentially decreasing, we see that adding further spins
(i.e., i + 1,i + 2, . . .) does not significantly affect the widths of
the spins already added and so wi above is the width regardless
of how many more spins have been added.

To quantify the behavior in the interface region, we
calculate an inverse participation ratio (IPR) of operators O

in this region. By the IPR of O, we mean that we choose an
eigenstate ψ (at maximal entropy, to stay within the setup) and
we look at the distribution over the other eigenstates ψ ′ of the
matrix elements

〈ψ ′|O|ψ〉.
The IPR(O) = IPR(O,ψ) is then

IPR(O) =
⎛
⎝∑

ψ ′
|〈ψ ′|O|ψ〉|4

⎞
⎠

−1

(this quantity should be normalized by
∑

ψ ′ |〈ψ ′|O|ψ〉|2 but
we will always take O = σ

x,y,z

i so that the normalization
constant is always 1). Let us calculate this in terms of the
parameters used in the ETH hypothesis, notably the structure
factor v. Then

IPR(O) = ρ

( ∫
dωv2(ω)

)−1

.

If the structure factor v consists of two peaks with halfwidth
w, then on its support v ≈ 1/(4w) and this yields

IPR(O) = 4ρw.

Note that hence IPR(O) ≈ N where N is the number of states
or “effective dimension” within an energy range 4w, so this

matches with the meaning of IPR in one-particle systems.
As N scales exponentially with system size, it is natural to
consider rather the logarithm of IPR’s, so we define

D(O) = ln IPR(O).

Let us now apply this to the spins added to the bath, i.e., O =
σx

i for example. Let us assume that � spins have been added
to a bath of length �b and these spins have been thermalized,
i.e. � � �c with �c as in (17). For the density of states ρ,
we of course have to use the density due to all the spins, i.e.,
ρ� = 2�b+�/ξ (we neglect a volume denominator by pretending
that ξ is the total bandwidth of the bath). This means that we
have

D
(
σx

0

) = Vth ln 2,

D
(
σx

i

) = ln(4ρ�wi), i � 1,

∼ ln(4ρ�w1) − 2(i − 1)/ζ

∼ ln 4 + Vth ln 2 − 2 ln
(g1

ξ

)
− 2(i − 1)/ζ, (23)

where Vth = lb + � is simply the volume of the thermal region
(original bath plus thermalized spins) and we used w1 = g2

1/ξ ,
and D(σx

0 ) = Vth ln 2 (the operator inside the bath).
It is worth spelling out the two aspects contained in (23),

holding in fact for arbitrary operators Oi located around i.
First, all the spins in the crossover region maximally participate
to the effective dimension of the bath for an operator inside the
ergodic grain, since D(Oi=0) is proportional to Vth and not to
�b. Second, D(Oi) − D(O1) decays linearly in i for operators
inside the crossover region. Both of these aspects seem to be
well-confirmed by the numerics in Sec. V.

More generally, for a subcritial grain [i.e., if (18) admits
a solution for �c] in d � 1, we can consider also � � �c. The
theory predicts a smooth transition between the core of the
grain and the MBL region. The MBL region is reached when
D(O) ≈ 0, which of course reproduces the estimate (17) for
�c in d = 1.

V. NUMERICAL TESTS

A. LIOMs coupled to a random matrix bath

In this section, we test the central prediction of our theory;
that every spin, however weakly coupled, that is thermalized
by the bath, indeed doubles the effective dimension of the bath.
We consider again the Hamiltonian introduced in (16):

H = HB +
n∑

i=1

(
giσ

x
0 τ x

i + hiτ
z
i

)
,

where HB is the Hamiltonian of the bath and σx
0 pertains to a

spin in the bath/ergodic grain at the boundary. The LIOM-spin
τ z
i is at distance i (in lattice units) from the ergodic grain,

hence we set

gi = αi−1g1 (α < 1). (24)

We take α = 3/4, corresponding to inverse localization length
ζ−1 = ln(4/3). Since ζ−1 < ln(2)/2, our theory predicts that
the crossover region extends to infinity: it should be able to
thermalize an arbitrary amount of added LIOM spins.

We take g1 = 0.2 and hi = 1 + h̃i with h̃i i.i.d. random
variables drawn uniformly from [−0.5,0.5]. These parameters
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FIG. 3. (Top)D(OB ) for a spin inside the bath, as a function of the
number of LIOMs coupled to the bath. In blue, a six-spin RM bath,
N = 200; in red, a single spin bath, N = 4000. (Bottom) Discrete
slopes of the above curves. At each i + 1

2 , we plot D(OB,i + 1) −
D(OB,i), with i the number of LIOMs.

should guarantee that the LIOM-spins τi are indeed by
themselves localized degrees of freedom. This is a somewhat
subtle statement because the τi are not coupled to each
other and hence they have no mechanism for delocalization.
However, we mean by this the interaction between them via the
bath spin σx

0 is not sufficient to delocalize them. In practice,
this simply means that we check (see below) whether for a
sufficiently small bath, the system is localized. For the bath,
we first consider a grain of 6 spins with no particular spatial
structure; HB is then simply a random matrix (RM) acting on
a 26-dimensional space, with level spacing 1/ρ = 0.07 and
bandwidth 4.2. We couple up to 8 LIOMs to this grain. To
minimize finite-size effects, we consider a bath spin operator
OB = σx

B that is not the one used to couple to the LIOM’s, i.e.,
not σx

0 (it does not make sense to specify OB as this bath has
no spatial structure).

1. Strenghtening of the bath by the LIOMs

We focus first on a local operator inside the core of the
ergodic grain. We compute the disorder-average of D(OB), as
a function of the number of LIOMs coupled to the bath. The
result is represented by the blue line on the left panel of Fig. 3,
while the corresponding slope of this curve is depicted on the

FIG. 4. D(σ x
i ) as a function of i for 0 � i � 8, for a system of

eight localized spins coupled to a sixspin RM bath. N = 200 for each
point of the curve.

right panel. The value of this slope approaches the ideal value
ln 2 predicted by our theory.

It remains to check that the spins τi are localized in the
absence of the bath. For this, we replace the six-spin bath,
by a single spin (bandwidth=2.25), for which perturbative
computations predict the persistence of localization. We
still compute the disorder-average of D(OB), where OB

corresponds now to the unique spin in the bath. The result is
represented by the red lines in Fig. 3. The slope much smaller
than in the previous case (less than half of the ideal value) and
we observe a tendency for the slope to decay.

2. The crossover region

We now turn to the investigation of the spatial dependence
of ln IPR in the crossover region. Despite notational similarity,
the quantity we consider is different from that on Fig. 3, where
O was a bath operator and the dependence on i was simply
because of the number of attached LIOM’s. We now calculate
D(σx

i ) for all 0 � i � 8 (where i = 0 corresponds to a spin
inside the bath). Our theory, see Sec. IV, predicts that D(Oi) −
D(O1),i � 1 decays linearly with slope 2(ln 4 − ln 3) = 0.58,
whereas the decay from D(O0) to D(O1) is unrelated. The
actual result of the calculation is depicted in Fig. 4. We indeed
observe a linear decay from spin 1 to 8. The slope in the linear
region is 0.5, which seems in reasonable agreement with the
theoretical value 0.58.

B. A universal thermalization curve: comparison
of different baths

In this section, we compare the action of different baths,
differing in size and nature: random matrix, local Hamiltonian,
and local Hamiltonian plus thermalized LIOM’s. Already the
fact that the latter can be labeled a bath is a nontrivial element
and, in some sense, the core of the message of this paper. In
our theory, the characteristics of the bath enter only via the
dimensionless coupling constant G and via the hybridization
width w describing the thermalization of a spin. Moreover, if
the FGR holds, then w is rigidly related to G by G2 = ρw,
hence we focus on the dependence on G here.
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FIG. 5. �D(OB ) = D(OB )|G − D(OB )|G=0 as a function of G.
(1) Blue: B ′ = 9 spins bath with local interactions and three
thermalized LIOMs, N = 200 (the number of disorder realizations).
(2) Orange: B ′ = 9 spins bath with local interactions, N = 1000. (3)
yellow: B ′ = 9 spin RM bath, N = 100. (4) Purple: B ′ = 9 spins bath
with local interactions and three unthermalized LIOMs.

The G parameter enters our theory in deciding whether or
not an external spin is thermalized. However, numerics shows
thatG also accurately predicts the quality of the thermalization.
This quality of thermalization is quantified by the increase in
D(OB) upon adding the spin, e.g.,

�D(OB) := D(OB)|G − D(OB)|G=0

as a function of G. Of course, �D(OB) = 0 for G = 0 and
one expects that the effective dimension doubles by inclusion
of the spin, hence �D(OB) → ln 2 as G � 1. The behavior
for intermediate value of G is in practice not so important for
our theory. However, it is remarkable that the curves in Fig. 5
collapse rather well for different baths (the deviant lowest
curve is explained below) and we feel it supports our theory in
a compelling way.

Let us now discuss in detail the three different baths that
we compare.

Local nine-spin bath plus three LIOMs We introduce a bath
of nine spins with a local structure:

HB =
9∑

i=1

(
h′

iσ
z
i + Jσx

i

) + J ′
8∑

i=1

σx
i σ x

i+1 (25)

with h′
i = 1 + h̃′

i with −0.3 < h̃′
i < 0.3, J = 0.5, and J ′ =

1. We couple four LIOMs τ1,...,4 (we take hi , g1 = 0.2 and
α = 3/4 as in Sec. V A) to this bath, but we vary the coupling
strength g4 of the last one. So, the nine-spin bath plus three
LIOMs form a bath, let us call it B ′, that we investigate by
viewing how it acts on the fourth spin τ4. As explained above,
this is done by measuring D(OB) for an operator OB in the
original bath B. We choose OB = σx

4 (this “four” refers to a
site in the bath and is completely unrelated to the four of τ4).
Note that σx

9 is the same as σx
0 in Sec. V A.

We determine G for the coupling of the fourth spin to B ′:
G = g4

√
v(2h4)ρ with 1/ρ the level spacing in B ′ and v(·)

the structure factor of the bath operator σx
0 . Numerically, we

calculated G as (the disorder average of) g4ρ
√

M where

M := 1

N
∑

b′,s ′:|E(b′,s ′)−E(b,s)|�1

δs,−s ′
∣∣〈b|σx

0 |b′〉∣∣2

with N the number of terms in the sum, b,b′ eigenstates of
the bath B ′, s an eigenstates of τ z

4 and b,s chosen so that |b,s〉
eigenstate with energy E(b,s) closest to 0 (maximal entropy).

Local nine-spin bath. Here we take the same nine-spin bath
as above but without the three LIOMs coupled to it.

Random matrix. This is a random matrix bath mimicking
the nine-spin bath (with dimension 29 and level spacing 1/ρ =
0.018), no extra localized spins.

For contrast, we plot an example of a curve that doesn’t
match. The purple curve in Fig. 5 is built from the same
data as the orange curve, but is scaled differently. Indeed,
one considers here the case where there are actually three
intermediate spins, as for the blue curve, but where these spins
are uncoupled (g1 = g2 = g3 = 0). It is thus clear that they
have no physical effect, so that the data are the same as the
one obtained on the orange curve; however, if one considers
the original bath together with these three spins as the new
bath B ′, one divides the level spacing by 23, leading to a
different definition of G w.r.t. the orange curve. We see that
the purple curve is clearly an outlier, indicating that when the
three intermediate spins are truly coupled, they do participate
to the thermalization of the last fourth spin.

Finally, we observe that the value of �D for the blue curve
becomes even slightly larger than ln 2 for values of G close
to 1. This is a priori surprising as the increase of dimension
from a single spin should be ln 2 at most. We suspect the
following scenario: before coupling the 4th spin, D did not
reach its maximal value, because the three coupled spins were
only imperfectly thermalized. Indeed, in our numerics the bare
values used for the first three spins are not so far from the
critical value needed for thermalization. The first of these spins
corresponds toG = 0.67, which can still be considered slightly
in the transition region, as is revealed by a careful inspection
of the curves of Fig. 5. However, the situation becomes better
for each added spin (this is a direct consequence of the fact
that ln(4/3) > ln 2/2 and there is catchup effect: the fourth
spin helps to complete the imperfect thermalization of the first
three spins).

VI. CONCLUSION

We have proposed a simple RMT theory for the joint
eigenfunctions of spins coupled to a finite bath. When we
apply this theory repeatedly, we obtain a clear-cut prediction
whether the system will be localized or ergodic. In this way, we
investigate finite ergodic grain (bath) coupled to well-localized
spins, i.e., with coupling strength small compared to disorder.
The predictions are consistent with localization in d = 1 with
exponentially decaying interactions: localization is stable with
respect to such ergodic grains. For interactions that decay
slower, or in d > 1, our theory predicts delocalization. The
most quantitative result of our theory is a description of the
spatial intermediate region between an ergodic grain and a
d = 1 localized material. In particular, it states that any degree
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of freedom, say a 1
2 -spin, in this region enhances the ergodic

grain, leading in particular to a doubling of the effective
dimension or the IPR (inverse participation ratio) parameter.
This prediction is reasonably validated by numerics, though
there is need for finer tests. As an aside, the numerics reveals
a rather universal pattern of thermalization that does not
distinghuish between the action of a bath on very localized
degrees of freedom or others, i.e., (nearly) ergodic degrees of
freedom.
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APPENDIX A: NUMERICS ON THE HYBRIDIZATION
WIDTH

We return to Sec. II C and we assume the notation used
there. We test numerically the (FGR) relation

w ∼ g2

ξ
.

We always choose the eigenstate ψ of the coupled system
to lie in the middle of the spectrum, i.e., at E = 0 and
consider mainly a random matrix (RM) bath, for which ξ

is approximatively the full spectral width. The width w can
depend a priori on ρ, ξ , g, and h, where we recall that ρ

is the inverse of the level spacing (at maximal entropy). For
the numerics below, we take h = 1 and g = 0.8. As long as
2h is significantly large than g, we do not expect any crucial
dependence on h; this turns out to be so indeed (not shown).

Let us check that w is independent of ρ. For this, we
fix g and h, and we consider four different RM baths, say
B1, . . . ,B4, acting on spaces with dimension from 28 to 211,
rescaled in a such a way that ξ remains constant (the width is
approximately equal to ξ = 10). The level spacing is the only
variable parameter; it gets divided by 2 each time we change
bath from B1 to B4. The four corresponding hybridization
curves are plotted on the upper panel of Fig. 6. The good
matching of the curves indicate that w is indeed independent
from ρ.

We next check that w depends on ξ as 1/ξ . For this we
repeat the previous numerics, rescaling now the baths so as
to keep the level spacing constant (we take it approximately
equal to 1/ρ = 0.02) and varying ξ . Now the value of ξ gets
doubled each time we change bath from Bi to Bi+1. To collapse
the curves, we use the scaling relation. Since a Lorentzian
distribution satisfies the scaling λf (λx,λw) = f (x,w), the
relation w ∼ 1/ξ implies that the curves should collapse by
plotting 2k−2fBk

(2k−2x) instead of fBk
(x) (the hybridization

FIG. 6. Hybridization curves for 4 different RM baths, by varying
the level spacing (upper panel) or the width (lower panel).

curves for the bath Bk) for 1 � k � 4. The result is shown on
the lower panel of Fig. 6. We observe again a good matching
except for the blue curve corresponding to the smallest bath
(k = 1); this discrepancy can be attributed to finite size effects
and to the fact that the Lorentzian shape does not need to
be strictly verified. Thanks to the two previous points, the
dependence of w on g as 1/g2 now follows from dimensional
analysis or simple rescaling of the parameters of the model.

FIG. 7. Hybridization curve for a 11 spins bath with local
interactions.
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Finally, in Fig. 7, we show an example of an hybridization
curve for an 11 spins bath with local interactions. The
Hamiltonian of this bath is the same as the Hamiltonian in
Eq. (25), with 9 and 8 above the summation signs respectively
changed to 11 and 10. We observe a camel-like shape, showing
that the Lorentzian distribution should only be taken as an
idealization of the hybridization function [we also observe
some asymmetry in the peaks, which however can be explained
by noting that tr(HB

3) �= 0].

APPENDIX B: CALCULATIONS ON THE BACKREACTION

Here we carry out some calculations that were omitted in
Sec. II E. First, we evaluate the kernel K(b,s|b′,s ′) for b = b′ in
a weak-coupling approximation. To that end, we approximate
the resolvent by its g = 0 value K0:

K0(b,s|b,s ′) = g〈b,s|σx
B

1

E′ − H0
P̄ ′σx

s σ x
B |b,s ′〉.

Since H0 does not flip s, we can simplify K0(b,s|b,s ′) =
δs,−s ′K0(b,s|b, − s). Inserting a parition of unity, we write

K0(b,s|b, − s) = g
∑

b̃

|〈b|σx |b̃〉|2 χ (|�| � w)

�

≈
∫

dω χ (|�(ω)| � w)
gv(ω)

�(ω)
,

where � ≡ ω + 2sh + {E(b, − s) − E′} and we recall that
term in {. . .} is restricted to | · | � w. In the region where
v has its bump, the integrand is typically of size g

ξ max (h,ξ ) ,
which leads to the estimate W ≡ g

max (h,ξ ) for the integral. If
the function v were very rough around the cutoff singularity

�(ω) = 0, then this could change the estimate to −W lnW ,
which does not affect the essence of our conclusion.

To get to the contribution to the structure factor (13), we
return to the expression

〈Pψ |σx
B |P̄ ′ψ ′〉 =

∑
b,b′,s,s ′

〈Pψ |b,s〉K(b,s|b′,s ′)〈b′,s ′|P ′ψ ′〉.

Restricting to b = b′, replacing K by K0 and
〈Pψ |b,s〉,〈b′,s ′|P ′ψ ′〉 by the random expressions from
(10), we get the result by a central-limit calculation, as in
Sec. II D.

As mentioned in Sec. II E, similar considerations also lead
to a derivation of the FGR, which is phrased here as the fact
that ||P̄ψ || ∼ 1, i.e., we are truncating the eigenstates exactly
around their bump. Approximating the resolvent again by its
lowest-order expression

P̄ψ ≈ g
∑
b,s

√
k0(ω)η(b,s)√

ρ

1

E − H0
P̄ σ x

S σ x
B |b,s〉

with ω = E − E(b,s), we can calculate (the expectation value
of) ||P̄ψ ||2 as

||P̄ψ ||2 ≈ g2
∑

b,s,b′,s ′

k0(ω)χ (|ω′| � w)

(ω′)2ρ

∣∣〈b′,s ′|σx
B |b,s〉∣∣2

,

where ω′ = E − E(b′,s ′). Plugging the ETH expression for
the matrix elements of σx

B , we get

||P̄ψ ||2 ≈ g2
∫

dωdω′ k0(ω)χ (|ω′| � w)

(ω′)2
v(ω′ − ω).

We use that
∫

k0 ∼ 1 (with width w) and we approximate v as
a bump with width ξ � w (FGR condition). Then the above
integral yields indeed g2/ξ . Most importantly, this conclusion
is not affected if v had additional narrow peaks with small
weight, cf. the splitting v = vsm + virr obtained in Sec. II E.
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