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Time-periodic driving of a quantum system can enable new dynamical topological phases of matter that could
not exist in thermal equilibrium. We investigate two related classes of dynamical topological phenomena in 2D sys-
tems: Floquet symmetry-protected topological phases (FSPTs) and Floquet enriched topological orders (FETs).
By constructing solvable lattice models for a complete set of 2D bosonic FSPT phases, we show that bosonic
FSPTs can be understood as topological pumps which deposit loops of 1D SPT chains onto the boundary during
each driving cycle, which protects a nontrivial edge state by dynamically tuning the edge to a self-dual point poised
between the 1D SPT and trivial phases of the edge. By coupling these FSPT models to dynamical gauge fields, we
construct solvable models of FET orders in which anyon excitations are dynamically transmuted into topologically
distinct anyon types during each driving period. These bosonic FSPT and gauged FSPT models are classified
by group cohomology methods. In addition, we also construct examples of “beyond cohomology” FET orders,
which can be viewed as topological pumps of 1D topological chains formed of emergent anyonic quasiparticles.
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I. INTRODUCTION

Periodic driving of a quantum system can be used to
engineer new effective interactions that change the topological
properties of a system [1–4]. A particularly intriguing exten-
sion of these ideas is that driving can lead to fundamentally
new dynamical phases with no equilibrium counterpart [5–15].
Many-body localization (MBL) enables sharp distinctions
between quantum-coherent dynamical phases in highly excited
states [16,17] and allows for periodic driving of generic
quantum many-body systems without heating and decoherence
[18–20]. Together, these developments raise the question,
can we systematically understand the quantum phases and
their physical properties of quantum phases in periodically
driven matter? Further impetus for this study stems from
recent experimental progress in producing MBL states of cold
atoms [21–23] and trapped ions [24], experiments including
periodically shaken [23] and two-dimensional [22] optical
lattices.

Early investigations into this question reveal a number
of intriguing new dynamical phenomena. For example, new
symmetry breaking phases with dynamical order parameters
may arise [25,26], including the possibility of breaking of
discrete time-translation invariance without any accompanying
static symmetry breaking—a (discrete) Floquet time crystal
[27–30], which was recently observed experimentally [31].
An additional possibility is that periodic driving enables
fundamentally new topological phases [32–35] or symmetry-
protected topological phases of matter [5–15].

Such Floquet symmetry-protected topological (FSPT)
phases were originally investigated in the context of Floquet
band theory relevant to weakly interacting fermion systems
[5–10,15]. However, most (possibly all) weakly interacting
fermion SPT systems cannot be localized, and hence are
unstable to heating and do not represent stable many-body
phases [36].

Strongly interacting systems such as bosonic or spin sys-
tems, on the other hand, can avoid these problems. Obtaining
nontrivial FSPT phases in such systems intrinsically requires

interactions, which presents theoretical challenges. Substantial
progress has been made in systematically understanding 1D
FSPT phases in interacting boson systems [11–14], where a
number of intrinsically dynamical FSPT phases with no static
analogs can be realized, often with rather simple interactions.
Physically, these new 1D FSPT phases are characterized by a
quantized amount of symmetry charge being pumped across
the system and deposited during each Floquet cycle. Due
to this symmetry pumping, these 1D FSPT phases exhibit
protected edge states that undergo a topologically quantized
spin-echo sequence, which decouples them from bulk sources
of decoherence, and allows them to perfectly store quantum
information. Formally, the group structure of 1D FSPT phases
are classified by projective representations of the symmetry
group extended by a discrete time-translation symmetry due
to the Floquet structure [12,13]. For bosonic systems, such
projective representations are encoded in the second group
cohomology [12,13,37,38].

In this paper, we focus on understanding FSPT phases
of bosonic systems (e.g., spin systems) in two and higher
dimensions. A natural extension of the 1D FSPT classification
to arbitrary d-dimensional systems is to consider the (d + 1)th
group cohomology of the on-site symmetries plus a discrete
time-translation symmetry. This classification was proposed
in [12,13], and physically interpreted as being characterized
by a quantized pumping of (d − 1)-dimensional SPT phases
across the system for each Floquet cycle [12]. Further, exactly
solvable models of the new dynamical phases were sketched
in [12].

While these results derive the abstract group structure
of higher dimensional bosonic FSPTs and offer a proof of
principle that they can arise in local spin models, the physical
properties of these new phases remain to be elucidated. In
particular, as with any SPT phase, we expect the FSPT
phases to exhibit unconventional edge states with anomalous
implementations of symmetry. In equilibrium systems, the 1D
edges of 2D bulk SPTs must either spontaneously break the
protecting symmetry or exhibit symmetry-protected gapless
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modes with anomalous implementations of symmetry. What
are the analogous sets of edge phases for nonequilibrium
periodically driven FSPTs? For example, one might expect
that under periodic driving, the gapless surface state of a
bulk SPT will absorb energy and become ergodic, heat-
ing to infinite temperature. Is this necessarily the fate of
the symmetry-preserving edges of Floquet SPTs? Can the
anomalous properties of the edge still be observed at infinite
temperature?

To address such questions, we construct a simple, solvable
model of a 2D Floquet SPT with Z2 × Z2 symmetry—which
can be viewed as a phase in which a 1D SPT with the
same symmetry is pumped across the system onto the edge
during each Floquet period. We explicitly analyze the edge
of this theory, and elucidate how the bulk pumping action
dynamically enlarges the symmetry group of the edge to a non-
Abelian symmetry, which prevents the edge from localizing
while preserving symmetry. For the set of edge Hamiltonians
considered, we find that the edge of this 2D FSPT phase
can either be symmetry preserving and thermal or symmetry
breaking and localized. We then generalize this construction
to other bosonic 2D FSPT classes. We describe edge and bulk
diagnostics of the dynamical SPT orders, including signatures
in the micromotion of the entanglement spectrum. Interest-
ingly, we show that the dynamical anomalous properties of
the edge survive even when the edge is thermal and heats
up to infinite temperature by absorbing energy from the
drive.

Next we investigate new dynamical phases of periodically
driven systems with intrinsic topological order and fractional
anyonic excitations. A la [39], we start by promoting the global
protecting symmetry of a bosonic FSPT model to a local gauge
symmetry, to obtain new Floquet enriched topological phases
(FETs). Like the corresponding 2D bosonic FSPT models, this
class of FETs is classified by group cohomology [40] with an
extra dynamical symmetry corresponding to time-translation
symmetry. However, we show that such cohomology states
do not exhaust the possible set of FETs, and construct
several examples of “beyond cohomology” FET phases. These
examples can be considered as anyonic generalizations of
the 2D FSPTs, in which 1D topological phases of anyonic
quasiparticles are pumped onto the edge of the system during
each driving period. An alternative way to characterize these
phases is that the bulk anyon types are dynamically permuted
during each driving period. We find that, in the MBL regime,
the dynamical permutation of anyons forces the FET phase to
be accompanied by spontaneous time-crystal order, but that the
FET order remains sharply defined despite the spontaneously
enlarged periodicity in the time-crystal phase.

In addition to these FSPT phases, there are possible 2D
chiral Floquet phases [32–34] characterized by quantized
chiral pumping of quantum information at the edge [34], and
which do not rely on symmetry protection [34]. In this work,
we will restrict our attention to nonchiral Floquet phases,
and leave the challenge of incorporating chiral edge pumping
into the classification of FSPT and FET phases for future
work. We also do not consider the more challenging problem
of describing Floquet enrichment of non-Abelian topological
orders, which can be expected to lead to a rich variety of new
FET and chiral Floquet phases.

II. REVIEW: FSPT CLASSIFICATION IN ONE
AND HIGHER DIMENSIONS

The 1D bosonic FSPTs with symmetry group G are
classified by projective representations of the an enlarged
symmetry group, G̃, that includes both the symmetries of the
Floquet Hamiltonian, G, and an extra discrete time translation
symmetry which gives an extra factor of Z: G̃ = Z × G (or
Z � G) for G unitary (antiunitary). The natural generalization
of this classification to higher dimensions is that the group
structure of d-dimensional bosonic FSPT phases is given by
the d + 1 group cohomology:

Hd+1(G × Z,U (1)) = Hd+1(G,U (1))︸ ︷︷ ︸
static SPTs

× Hd (G,U (1))︸ ︷︷ ︸
dynamical FSPTs

. (1)

Here we have applied the Kunneth formula [12,13,38], which
reveals that the FSPT phases decompose into those with
static SPT order that could also occur in zero temperature
equilibrium systems, and extra intrinsically dynamical FSPT
orders which can only occur in driven systems.

In 1D, the classification of the extra dynamical phases
corresponds to H1(G,U (1)), i.e., to representations of the
symmetry G [11–13]. The physical picture of these extra
dynamical FSPT phases is that the Floquet drive induces a
quantized pumping of symmetry charge across the system
during each Floquet period. This pumping protects localized
edge degrees of freedom (“spins”) that can freely flip to absorb
the pumped charge. Intuitively, the flipping of the edge spins
produces a topologically robust spin echo that dynamically
decouples them from bulk degrees of freedom. Different
SPT phases correspond to different quantized amounts of
charge pumped per period, and the distinct possible charges
correspond precisely to the distinct representations of G.

What is the analogous physical picture for higher di-
mensional Floquet SPTs? For d > 1, the extra factor in the
cohomology classification associated with dynamical FSPT
phases corresponds to static SPTs in one lower dimension.
By analogy to the symmetry charge pumping in 1D, Else and
Nayak [12] proposed that the new example phases could be
thought of as dynamically pumping a lower dimensional SPT
onto the edge during each Floquet period. However, from this
construction, it is not immediately clear how this pumping
dynamically protects nontrivial SPT edge states, or how to
characterize the physical properties of various possible edge
phases.

III. 2D BOSONIC FSPT WITH Z2 × Z2 SYMMETRY

To better understand the physical properties of the proposed
higher dimensional FSPT phases, we construct a concrete
time-dependent Hamiltonian for a 2D FSPT, in which a 1D
SPT (a discrete analog of the Haldane spin chain [41,42])
protected by G = Z2 × Z2 symmetry is pumped onto the
boundary during each period. From this construction, we can
directly analyze various possible boundary phases.

A. Solvable spin model

A crucial building block for the “pumping” in the two-
dimensional model is a unitary operator that acts on a closed 1D
spin chain, and interchanges the 1D SPT phase with Z2 × Z2

155126-2



DYNAMICALLY ENRICHED TOPOLOGICAL ORDERS IN . . . PHYSICAL REVIEW B 95, 155126 (2017)

symmetry with a trivial paramagnet of the same symmetry.
Namely, consider a 1D spin chain with 4 states per site, which
we will decompose into two spin-1/2 operators living on
an A and a B sublattice, where the separate Z2 factors of
G are generated by flipping the spins on either the A or B
sublattice: gA,B = ∏

i∈A,B σ x
i . With this symmetry, there is a

single nontrivial static SPT phase, exemplified by the ground
state of the Hamiltonian:

H1D-SPT =
∑

i

λiσ
z
i−1σ

x
i σ z

i+1. (2)

For periodic boundary conditions, this SPT Hamiltonian is
mapped into the trivial paramagnet H1D-PM = ∑

i λiσ
x
i by the

unitary operator

USPT = ei π
4

∑
i (−1)i σ z

i σ z
i+1 , (3)

which one can readily verify interchanges σ z
i−1σ

x
i σ z

i+1 ↔ σx
i

[the alternating (−1)i factor is chosen to avoid an unwanted
overall phase]. The operator USPT preserves the symmetry gen-
erators; however the related family of operators eiπλ/4

∑
i σ z

i σ z
i+1 ,

which interpolates between the identity and USPT for λ ∈ [0,1],
does not preserve the symmetry except at the end points λ =
0,1. Alternatively, we may define a symmetry-preserving but
nonlocal Hermitian operator Hpump = i ln USPT, which, when
exponentiated as Uλ = e−iλHpump , continuously interpolates
between the identity and USPT for λ ∈ [0,1]. The price of
making Uλ symmetry preserving for all λ is that Hpump is
nonlocal, including products of arbitrarily long strings of spin
operators.

While nonlocal on an infinite chain, for a short 4-site loop,
with sites 1, 2, 3, 4, and periodic boundaries, Hpump obtains a
particularly simple form:

U
(1234)
SPT = exp

[
i
π

4

4∑
i=1

(−1)iσ z
i σ z

i+1mod4

]

= 1

2

(
1 + σ z

1 σ z
2 σ z

3 σ z
4 − σ z

1 σ z
3 − σ z

2 σ z
4

)
= exp

[
iπ

(
1 − σ z

1 σ z
3

2

)(
1 − σ z

2 σ z
4

2

)]
(4)

from which we read off H (1234)
pump = π

4 (1 − σ z
1 σ z

3 )(1 − σ z
2 σ z

4 ).
This term can be physically interpreted as a time evolution
governed by a short-range interaction between domain walls
in the ZA

2 and ZB
2 symmetry breaking orders.

With these ingredients in hand, we are ready to construct a
time-dependent model Hamiltonian to realize the 2D FSPT
phase in which this 1D static SPT is pumped onto the
boundary during each cycle. Consider a 2D square lattice
with 4-state spins on each site, which we can describe as
spins-1/2 living on the A and B sublattices (Fig. 1), again
with ZA

2 × ZB
2 symmetry generators gA/B = ∏

i∈A/B σ x
i . Let

us subject this system to a piecewise constant (“stroboscopic”)
time-dependent Hamiltonian:

H (t) =
{

2H1 = 2
∑

P H (P )
pump, 0 � t < 1/2,

2H2 = 2
∑

i hiσ
x
i , 1/2 � t < 1,

(5)

where we have normalized the time by the Floquet period,
T ≡ 1, and arranged the factors of 2 such that

BA

FIG. 1. Model: The spin model consists of Ising spins on a square
lattice, with a two-site (A and B) unit cell (dashed shaded oval in left
panel). The sequence schematically depicts how locally pumping a
short loop of 1D SPTs onto each plaquette results in toggling the
edge between the trivial unentangled state and the 1D SPT phase.
This dynamically tunes the edge to a self-dual point as described in
the text.

U (T ) = e−iH2e−iH1 . The first term includes a sum over all
4-spin plaquettes, P , on the square lattice. Each of these
plaquette terms has the effect of driving the boundary spins
of the plaquette between the locally SPT and trivial phases,
i.e., of pumping a short loop of 1D SPT onto the boundary of
each plaquette.

In the bulk, each link of the lattice borders two plaquettes,
and hence after one period has two SPT edges pumped onto it.
Since two copies of the 1D SPT in question are topologically
trivial, the effect of H1 after evolution by half a period is trivial
in the bulk. However, at the system’s boundary, each edge link
neighbors only one plaquette, and is hence toggled between the
topological and trivial phases over the course of each Floquet
period, producing the desired pumping of the 1D SPT onto the
boundary. The second stage of the Hamiltonian, H2, simply
represents time evolution by a trivial paramagnet, for which
sufficiently random transverse fields, hi , ensure many-body lo-
calization. That is, in total the Floquet evolution operator acting
on a system occupying spatial region � for a full period reads

U (T ) = e−i
∑

i∈� hiσ
x
i USPT,∂�, (6)

where USPT,∂� pumps a 1D SPT phase onto the boundary ∂�.

B. Edge state properties

We now turn to an analysis of the edge properties of
the above model. For static, equilibrium 2D SPT states,
the edge is either gapless or symmetry breaking. Similarly,
in nondriven bulk MBL systems, the edge of a 2D SPT
cannot be both MBL and symmetry preserving. What is the
analogous situation for 2D Floquet SPT edges? One expects
the dynamics to play a crucial role in protecting the edge. By
analyzing the edge of the 2D FSPT with Z2 × Z2 symmetry,
we will see that there is an emergent dynamical Z2 symmetry
associated with time translation that does not commute with
the other symmetry generators, and effectively promotes the
action of symmetry at the edge to a non-Abelian dihedral
symmetry. Recent work [36,43,44] shows that systems with
non-Abelian symmetries cannot be trivially localized without
spontaneously breaking the symmetry. In brief, in an MBL
system where all excitations are local, symmetry also acts
locally. Since non-Abelian symmetries protect degenerate
multiplets, in the MBL context, local excitations would
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form these exactly degenerate multiplets. This situation is
inherently unstable to generic perturbations, which induce
exactly resonant mixing of the local multiplets, resulting
in either delocalization or the spontaneous breaking of the
symmetry to lift the degeneracy. In the present context, we
connect this non-Abelian obstruction to symmetry-preserving
localization to the symmetry and topological protection of the
2D FSPT edge.

1. Anomalous dynamical edge symmetry

A technical difficulty in analyzing the Floquet evolution at
the edge is that the operator U (T ) does not take the form of time
evolution with a local, symmetry-preserving Hamiltonian:
U (T ) �= e−iHloc , due to the USPT term. To avoid this, we may
follow the approach of [30], and instead look at the Floquet
evolution operator for two periods:

U (2T )edge = (
e−iH2USPT

)2 = e−iH2e−iUSPTH2U
†
SPT , (7)

which we will see shortly does take the form of a local
symmetry-preserving Hamiltonian evolution:

U (2T )edge = e−2iHeff , (8)

where Heff is local (i.e., its terms are exponentially well
localized) and preserves symmetry. Note that, generally, if we
consider a phase in which a 1D SPT with a Zn topological
index is being pumped, then to obtain a local effective
Hamiltonian description of the edge dynamics, we should
consider U (nT )edge.

In considering U (2T ) we are implicitly considering strobo-
scopic measurements at integer multiples of twice the driving
period. However, the U (2T ) retains an imprint of the fact
that the system is subjected to a fundamental T -periodic
drive. Namely, there is an emergent dynamical Z2 symmetry
associated with discrete time translation generated by [30]

gD = U (T )eiHeff . (9)

By construction, this dynamical symmetry generator (i)
commutes with U (T ) (i.e., is a symmetry of the dynamics),
(ii) obeys a Z2 multiplication rule g2

D = 1, and (iii) is the
product of (quasi)local unitary operators (though not generated
by exponentiating a symmetry-preserving Hamiltonian). We
dub this symmetry “emergent” as the explicit form of its
generator depends on the terms in the Floquet Hamiltonian.
Roughly speaking, we can view this symmetry as isolating the
“interesting” part of the dynamics of U (T ) that is effected by
the SPT pumping from the bulk from the trivial (nonanoma-
lous) dynamical phases acquired from surface excitations that
are unaffected by the SPT pumping. To see this, note that any
terms in H2 that commute with USPT are canceled from gD by
the eiHeff factor.

The dynamical symmetry schematically takes the form
gD = (

∏
i e

i π
4 (−1)i σ z

i σ z
i+1 )(. . . ), where (. . . ) represents terms

that commute with the symmetry, and we have explicitly
written the effect of USPT at the edge in terms of the pumping
Hamiltonian Hpump. We see that while the global action of time
evolution commutes with that of the symmetry generators at
the edge, the local action of symmetry does not commute with
gD: gDσx

i g
†
D = σ z

i−1σ
x
i σ z

i+1. This failure to locally commute
will place strong constraints on MBL systems, in which

excitations are local and transform under the local action of
symmetry.

To investigate further, we consider a concrete form of the
edge dynamics, with a random transverse field H2 = ∑

i hiσ
x
i .

Moreover, to facilitate closed form expressions we will work
in the high-frequency limit hi � 2π . In this limit, one finds
that

Heff = i

2
ln U (2T )edge

≈
∑

i∈edge

H2 + H̃2

2
+ −i

4
[H2,H̃2] + O

(
H 3

2

)
, (10)

where H̃2 = USPTH2USPT. One can also work out the explicit
form of the dynamical symmetry generator to the same order
in the high-frequency expansion:

gD ≈ eiH2/2USPTe−iH2/2 + O
(
H 3

2

)
. (11)

Note that the dynamical symmetry is related to USPT by a finite-
depth (Hamiltonian dependent) transformation. Generically,
we expect that this feature will hold exactly for MBL edge
Hamiltonians.

We can substantially simplify all expressions by going into
a rotated basis: |�〉 → e−iH2/2|�〉, in which the dynamical
symmetry and effective edge Hamiltonian become simply

gD → g′
D = USPT + O

(
H 3

2

)
. (12)

Note also that in this rotated basis the commutator terms drop
out of the effective edge Hamiltonian, which simply becomes

Heff → H ′
eff =

∑
i

hi

2

(
σx

i + σ z
i−1σ

x
i σ z

i+1

) + O(h)3. (13)

This effective edge Hamiltonian is automatically tuned, by
the 1D SPT pumping action of the bulk, to the self-dual point
of the duality transformation:

σ̃ x
i = σ z

i−1σ
x
i σ z

i+1,
(14)

σ̃ z
i−1σ̃

x
i σ̃ z

i+1 = σx
i ,

which interchanges the 1D SPT ordered and trivial phases of
the edge.

Note that the dynamical symmetry is equivalent to the
action of USPT, up to a Z2 × Z2 symmetry preserving finite-
depth unitary transformation (in this case spatially random x

rotations). In the ground state of Heff this self-duality would
ensure that the edge is tuned to a quantum phase transition
separating these two phases. Since energy is not conserved in
a Floquet system, we are instead interested in generic excited
states of Heff, whose behavior turns out to be substantially
different.

To proceed, it is useful to rewrite Heff in terms of dual spins
�τ residing on the bonds of the original lattice, defined as

σx
i → τ x

i−1/2τ
x
i+1/2,

(15)
σ z

i−1σ
x
i σ z

i+1 → τ
y

i−1/2τ
y

i+1/2.

In terms of these new variables, the effective edge Hamiltonian
takes the form of a random bond XX chain [obtained by
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inverting the relation Eq. (15)]:

H ′
eff =

∑
i

hi

(
τ x
i−1/2τ

x
i+1/2 + τ

y

i−1/2τ
y

i+1/2

)
. (16)

Here, we notice an enlarged U (1) symmetry generated by rota-
tions around τ z: R(α) = e−i α

2

∑
i τ z

i+1/2 . This symmetry was not
manifest in the original model; however, we can directly trace
a subgroup of this U (1) symmetry to the dynamical symmetry
gD . Namely, inverting the above duality transformation, one
can write τ z

i−1/2 = (−1)iσ z
i−1σ

z
i , from which we immediately

see that π
2 rotations implement the dynamical pumping of the

1D SPT on the edge: R(π/2) = gD . Hence we expect that
with arbitrary interactions only this Z4 subgroup will survive.
However, note that at the level of two-spin, nearest-neighbor
interactions there are no additional terms we can include that
break the U (1) down to Z4. The simplest such terms come
from further nearest-neighbor interactions of the σ ’s. Hence
for the moment we will stick with the model with the enlarged
symmetry.

Note further that the original static Z2 × Z2 symmetry
generators both act as

∏
i σ

x
2i = ∏

i τ
x
i+1/2 = ∏

i σ
x
2i+1[45], i.e.,

act as a particle-hole symmetry, C, for the U (1) variables, so
that the total symmetry group of Heff is then U (1) � C. With
generic interactions this will be broken down to a dihedral
symmetry Z4 � Z2.

Hence we see that the 1D SPT pumping has the effect
of dynamically promoting the Abelian bulk symmetry group
to an effective non-Abelian symmetry at the edge. This non-
Abelian symmetry action immediately rules out many-body
localization at the edge, unless it is spontaneously broken [36].
Notably, the effective non-Abelian action of symmetry at the
edge also rules out the possibility of a symmetric critical edge,
as would happen in the ground state. For example, there are
quantum critical analogs of MBL, with an extensive set of
conserved quantities, but which are only algebraically well
localized, as happens for instance in the strongly random
critical Ising model [43,46,47], or at the edge of 2D ground-
state SPTs. Even such long-range entangled but nonthermal
critical points are forbidden from occurring (without accom-
panying symmetry breaking) in the nonequilibrium Floquet
setting [36]. While we have demonstrated this effective non-
Abelianization of the dynamical edge symmetry for a specific
model, this feature is general to all 2D bosonic FSPT systems
characterized by a dynamical pumping of a lower dimensional
SPT chain [38]; in these phases, the dynamical symmetry plays
the role of an effective Zn symmetry whose domain walls
carry projective (effectively non-Abelian) representations of
the static symmetry group.

To analyze the allowed possibilities for the edge, let us first
note that the random bond XX spin chain is actually integrable
(equivalent to free fermions) and has the pathological feature
that its many-body excited states are infinitely degenerate. In
the fermion language, this degeneracy arises from the equal
energy obtained by filling both an orbital and its particle-hole
conjugate orbital, or leaving both empty. In the spin model
at strong disorder, this degeneracy occurs when neighboring
spins are locked into a ferromagnetic arrangement |↑i↑i+1〉
or |↓i↓i+1〉, which have equal energy. To cure this problem,
we must include additional interactions, the simplest being

of the form τ zτ z, corresponding to next-nearest-neighbor
interactions, σ z

i−1σ
z
i+1, in the original language. The fate of

excited state dynamics in such a random bond XXZ model
was recently studied in [44], where it was found that, at strong
disorder, the interactions immediately freeze the degenerate
particle-hole degrees of freedom into a random product state,
or equivalently a spontaneous formation of spin-glass order
in τ z, which breaks the particle-hole symmetry C (in the τ

language), or equivalently the Z2 × Z2 symmetry (in the σ

language).
On the other hand, the dynamical U (1) symmetry remains

unbroken and hence respects the time-translation symmetry.
Indeed it would not be possible for a nonequilibrium 1D
system to spontaneously break this continuous symmetry, as
this would require a Goldstone mode, which would ensure
thermalization, which is inconsistent since thermal systems
cannot spontaneously break continuous symmetries.

2. Other possible edge phases

A second possibility, which is not naturally realized by
having simply random transverse fields in H2 at the edge, but
which is in principle realizable by more complicated interac-
tions, is to have a spontaneous breaking of time-translation
symmetry alone, without an accompanying breaking of
Z2 × Z2 symmetry [27]. In this case, with the time-translation
symmetry breaking, we may spontaneously tip the balance
from the critical point between SPT and trivial edge states,
to form a localized edge SPT or localized edge PM phase.
For example, if we either spontaneously generate or explicitly
apply an effective period-2T edge field δh(t)σx which has
δh(t) > 0 for 0 < t < T and δh(t) < 0 for T < t < 2T ,
then with statistically homogeneous edge transverse fields in
H2, we obtain Heff ≈ ∑

i(hi + δh)σ z
i−1σ

x
i σ z

i+1 + (hi − δh)σx
i ,

which pushes the edge into the localized SPT phase for
δh > 0 or the trivial PM phase for δh < 0, both of which
are many-body localized and boundary-law entangled despite
preserving the on-site Z2 × Z2 symmetry. Therefore, we see
that the periodicity of the Floquet drive plays the role of an
additional discrete time-translation symmetry in protecting the
edge states of these dynamical FSPT phases.

Alternatively, while for strongly disordered edge couplings
a symmetry-broken MBL edge phases, at weak disorder, the
edge may simply thermalize. Generically, an isolated, driven
thermal system will absorb energy and heat up to infinite
temperature, destroying underlying quantum coherence. Since
thermal phases in 1D necessarily preserve the Z2 × Z2 sym-
metry, we expect that the edge anomaly is still accessible even
for clean, thermalizing edges. We will verify this expectation
below in Sec. IV, where we discuss physical characterizations
of this edge anomaly for symmetry-preserving edges.

Finally, we note that it is possible to have quantum
critical states that are neither thermal nor MBL, exhibiting
logarithmic scaling of entanglement, algebraically decaying
correlation functions, and lacking a set of independent con-
served quantities [43,48]. While we are unable to find such a
critical, symmetry-preserving edge state for a concrete edge
Hamiltonian, we do not know a fundamental reason that
precludes its occurrence in more complicated Hamiltonians.
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C. Other 2D bosonic FSPTs

We can generalize the above construction to other symmetry
classes. A very simple extension is that the same Z2 × Z2

Hamiltonian described above also moonlights as a model
Hamiltonian for a time-reversal symmetry protected FSPT,
with time-reversal symmetry acting as T = ∏

i σ
x
i K , where

K denotes complex conjugation.
For unitary symmetries, the most general symmetry group

that is compatible with many-body localization [13,36] is
finite Abelian groups which can be written as product of
G = ∏

I ZnI
. The 1D static SPTs for such a finite-Abelian G

are given by
∏

I,J Zgcd(nI ,nJ ), where gcd indicates the greatest
common divisor. These phases can be thought of as having
quantum proliferated domain walls of the ZnI

order bound
to ZnJ

symmetry charge. Within the proposed cohomology
classification of 2D FSPTs, the intrinsically dynamical 2D
FSPT phases correspond to phases in which these 1D static
SPTs are pumped onto the boundary. Due to the direct product
structure of the 1D SPT classification, it is sufficient to consider
just a single pair of symmetries: G = Zn × Zn. We can readily
generalize the above construction for Z2 × Z2 variables, in
terms of Zn-valued spins (see the Appendix). Here, there are
n distinct phases corresponding to pumping an integer number
j = 0,1,2, . . . ,n − 1. Just as in the Z2 × Z2 case described
above, the edge of these phases can either be symmetry broken
and localized or symmetry preserving and thermal.

IV. EDGE AND BULK DIAGNOSTICS OF FSPT ORDER

In this section, we consider physical edge and bulk
diagnostics that can be used to measure (e.g., numerically)
the bulk FSPT order in a given model. We begin by discussing
edge-based characterizations. As previously remarked above,
based on intuition developed for static SPTs, one expects
the anomalous properties of the FSPT bulk to imprint itself
on the full spectrum of edge excitations, such that the edge
manifests the bulk FSPT order so long as the edge preserves
the underlying symmetry. In particular, we expect the FSPT
order to be, in principle, measurable, even when the edge is
thermalizing and heats to infinite effective temperature due to
the periodic drive.

To see this, let us consider a cylinder of the dynamical 2D
Z2 × Z2 FSPT. Imagine inserting a π -flux defect of the ZB

2
symmetry into the access of the cylinder. Due to the dynamical
1D SPT pumping, and the fact that the 1D SPT develops ZA

2
charge upon encircling a ZB

2 flux, this B-symmetry defect
will lead to a quantized dynamical A-charge pumping on each
end of the cylinder. Namely, consider measuring the change,
�QA, in ZA

2 charge on one edge of the cylinder in the course
of one Floquet period; we will find that �QA with a B-
symmetry flux differs by (−1) compared to the case without the
B-symmetry flux threading the cylinder. This symmetry-flux-
induced charge pumping provides a robust edge signature of
the 2D FSPT phase that is present even when the edge is
thermal and heats to infinite temperature.

We note a technical caveat to keep in mind in the above
thought experiment: in the limit of infinite edge length, a
thermalizing edge has a continuous many-body spectrum and
can act as a bath to thermalize bulk degrees of freedom.

However, for a well-localized bulk, the time scale for this
thermalization scales like τtherm ∼ eL⊥ , where L⊥ is the
length of the system. Hence, what we have in mind in this
construction is a limiting procedure in which we take the
L⊥ to infinity parametrically faster than the length of the
edge L‖ (e.g., as L⊥ ∼ L2

‖). In this way, the time scale
for the bulk thermalization diverges much faster than the
edge-thermalization time scale, so that there is a well-defined
infinite-system long-time limit in which the edge is in a thermal
steady state, but the bulk is still localized (see also [49]).

A closely related signature of the bulk FSPT order is also
present in the “micromotion” of the entanglement spectrum of
a one-dimensional cut through the system [13]. Namely, while
the entanglement spectrum is T -periodic, the Schmidt states
corresponding to a given entanglement energy change their
1D SPT invariant under each Floquet cycle, by interchanging
with another state with a different 1D SPT order at some time
within the Floquet period [13].

V. GAUGING A BOSONIC FSPT

For equilibrium SPTs protected by an on-site unitary
symmetry group G, promoting the global symmetry group G

to a local gauge symmetry by coupling the local gauge charge
to a discrete lattice gauge field (or “gauging the symmetry”)
produces a symmetry-enriched topological phase (SET), i.e.,
one that is distinct from gauging a trivial paramagnet. Gauging
distinct SPT phases produces distinct SET phases with the
same topological order but different symmetry action. In
particular, there is a direct connection between the group
cohomology formulation used by Dijkgraaf-Witten to classify
gauge theories [40] and that used to classify bosonic SPT
phases.

This naturally leads to the question, what dynamical topo-
logically ordered phase results from gauging the symmetry
of an intrinsically dynamical FSPT? We will generally find
that, in accordance with the intuition from equilibrium phases,
gauging a dynamical FSPT produces an intrinsically nonequi-
librium dynamical topological order with no equilibrium
counterpart. We dub such phases Floquet enriched topological
orders, or FETs. Here we have dropped “symmetry” from
the label for this phenomena, as we will consider the effect
of periodically driving pure topological orders without any
symmetry enrichment (though in a sense, the periodicity
of the Floquet drive may be considered a symmetry). We
note that symmetry and periodic driving could both interplay
to bring about “Floquet and symmetry enriched topological
orders”; however, we will not consider such phases here, and
instead restrict ourselves to purely dynamical enrichment of
topological orders.

Interestingly, while gauging bosonic FSPTs provides one
route to constructing new FET phases, we will find that
such examples do not exhaust the possible FET phases, and
will construct FET phases that lie beyond the cohomology
classification.

In all cases, the FET phases we will encounter are character-
ized by a dynamical permutation of anyon types, in which an
anyon excitation morphs into a different type of anyon during
the Floquet drive. Analogous anyon permuting symmetries
were previously discussed in equilibrium topological orders in
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Refs. [50–53]. The FET examples that we will encounter can
be understood within the context of these previous works, if
one views the discrete time translation as a global symmetry
group Z. In the fine-tuned limit of zero correlation length
(perfect localization), this anyon permutation dynamically
superposes different types of anyon excitations, morphing
them into new objects with effective quantum dimensions
larger than 1 (though still integer), and effectively non-Abelian
fusion properties. This enhanced quantum dimension enforces
an extensive degeneracy of excited eigenstates, which will be
lifted in a nontrivial way upon going away from the fine-tuned
zero correlation length limit. As a result, we will see that
the notion of FET orders in the MBL regime generically
are accompanied by spontaneous time-translation symmetry
breaking, and do not have topologically protected non-MBL
edge states.

For this reason, we will initially describe the properties of
FET orders in the zero-correlation length (infinite disorder)
limit for a variety of systems, and then move away from this
idealized limit to analyze the metastable decay and eventual
fate of the FET order.

A. Zero correlation length lattice model

Let us begin with the concrete example of gauging the
symmetry G = Z2 × Z2 protecting the dynamical 2D FSPT
studied above, by coupling the model to a lattice Z2 × Z2

gauge field. Explicitly, let us label the factors of Z2 by their
corresponding sublattice: G = ZA

2 × ZB
2 . Next, we introduce

dynamical Ising “spin” variables αz
ij and βz

ij to the diagonal
links connecting the A and B sublattices, respectively. To make
the Hamiltonian in Eq. (5) gauge invariant, we must add gauge-
link variables to the terms in HPump,P. For example, for the
plaquette shown in Fig. 2, we extend σ z

1 σ z
3 → σ z

1 αz
13σ

z
3 , and

k

li

j

βkl αij

FIG. 2. Gauging the FSPT model: The global ZA
2 × ZB

2 sym-
metry can be promoted to a local gauge symmetry, by adding ZA

2

gauge link variables αij (blue dots) to the bonds connecting A sites
(large-dashed blue lines), and ZB

2 gauge link variables βkl (red dots)
to the bonds connecting B sites (small-dashed red lines). ZA/B

2 gauge
fluxes reside on the tilted square plaquettes (shaded blue and red,
respectively).

σ z
2 σ z

4 → σ z
2 βz

24σ
z
4 . Furthermore, to localize the magnetic flux

excitations, we add the time-independent term

Hv = −
∑
PA

λPA

∏
♦PA

αz −
∑
PB

λPB

∏
♦PB

βz (17)

to Eq. (5), where λPA/B
are strong random coefficients that

give spatially random energies 2λPA/B
to ZA/B

2 fluxes residing
on the gauge plaquette PA/B . Finally, we must implement the
gauge constraint that the product of gauge-electric field lines
emanating from site i is equal to the symmetry charge on that
site; e.g., for the A sublattice,

∏
j∈〈〈i〉〉 αx

ij = σx
i (i ∈ A), and

similarly for the B sublattice,
∏

j∈〈〈i〉〉 βx
ij = σx

i (i ∈ B), where
〈〈i〉〉 denotes the next-nearest-neighbors of i.

As a warm-up to the driven problem, let us start by recalling
how to build eigenstates of the static Z2 × Z2 topological
order obtained from the static Hamiltonian of Eqs. (5)
and (17) without the SPT pumping stages [H1 → 0 in Eq. (5)].
We may start with the topologically ordered ground state |∅〉
defined via αz

ij ,β
z
ij = +1, and σx

A/B,i = +1. Excited states can
then be created by acting with string operators that create pairs
of eA/B and mA/B pairs. Explicitly, a pair of eA particles are
created at positions r,r ′ by

WeA
(r,r ′) = σx

A,rσ
x
A,r ′

∏
〈ij〉∈rr′

αz
ij , (18)

where rr ′ is a string of edge-sharing gauge links connecting
sites r to r ′, and a pair of mA particles can be created by the
string operator

WmA
(P,P ′) =

∏
〈ij〉∈⊥

P,P ′

αx
ij , (19)

where ⊥
P,P ′ is a set of gauge links that perpendicularly

intersect a string of plaquettes connecting P and P ′. There are
also fermionic bound states of ψA/B = eA/B × mA/B created
by acting with both We and Wm strings.

With just the static Hamiltonian, H2 + Hv , the eigen-
states are given schematically by acting with vari-
ous string operators on the ground state,

∏
W ′s|∅〉,

and have energy E = ∑
i∈A 2hineA,i + ∑

i∈B 2hB,ineB,i +∑
P∈A 2λA,P nmA,P + ∑

P∈B 2λB,P nmB,P , with respect to the
vacuum, where na,r are the number of quasiparticles of type a

at position r .

B. Dynamical anyon permutation

Just as for any equilibrium Z2 × Z2 gauge theory, particles
with different A/B sublattice labels have trivial mutual statis-
tics, and distinct particles with the same A/B sublattice labels
are all mutual semions [exchange phase = (−1)]. However, we
expect that the symmetry properties of these excitations exhibit
nontrivial dynamics due to the underlying dynamical FSPT
order of the ungauged system. To see how this works, consider
the effect of the pumping phase of the Floquet dynamics, in
the presence of magnetic flux, mA/B , excitations. Inserting a
symmetry flux of ZA/B

2 through a loop of the 1D static SPT
that is being pumped across the system has the same effect
as acting with the symmetry locally on one edge of that 1D
SPT with open boundaries. Specifically, on the edge of the 1D
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Z2 × Z2 SPT, acting locally with one symmetry, ZA/B

2 , inserts
a charge of the other symmetry ZB/A

2 , respectively. While we
have deduced this property via simple topological arguments,
one can also verify it explicitly using the above constructed
lattice model, by noting that U (T )σx

A,iU
†(T ) = (−1)Nm,B σ x

A,i ,
where (−1)Nm,B = ∏

� βz
ij , is the gauge flux (Nm,B being the

vison number) on the B-site plaquette surrounding site (A,i),
and similarly for A ↔ B. Since σx

A is the parity of eA particles,
i.e., σx

A = +1 if there is no eA particle and −1 if there is an
eA particle, the above equation indicates that an eA particle is
added to the site (A,i) when there exists a vison mB on the
B-site plaquette.

Hence, as the 1D SPT is pumped across the 2D FSPT
system, each mA/B charge binds an eB/A excitation with
gauge charge of the opposite Z2 symmetry. This dynamical
anyon transmutation preserves the self- and mutual statistics
of all excitations, and hence does not alter the long-distance
topological properties. After two Floquet periods, the mA/B

charges return to their original state, since the eA/B have Z2

charge. We can write the Floquet Hamiltonian as a product
of evolution with respect to a local static MBL Hamiltonian,
HMBL, and a unitary operator, P , that permutes anyons and
cannot be generated by a fixed static Hamiltonian evolution:

UFET(T ) = Pe−iHMBL . (20)

Since two permutations return all anyons to their original type,
we can fix P2 = 1. Crucially, this pumping of eA/B particles
onto the mB/A excitations cannot be altered by T -periodic
perturbations of the dynamics unless these drive a bulk phase
transition in the underlying topological order or lead to a
spontaneous doubling of the time periodicity by formation
of a discrete time crystal. Therefore, periodic driving enriches
the set of distinct topologically ordered phases by enabling
distinct patterns of dynamical anyon transmutation.

C. Dynamically enforced degeneracies

Since the dynamical permutation of anyons in an FET phase
preserves braiding properties, it may appear rather innocuous.
However, we will see that it has the dramatic consequence of
enforcing large dynamically protected degeneracies associated
with anyonic excitations.

To see this, we can repeat the trick employed in the
bosonic FSPT analysis above, and look at the time-evolution
operator for two periods, which, unlike the Floquet operator
for one period, can be written as the time evolution under
a local, static Z2 × Z2 topologically ordered Hamiltonian:
UFET(2T ) = e−2iHeff . Heff has an emergent dynamical sym-
metry P = UFET(T )eiHeff , which permutes anyon types: P :
mA/B ↔ mA/B × eB/A. The eigenstates of Heff can be written
as having a localized configuration of anyons of various types
at positions r . Due to the strictly local nature of the excitations,
this global symmetry acts as an effective local symmetry
[36], in that we can freely swap any mA/B excitation for an
mA/B × eB/A excitation without changing the energy of the
state with respect to Heff (subject to the global constraint of
having zero net gauge charge).

In other words, we can view the excitations as being
superposed into a “new” type of anyonic particle, σA/B , which

has two internal states (mA/B and mA/B × eB/A) that dictate
its long-distance topological exchange statistics with other
anyons. However, the dynamical symmetry P “flips” this
internal degree of freedom, such that a σ with definite P
has uncertain braiding properties with other anyons. From
this, we see that the eigenstates of UFET(2T ) with a fixed
configuration of an even number, NσA/B

, of σA/B-type particles
have degeneracy 2NσA

+NσB . This degeneracy is exactly what
we would obtain from particles with nontrivial quantum
dimension d = 2. Moreover, we can see that fusing two σA

particles can yield either topological charge 1 (if the internal
states of both σA’s were mA or both mA × eB) or topological
charge eA (if one σA is mA and the second is mA × eB , or vice
versa), and we see that there are two ways of obtaining either
fusion outcome. The fusion possibilities for σB’s are similar.
We can schematically write this via the non-Abelian fusion
rules:

σA/B × σA/B = 1 + 1 + eB/A + eB/A,

σA × σB = mAmB + mAψB + ψAmB + ψAψB,
(21)

eB × σA = σA,

eA × σB = σB,

which are consistent with the interpretation of the σ particles
having quantum dimension 2, since the product of the quantum
dimensions of anyons being fused on the left-hand sides must
be equal to the sum of the squares of quantum dimensions
of anyons appearing in the direct sum on the right-hand
sides.

We note that while the σ particles appear to superficially
have been transmuted into non-Abelian particles, this is not
quite the case. Namely, unlike truly non-Abelian particles, the
degeneracy associated with the σA/B particles is associated
with local degrees of freedom associated with each anyon, and
can be split by a local perturbation that breaks theP symmetry.
In this sense, the eigenstates of Heff are largely like those of a
static Z2 × Z2 topological order with a similar anyon permut-
ing symmetry. One notable distinction from such a static case is
that, here, the dynamical P symmetry is emergent and cannot
be lifted in the absence of time-translation symmetry breaking.
In other words, any T -periodic perturbation to the dynamical
evolution will not be able to locally resolve any σ particle into
its Abelian, quantum dimension 1 constituents. Despite the
local nature of the degeneracy, it is still useful (and completely
accurate) to view these objects as having (integer) quantum
dimension larger than 1 [analogous to viewing a spin-1/2 in
a spin-rotational symmetry system as an object with quantum
dimension d = 2, governed by the usual SU (2) fusion rules].
In this notation, the standard fusion and braiding rules
[e.g., Eq. (21)] correctly produce the topological exchange
properties, and symmetry-enforced degeneracies of the FET
phases.

For a given fixed configuration of localized σ particles, if we
consider UFET(T ) = Pe−iHeff , then these 2NσA

+NσB degenerate
states are split into 2 sets of 2NσA

+NσB
−1 states with different

overall P = ±1 eigenvalue, such that the two groups of states
have quasienergy differing exactly by π .
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For example, we could consider creating σ particles in
entangled pairs, via the entangled string operators

W̃ s
mA/B

(r,r ′) = [
1 + sei(hr+hr′ )WeB/A

(r,r ′)
]
WmA/B

(Pr,Pr ′ ),
(22)

labeled by a Z2-valued quantum number s = ±1, which re-
spectively produce an even or odd quantum superposition of a
pair of mA/B particles and a pair of mA/B × eB/A particles, with
the m particles residing on B/A plaquettes Pr,Pr ′ , centered
on A/B sites r,r ′, respectively, and the e particles reside on
sites r,r ′. This entangled string operator produces a Floquet
eigenstate with quasienergy εmA

(r,r ′,s) = 2(λB,Pr
+ λB,Pr′ ) +

(hr + hr ′) + π (1−s)
2 . Interestingly, the quasienergy difference

between s = ±1 is exactly π . This π quasienergy difference
remains sharp, despite the fact that the disordered part of
the Hamiltonian, H2, in Eq. (5) would, by itself, give a
nonquantized energy difference 2hr between states with and
without an eA particle at r . However, the energy difference
of H2 is erased from the Floquet eigenstates by the anyon
permutation part of the dynamics.

Other instances of states of the internal degrees of freedom
of localized σ particles exhibit long-range time crystalline
order [25–30]; for example the state with all σ particles
fixed to a definite state of either m or m × e will oscillate
dynamically with its P-conjugated partner. Equivalently [27],
this state can be represented as a linear combination of two dif-
ferent Schrödinger-cat Floquet eigenstates, which are macro-
scopic superpositions of the fixed m or e × m state and its
P-conjugated partner, whose quasienergies differ by precisely
π , and which each have one qubit of global entanglement
(manifesting in long-range mutual information).

At the level of the zero correlation length Floquet evolution,
all such time-crystal and non-time-crystal states are exactly
degenerate and the fate of the system under more generic
dynamics will be governed by how this degeneracy is lifted by
residual quantum fluctuations. In the next section we explore
possible fates of the FET order away from the idealized zero
correlation length limit.

D. Possible fates of the FET order

The topological degeneracies enforced by dynamical anyon
permutation place strong constraints on the possible fate of
the FET order away from the idealized zero correlation length
system. Namely, the degeneracy is enforced by the noncom-
muting action of braiding of σ particles and conjugation by
the dynamical symmetry P . This is loosely analogous to the
situation of having a bunch of decoupled spins-1/2, �Si , with a
dihedral symmetry group with noncommuting generators �Sx,z.
In the present situation, however, one symmetry generator is
played by the dynamical P symmetry, and the role of the other
symmetry generator is replaced by the action of braiding an
mB/A particle around the σA/B excitation. Directly analogous
arguments to those of [36] for non-Abelian symmetry groups
then show that it is not possible to have a fully localized state of
these internal degrees of freedom that preserves the dynamical
symmetry, P .

1. MBL time crystal

Instead, the system could spontaneously break time-
translation symmetry, forming a discrete Floquet time crystal
[25–30]. In this case, the edge states (whose topological
protection relied on time-translation symmetry) are lost.
Nevertheless, the FET order is imprinted even in the time-
crystal phase of the system. In fact, the concept of FET order
remains sharply defined despite the spontaneously enlarged
symmetry group and absence of protected edge states. Further,
the FET time-crystal phase can be sharply distinguished from
a trivial non-FET time crystal.

Namely, consider the above described FET phase defined on
a torus, in the MBL/time-crystal phase of the bulk excitations.
Let us label the two cycles of the torus as x and y. Then,
we may consider the time evolution of a string operator,
WA,x , that creates an mA particle-antiparticle pair, drags
them around the x axes of the torus, and reannihilates them,
i.e., “inserts an mA flux” through the y cycle. Explicitly,
WA,x

∏
〈ij〉⊥x

αx
ij for a path x is a closed loop around

the x cycle of the torus. This operator commutes with the
string operator, WB,y = ∏

〈ij〉⊥y
βx

ij , that drags an mB particle
around a path y encircling the y axis of the torus, due to
the trivial mutual statistics between mA and mB particles.
However, upon time-evolving for one Floquet period, WA,x

binds an eB string, and then anticommutes with WB,y , i.e.,

U (T )†WB,yU (T )WA,xU
†(T )WB,yU (T ) = −WA,x. (23)

This provides a sharp, formally measurable signature of the
FET order, which occurs even in the spontaneous time-
translation symmetry breaking regime, where there are no
protected edge states. Moreover, this nonlocal property will
not occur in any conventional (non-FET) time crystal.

2. Nonthermal critical point

Another potential possibility for very strong disorder, which
occurs naturally, e.g., in 1D chains of non-Abelian anyons, is
that the system could form a nonlocalized but nonthermal
quantum-critical-like state of the internal topological Hilbert
space, such that the σ particles remain localized. However, due
to the local nature of the degeneracy in the FET systems, we
expect such quantum critical states would occur as fine-tuned
critical points rather than stable critical phases as for 1D
non-Abelian anyons. While this possibility has been explored
in a controlled analytic fashion in 1D, and to some extent in the
ground state of 2D systems, establishing whether or not such
a critical scenario could occur in the excited state dynamics of
2D systems with non-Abelian particles (or FET systems with
“dynamically non-Abelianized” particles) remains an open
question for future work.

3. Prethermal FET

A third possibility is that the system can simply thermalize
due to the dynamically enforced degeneracies. However, at
relatively strong disorder and for low density of excitations the
system will behave MBL, and this thermalization will occur in
three distinct prethermal stages. Namely, consider a localized
state of anyonic excitations, such that the typical spacing
between σ excitations, r0, greatly exceeds the single-particle
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localization length, ξ [defined, e.g., as the localization length
HMBL in Eq. (20), but without the anyon permutations, P].
In this limit, there are a few important, widely separated time
scales.

First, since interactions within the nonlocal internal topo-
logical Hilbert space of the σ excitations occur with amplitude
top ≈ 0e

−r0/ξ , where 0 is roughly the anyonic “hop-
ping” amplitude, partial thermalization within the topological
subspace will take at least time tσ ≈ −1

0 er0/ξ . In fact, at
reasonably strong disorder, the partial thermalization time
within the internal topological Hilbert space will likely occur
via highly collective rearrangements rather than pairwise
interactions between σ particles, which would give an even
longer partial thermalization time scale.

Subsequently, the partially thermalized internal degrees
of freedom (DOF) of the σ particles may act as a bath to
allow the anyons to delocalize. It requires overcoming an
energy mismatch of order W , the typical disorder strength,
to hop an anyon. By comparison, the bandwidth of the internal
topological states associated with n σ particles is of order
�(n) ≈ 0e

−r0/ξ
√

n. Hence, to absorb this energy mismatch
required to inelastically hop an anyon into the topological bath
requires making of order n ∼ ( W

top
)2 ≈ ( W

0
)2e2r0/ξ excitations

of the internal topological degrees of freedom.
Assuming an eigenstate thermalization hypothesis (ETH)

form [54], the local matrix element coupling between the
positional motion of the σ particle and the internal degrees
of freedom of the surrounding n σ particles is of order
0e

−r0/ξ e− n
2 ln s , where s is the thermal entropy of the anyons.

Then, a Fermi’s golden rule estimate of the rate at which a

σ hopping can excite O(n) gives rate γ (n) ≈ 2
0e−2r0/ξ e−n ln s

δ(n) ≈
2

0
W

e−2r0/ξ , where δ(n) ≈ �(n)e−n ln s ≈ We−n ln s is the many-
body level spacing associated with the n σ particles’ inter-
nal DOF, corresponding to a time scale tn ≈ 1/γ (n). The
amplitude for a virtual process that is off-shell in energy
by an amount W for time t(n) is then e−Wt(n). From this,
we see that the time scale for delocalization of σ particles
via inelastic hopping mediated by the internal topological
DOF occurs on a double-exponentially-long time scale:
tinel-hop ≈ exp [(W/0)2e2r0/ξ ]. Hence, there is an extremely
wide separation of time scales between when the system
partially thermalizes within the internal topological degenerate
subspace associated with a fixed anyon configuration, and the
much longer time scale upon which this partially thermalized
subspace mediates anyon hopping and leads to delocalization
of the entire system.

Moreover, since the system is isolated and periodically
driven, if it thermalizes, we expect it to first prethermalize
into an effective finite-temperature state with respect to some
effectively static Hamiltonian [29,55], and then, at a much
later time, heat up to a featureless infinite-temperature state.
In [29,55], it was shown that the prethermal regime lasts up
to time scale t∗ ≈ e1/T |δH |, where T is the driving period and
|δH | is an appropriate operator norm of the deviation of the
Hamiltonian from a zero correlation length MBL one. Here, the
dominant route to prethermalization is via the couplings among
internal topological states of the σ particles; we estimate that
the internal topological Hilbert space will exhibit a prethermal
regime up to time of order tpretherm ≈ e(1/T 0)er/ξ

. The heating

of the nontopological modes (e.g., via hopping of anyons) will
again take at least tinel-hop. Then, depending on the relative
scale of tpretherm and tinel-hop there are two possible scenarios.
For tpretherm � tinel-hop, the full system will heat up to infinite
temperature on times longer than tpretherm. In the opposite
case, tpretherm � tinel-hop, the internal topological degrees of
freedom will first prethermalize to effective finite temperature,
and then heat to infinite temperature while the motional
degrees of freedom of the anyons remain localized, until time
scale tinel-hop, where the full system begins to heat to infinite
temperature.

VI. FLOQUET ENRICHED ABELIAN
TOPOLOGICAL ORDER

Having explored the features of Floquet enriched topologi-
cal order obtained by gauging a bosonic FSPT, we now explore
several generalizations. We begin with a general discussion
of the structure of FET phases, building off of the concrete
example of the Floquet enriched Z2 × Z2 topological order
analyzed in the previous section. Then, we discuss several
concrete examples, beginning with gauged-versions of other
bosonic FSPTs, followed by examples of other “beyond-
cohomology” FET phases that cannot be obtained by a gauging
a bosonic FSPT, but rather arise from dynamical pumping of
emergent nonbosonic anyon degrees of freedom.

A. General structure of FET phases

For the gauged bosonic FSPT case above, we saw that
the Floquet evolution of this FET phase was characterized
by a dynamical permutation of anyon types, which preserved
the topological structure of the permuted anyons. More
dramatically, some initially Abelian gauge-flux particles were
dynamically transmuted into effectively non-Abelian particles.
In this section, we describe the structure of generic Abelian
FET phases in general terms, and then consider several
concrete examples beyond the Floquet enriched Z2 × Z2.

In all the examples we will encounter, the Abelian FET
phases start with a topological order characterized a set
of anyons {1,a,b,c, . . . }, in which the driving implements
nontrivial statistics preserving dynamical permutations of the

anyon types: a1
U (T )−→ a2

U (T )−→ · · · a1, with anyon a cycling back
to itself after Na periods. For example, in the Z2 × Z2 FET
obtained from gauging the bosonic FSPT lattice model above,
we have U (T ) : mA → mA × eB → mA, and similarly for
A ↔ B; i.e., all anyons return to themselves after at most
two Floquet periods (NmA

= 2, etc.).
In general, we can write the time-evolution operator for

such an FET phase as

U (T ) = Pe−iHMBL , (24)

where P permutes the anyon types and satisfies
PLCM({Na,Nb,... }) = 1, where LCM denotes the least common
multiple, and HMBL is a topologically ordered MBL Hamilto-
nian, that gives (random) on-site energy Ea(r) for having an
anyon of type a at position r (or more generically is related to
this idealized case by a finite-depth local unitary deformation).

In the zero-correlation length limit, a generic eigenstate of
the static (non-FET) Abelian topological order would consist

155126-10



DYNAMICALLY ENRICHED TOPOLOGICAL ORDERS IN . . . PHYSICAL REVIEW B 95, 155126 (2017)

of starting with the topological vacuum (ground state), |∅〉, and
acting with string operators of the form Wa(r,r ′) that create
an anyon of type a at r and its antiparticle ā at position r ′:
|�static〉 = ∏

I WaI (rI ,r
′
I )|∅〉. However, FET eigenstates must

clearly be a superposition of such static states with different
anyon types, since time evolution permutes the anyon types

U (T )Wa1 (r,r ′)U †(T ) = e−i[Ea1 (r)+Eā1 (r ′)]Wa2 (r,r ′), (25)

where Ea(r) is the contribution to the quasienergy from having
an anyon type a at position r .

However, we can construct entangled superpositions of the
string operators, which create Floquet eigenstates:

W̃
j

[a](r,r
′) ≡ 1√

Na

Na0∑
j=1

e2πij/Na e−i[Ea,j (r)+Eā,j (r ′)]Waj
(r,r ′),

(26)

where [a] denotes the equivalence class of anyons re-
lated to a by some number of time-evolution periods,
Ea,j (r) = ∑j−1

k=1 Eak
(r) − Ēa(r), and similarly Eā,j (r ′) =∑j−1

k=1 Eāk
(r ′) − Ēā(r ′), and Ēa(r) = 1

Na

∑Na

j=1 Ea is the on-
site energy of anyons aj averaged over the cycle of dynamical
permutations. One can readily verify that the operators
W

j
a (r,r ′) create Floquet eigenstates with quasienergy Ēa(r) +

Ēa(r ′) + 2πj

Na
. In other words, there are Na different superpo-

sitions of a given string operator labeled by j = 1, . . . ,Na ,
whose quasienergies differ by exactly an integer multiple
of 2π

Na
.

As in the above example, we can introduce a generalized
type of excitation, denoted [a], which can take the form of
any of the Abelian anyons a1,...,Na

, or quantum superpositions
of these Abelian particles. We can associate an internal
ZNa

-valued degree of freedom with each [a] particle that takes
definite value when [a] is in a definite state of being a fixed
Abelian anyon from the possible set of a1,...,Na

particles. This
internal degree of freedom is incremented by the dynamical
symmetry P , such that [a] particles with definite Abelian
exchange statistics are not eigenstates of P and vice versa.
From here, we can immediately see that there is a dynamically
enforced topological degeneracy of Floquet eigenstates that
scales as ∼N

# [a] particles
a , indicating that the [a] particles have

effective quantum dimension d[a] = Na .
The [a] particles also exhibit non-Abelian fusion properties,

expressed via the fusion rules

[a] × [b] =
Na∑
i=1

Nb∑
j=1

ai × bj . (27)

We note that the effective non-Abelian properties of the
dynamically permuted anyons are closely related to those of
a static system with a symmetry that permutes anyon types
[50–53], which upon gauging of this global symmetry gener-
ically produces a non-Abelian topological order [50,52].
However, we remark that the dynamical anyon permutation
symmetry is “emergent” and stable to any local T -periodic
perturbation, and hence can only be lifted by a local perturba-
tion with an enlarged NaT period.

Having explored the idealized regime of zero correlation
length, let us consider more generic models obtained by

adding generic T -periodic perturbations. This induces longer-
range interactions among anyons that decay exponentially in
the separation of the two anyons measured in units of the
localization length. As discussed in the previous section for
the particular case of a gauged bosonic FSPT, the system
cannot remain in a time-translationally-symmetric MBL state
due to the effective non-Abelian properties of the dynamically
permuted anyon excitations. Rather, at strong enough disorder
to stay in the MBL regime, the FET order is necessarily
accompanied by spontaneous breaking of time-translation
symmetry with an effective N -tupling of the fundamental
period, with N = LCM({Na,Nb, . . . }).

B. FETs from other gauged boson FSPTs

Various other related examples of dynamical FET phases
can be obtained by gauging the symmetries of other 2D FSPTs
with discrete gauge groups. To obtain the general structure
for discrete Abelian gauge groups, it is sufficient to consider
topological order with a discrete Abelian gauge group of the
form G = ZNA

× ZNB
.

Distinct FET phases of the ZN × ZM topological order
are characterized by a dynamical pumping of jA units of
A-electric charge to B fluxes, and jB units of B-electric charge
to A fluxes, where jA ∈ ZNA

and jB ∈ ZNB
. However, not all

jA/B are allowed. Rather, since the pumping occurs via local
dynamics, it cannot change the long-range topological braiding
properties of the underlying anyons. This requires NBjA =
−NAjB , constraining jA = NA�

gcd(NA,NB ) and jB = NB�
gcd(NA,NB ) ,

where � ∈ {1, . . . ,gcd(NA,NB)}, and gcd denotes the greatest
common denominator. These FET phases are again in one-to-
one correspondence with bosonic 1D static SPTs protected by
Zn × Zm symmetry, which can be pictured as condensates of
ZNA

domain walls bound to jB charges of ZNB
and of ZNB

domain walls bound to jA charges of ZNB
, with integers jA/B

subject to the same NBjA = −NAjB constraint as described
above. Again, we can construct explicit solvable lattice models
of these FET phases by coupling the FSPT models constructed
in the Appendix to ZNA

and ZNB
valued gauge links as shown

in Fig. 2.
The dynamical permutation of these phases changes mA

into a quantum superposition, χA, of mA × e
�jB

B for all � =
{0,1, . . . ,(NB mod jB) − 1}, thus dynamically turning mA into
an effectively non-Abelian object χA with dimension dχA

=
NB mod jB and fusion rules

χA × χA = 2

dχA
−1∑

�=0

(
mA × e

�·jB

B

)
. (28)

Similarly, mB is dynamically superposed into an effectively
non-Abelian object χB , with quantum dimension and fusion
rules obtained from the above expressions with A ↔ B.

C. Fermionic Floquet enriched topological orders

So far, we have encountered many examples of 2D bosonic
FSPTs, and found that gauging the static symmetry group
of a 2D bosonic FSPT results in a dynamical topological
order enriched by periodic driving. What about corresponding
Floquet topological phases of fermionic matter?
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To start, let us restrict our attention to the classes of
symmetries described in the tenfold-way classification, namely
those with a subset of charge conservation, particle-hole, and
time-reversal symmetries. Fermionic SPT phases with these
symmetries face fundamental problems that prevent them from
being localized, as explained in [13,36], and hence will be
unstable to heating. To summarize these arguments: phases
with conserved charge require particle-hole symmetry to be
nontrivial, which makes the symmetry group non-Abelian
and fundamentally prevents localization. Fermion SPT phases
without charge conservation face a less fundamental but
equally serious obstacle that rules out their physical real-
ization: namely, MBL is spoiled by Coulomb interactions,
and hence must occur in systems of charge-neutral fermions
(e.g., neutral fermionic atoms). Here, number conservation
symmetry can only be broken spontaneously, resulting in a
superfluid phase with a gapless goldstone mode which acts as
a thermalizing bath that destroys MBL (much like phonons in
a solid).

In contrast, neutral fermionic excitations may occur as
emergent anyonic particles in topologically ordered systems.
If these fermionic excitations form Floquet SPT states, the
resulting topological order will exhibit nontrivial dynamics
giving rise to new examples of FET phases. To explore these
phases, we will start by examining potential 2D fermion FSPTs
in systems where the fermion charge is not conserved, with an
eye towards coupling the fermions to a fluctuating Z2 gauge
field to obtain fermionic FET phases.

1. Fermionic Floquet enriched Z2 topological order

In the absence of any symmetry, there is a single nontrivial
1D fermion SPT: a topological superconducting chain with
unpaired Majorana fermion edge states. This enables a 2D
FSPT phase in which the 1D fermion SPT is dynamically
pumped onto the boundary during every Floquet period.
Gauging the fermions of this 2D fermionic FSPT phase results
in a FET Z2 gauge theory with mutual semionic excitations:
{1,e,m,ψ}, where ψ is the gauged fermion, and e and m are
bosonic Z2 gauge charge and flux excitations. The 1D fermion
SPT pumping has the effect of interchanging the e and m

particles in each Floquet period as illustrated in Fig. 3. To see
this, note that inserting π flux into a loop of the 1D topological
superconductor flips the fermion parity of that loop. Since the

e

m
e

e

m

e
e

m

m

t
0 T

FIG. 3. Dynamical anyon permutation: Schematic depiction of
dynamical anyon permutation in a Floquet-enriched Z2 gauge theory,
in which a topological superconducting chain (rounded red rectangle
with arrows) of the ψ = e × m particles is pumped from the bulk
onto the boundary during each period. Anyonic e and m excitations
are permuted as they pass through the topological chain.

ψ fermions see the e and m particles as π fluxes, the 1D
topological superconducting loops flip fermion parity when
dragged over either an e or an m particle. Since the total
fermion parity must be conserved, a corresponding ψ fermion
must be fused onto the e or m particles, interchanging them
(since e × ψ = m and m × ψ = e).

Again, we see that the FET phase differs from an ordi-
nary topologically ordered phase with the same topological
properties, in that the anyons are dynamically permuted by
the periodic driving in a way that preserves their self- and
mutual braiding statistics. However, this FET phase is missed
by considering gauged boson FSPT phases, for which there
are no nontrivial phases protected by only Z2 symmetry.

As for the bosonic FSPT phases described above, the
dynamical pumping tunes the edge to a self-dual point equally
poised between the topological superconductor and trivial
superconducting phases. We note that since it is not possible
to break the gauge symmetry, the edge of this FSPT phase
cannot be trivially localized even at very strong disorder. The
only options are a thermal edge, a time-crystal edge with
spontaneously doubled periodicity, or a quantum critical edge
that preserves symmetry.

Further, the e and m particles become dynamically quantum
superposed into an effectively non-Abelian particle σ , with
effective quantum dimension 2, and fusion rules

σ × σ = 1 + 1 + ψ + ψ,
(29)

e × σ = m × σ = 1 + ψ.

2. Fermionic Floquet enriched Z2 × Z2 topological order

By gauging the symmetry group of bosonic FSPT phases
withZ2 symmetry we encountered a new FET phase. However,
we just saw that such gauged bosonic FSPT phases do not
exhaust the possible FET phases. Are there new FET phases
with this topological order that can be obtained by gauging
the fermion parity and on-site symmetry of a 2D fermion SPT
with Z2 symmetry?

Our strategy so far has been to obtain an FET by dynami-
cally pumping 1D SPTs. There are four types of intrinsically
fermionic 1D SPTs with Z2 symmetry characterized by two
Z2-valued topological indices: νA/B ∈ {0,1}, corresponding
to the number of Z2 charged (A) and neutral (B) Majorana
fermion end states.

Naively one might suspect that each of these 1D phases
produces a distinct FET phase characterized by the dynamical
anyon permutations:

e± →
{
e±, ν± = 0,

m±, ν± = 1,
(30)

where we have labeled the e and m particles for each Z2 sector
by a ± label. These permutations appear superficially different
from that of the bosonic FSPT: m± → e∓m±. However, the
case with ν+ = ν− = 1 is actually equivalent to the bosonic
one up to a trivial relabeling of anyons: ẽ± ≡ e±, m̃± ≡ e∓m±.
On the other hand, the phases with only one of ν± nontrivial
have dynamical anyon permutations only in one or the otherZ2

gauge sector, and are equivalent to each other up to relabeling
of anyons, but distinct from the bosonic one. Hence we see that
there are only two distinct nontrivial FET phases. Again, the

155126-12



DYNAMICALLY ENRICHED TOPOLOGICAL ORDERS IN . . . PHYSICAL REVIEW B 95, 155126 (2017)

dynamical permutation of e± and m± particles promotes these
objects into quantum dimension 2 particles, σ±, with fusion
rules identical to Eq. (29).

D. Floquet enriched Zn topological order: Pumping
parafermion chains

The general pattern has been that the FET phase is
characterized by a dynamical permutation of anyons that leaves
the braiding statistics invariant. One may then suspect that
any such topology-preserving dynamical anyon permutation
can be realized in an appropriate FET phase. For example,
consider a ZN gauge theory, containing bosonic ZN charges,
e, and fluxes m (eN = 1 = mN ), and their composite particles.
Since the topological properties of this ZN gauge theory are
invariant under interchanging e ↔ m, one might guess that
there is a possible FET phase in which this permutation occurs
dynamically every Floquet period.

So far all of the examples of FETs we have encountered can
be viewed as gauged bosonic or fermionic FSPTs. However,
in this case, for N > 2, one can readily verify that there are no
such bosonic or fermionic FSPTs that produce the e ↔ m upon
gauging. Is the above-described dynamical anyon permutation
possible in a Floquet enhanced ZN topological order?

1. Topological chains of anyons

To shed some light on this question, note that in the above
fermionic examples, we constructed a 1D SPT of an emergent
particle. While in the previous cases this emergent particle
was a familiar fermion, generically we can attempt to make
1D “SPT” phases out of any emergent anyonic excitation, not
just those that are fermionic or bosonic. Such phases would
not be possible in a truly 1D system, since in our universe
there are only fermions and bosons microscopically. However,
a 2D topological order has no such preconceived prejudices.
In fact, we will see that the e ↔ m permuting FET phase can
actually be viewed as being induced by dynamical pumping
of 1D FSPT chains of a particular emergent anyon.

Specifically, in the ZN topological order, consider the
bound state ψ = e × m−1 of the ZN charge and flux. The
mutual statistics between charge and flux is θe,m = e2πi/N ,
making their bound state ψ an anyonic particle with statistics
e−2πi/N that is neither fermionic nor bosonic for N > 2. We
can construct a 1D array within this 2D ZN gauge theory,
where each site, i = 1, . . . ,L, contains an N -state Hilbert
space labeled by the number of ψ particles: ni ∈ ZN , or more
conveniently by their charge: Qi = e2πini/N . The total Hilbert
space of the chain is subject to a global constraint that the total
number of ψ particles is 0 mod N since the total system must
be gauge neutral (this generalizes the constraint of having even
number of fermions for N = 2).

Following [56,57] in an analogous route to Kitaev’s
construction of the topological superconducting chain, we may
introduce a pair of ZN parafermion operators χ2i ,χ2i+1 for
each site of the anyon chain. These operators satisfy (χi )N = 1,
χiχj = e(2πi/N)�(i−j )χjχi , and χ

†
i = χN−1

i , where the �(x) is
a step function. The total ψ charge on site i is measured
by Qi = (−e−iπ/N )χ2iχ2i+1. From this and the commutation
relations, we see that χ

†
2i and χ2i+1 both destroy a ψ particle

on site i. Crucially, the nontrivial commutation relations
among these parafermionic operators ensure the appropriate
commutation relations among the ψ particles. Moreover, while
the parafermionic degrees of freedom have fractional quantum
dimension dχ = √

N , they are constrained to appear in pairs
so that the Hilbert space of each site agrees with that of the ψ

particles, so that there are no unphysical non-Abelian anyonic
excitations in this description.

As was derived in [56–59], a parafermionic generalization
of Kitaev’s chain is obtained by the Hamiltonian

HPFC = −t

L−2∑
i=0

eiπ/Nχ
†
2i+1χ2i+2 + H.c., (31)

which in an open chain leaves free parafermions at the
edge of the chain. Similarly, generalizing the topological
superconductor, adding f units of ZN flux to the center of
a loop of the topological parafermion chain, corresponds to
changing the value of one of the ψ charges of one of the bond
operators χ

†
2i+1χ2i+2 (which one depends on gauge) from its

ground-state value of 1 to e2πif/N terms of the ring. This, in
turn, corresponding to adding ψ charge to the chain.

2. FET phase from pumping parafermion chains

Then, we can envision an FET phase obtained by pumping
these 1D topological parafermion chains onto the boundary
of the system during each Floquet period, analogous to the
2D FSPT cases described in detail in previous sections. Again
repeating the arguments of previous sections, we see that an
e particle will appear as a +1 ZN flux to the ψ particles,
inducing a ψ charge on the topological loop being pumped, and
a compensating ψ−1 = e−1 × m will bind to the e, transmuting
it to an m particle [similarly the m will appear as (−1) flux
for the parafermion chains, and will be transmuted into an m

particle].
As for previous examples, the dynamical interchange of

e ↔ m particles in this Floquet enriched ZN gauge theory
effectively turns these Abelian particles into effectively non-
Abelian objects χ which can be any quantum superposition of
anyon types e × ψj for j = 0 to N − 1. The χ particles have
effective quantum dimension N , and obey fusion rules

χ × χ = 2
N−1∑
j=0

ψj ,

(32)
ψj × χ = e × χ = χ,

where the latter rule follows from the fact that χ is a
superposition of bound states of an e particle and various
numbers of ψ particles. Then, fusing additional j -ψ particles
to e creates a different such superposition, which still belongs
to the χ equivalence class.

E. Bulk boundary correspondence for beyond
cohomology FETs

Recent work [60] has shown that the fermionic and
parafermionic “beyond cohomology” FET orders are
necessarily accompanied by anomalous chiral edge dynamics,
in which discrete packets containing quantized, irrational
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amounts of quantum information are transported unidirec-
tionally along the systems edge during each driving period.
Namely, the bulk e ↔ m exchange ZN FET order necessarily
results in a boundary that transports spatial edge

√
N -quantum

states along the edge in a right- or left-handed chiral sense
[60]. Because of the

√
N pumping, these phases were termed

“radical chiral Floquet phases”, in contrast to other “rational
chiral Floquet phases” that do not require bulk topological
order [34]. This quantum information transport is associated
with the chiral pumping of non-Abelian twist defects along
the sample edge [60]. This chiral edge physics is unusual,
in that it is an intrinsically dynamical phenomena, which
cannot be understood simply by treating the time periodicity
as an ordinary global symmetry. Thus, the chiral bulk-edge
correspondence represents a marked difference between the
dynamical properties of FETs and the analogous equilibrium
properties of topologically ordered states with anyon
permutation symmetries (which would not have anomalous
chiral Floquet edge dynamics). An interesting, unsolved
challenge would be to obtain a simple general formula
relating the dynamical anyon properties of the bulk on par
with the relation between the chiral central charge (modulo 8)
and the topological spins of anyons for static topological
order [61].

F. Floquet enriched non-Abelian topological orders

So far we have restricted our attention to FET phases arising
from driving Abelian topological orders. One could certainly
envision an even richer set of phases obtained by driving non-
Abelian topological orders. Here, even the undriven system
cannot fully obtain a fully MBL state [36,43]. However, these
orders could arise in an exponentially long-lived metastable
prethermal regime [29,55], or possibly as quantum critical
phases that are neither MBL nor thermal [43]. Likely, one
could also obtain phases in which there is a dynamical anyon
permutation symmetry. The possible nonanomalous set of such
anyon permutation symmetries in non-Abelian phases has been
classified in [50]. Understanding whether all of these can be ob-
tained by Floquet driving remains a challenge for future work.

VII. DISCUSSION

In this paper, we have constructed exactly solvable models
for 2D FSPT phases. We showed that these phases can
be understood as undergoing a dynamical pumping of a
lower dimensional static SPT onto the boundary during each
Floquet cycle, which we showed tunes the edge to a self-
dual Hamiltonian, which cannot be trivially localized while
preserving symmetry. We derived a conceptual diagnostic
for the dynamical anomaly protecting the edge in terms of
symmetry flux insertion. Interestingly, this anomaly is visible
even when the edge is in an infinite-temperature thermal state.

We then explored how dynamical driving can enrich
intrinsic topological order. A subset of such FET states was
obtained by promoting the global symmetry of a 2D bosonic
FSPT to a local gauge symmetry. Such phases can be classified
by cohomology formulation by enlarging the gauge group
to include an extra integer factor of Z corresponding to
time translation, in analogy to equilibrium Dijkgraaf-Witten

theories. However, we found that these cohomology states
represent only a fraction of the possible FET states. We
construct a variety of “beyond cohomology” FET states, which
can be viewed as 2D topological ordered states, in which 1D
topological chains of emergent anyons (not necessarily bosons
or fermions) are dynamically pumped across the system in each
driving cycle. Equivalently, we showed that this pumping has
the effect of dynamically permuting the anyonic excitations
in a way that preserves their braiding statistics. From these
results, we conjectured that 2D FETs are generally classified by
exchange-statistics-preserving anyon permutations (modulo
trivial relabeling of anyon types). However, while we are not
aware of any counterexamples, we are currently unable to
rule out the possibility that certain anyon permutations are
anomalous and not realizable in a local 2D Floquet-MBL
system.

While we have built a solid understanding of many
new nonequilibrium 2D dynamical topological phases, many
open questions remain. For example, 3D SPT systems can
exhibit exotic surface topological orders with anomalous
symmetry properties that make them impossible to realize
in a purely 2D system. This feature presumably extends to
3D FSPTs. Understanding this resulting anomalous surface
FET (or more properly “Floquet and symmetry enriched
topological order”) remains an open challenge, and how
it differs from two-dimensional examples remains an open
challenge. Furthermore, 3D topological order is only partially
understood in equilibrium. Extending these concepts to driven
nonequilibrium settings presents even further challenges.

We close with a note of caution. Throughout this work, we
have assumed that MBL is stable in higher dimensions. We
note, however, that there has recently been some work casting
doubt on the stability of higher dimensional MBL systems
to thermalization by exponentially rare thermal regions [62].
In our view, these arguments are not conclusive, and the
issue remains unsettled. However, in light of these doubts, a
pessimistic reader can be reassured that our results represent,
at worst, an accurate description of the dynamics of the
systems up to a parametrically long time scale that diverges
exponentially with disorder strength. In a practical sense,
experimental realizations are anyway inevitably cut short at
finite times due to imperfect isolation from the environment,
and the rare thermal regions are unlikely to be a limiting factor
for strong disorder.

ACKNOWLEDGMENTS

We thank R. Vasseur, H. C. Po, and especially A. Vish-
wanath for insightful conversations. This work was supported
by University of Texas at Austin startup funds (A.C.P.) and
the Gordon and Betty Moore Foundations EPiQS Initiative
Theory Center Grant (T.M.).

APPENDIX: EXPLICIT MODEL FOR 2D FSPT
WITH Zn × Zn SYMMETRY

In this section, we generalize the model above constructed
for 2D FSPTs with Z2 × Z2 symmetry, to build analogous
models for Zn × Zn symmetric 2D FSPTs, which form the
basic building block for general 2D bosonic FSPTs (i.e.,
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those with finite-Abelian symmetry groups, as required to
have many-body localization to obtain a well defined Floquet
phase). The models are closely related to the one analyzed
in the main text. Namely, consider a 2D lattice of sites with
n2 different states, which we can write as a square lattice
of n-state spins with A and B sublattice labels, so that each
physical site contains both an A and a B spin. We introduce
the Zn generalizations of the Ising-spin operators:

Zi =

⎛
⎜⎜⎜⎜⎜⎝

1
ω

ω2

. . .
ωn−1

⎞
⎟⎟⎟⎟⎟⎠, ω ≡ e2πi/n, (A1)

as well as the cyclical spin “raising” operators:

Xi =

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠, (A2)

that satisfy Xn
i = 1 = Zn

i and X
†
i ZiXi = ωZi . We will denote

the symmetry group as ZA
n × ZB

n , so that we may refer to the
different factors of ZA/B

n without ambiguity, and consider the
symmetry generators to act as

gA =
∏

i

Z2i ,

(A3)
gB =

∏
i

Z2i+1.

We again aim to build a Floquet drive that pumps a 1D SPT
onto the boundary for each cycle. To this end, we begin by
constructing zero correlation length models of the 1D SPTs
protected by ZA

n × ZB
n symmetry. There are n distinct such

phases, which can be viewed as condensates of ZA
n domain

walls bound to the j charge of ZB
n symmetry. Consistency

requires that ZB
n domain walls bind (−j ) charges of ZB

n

symmetry. An explicit zero correlation length model that
implements this construction is

H1D =
∑

i

λ2iZ
†
2i−1X2iZ2i+1 + λ2i+1Z2iX2i+1Z

†
2i+2 + H.c.,

(A4)

where λi are spatially random complex coefficients. On an
open chain of length L, 1 < i < L, this model contains
free Zn spins on each edge. For example, on the left edge,
the operators ZLζ ≡ Z1 and XL ≡ X1Z

†
2 commute with the

Hamiltonian and, having the same commutation relations
as Z1 and X1, form an effective Zn spin. However, the
symmetries on this effective edge spin act as (gB)L,edge = ZL,
(gA)L,edge = XL, which form a projective representation with
(gAgBg−1

A g−1
B )L,edge = ω−1.

To build a 2D FSPT, we then seek a unitary operator that
adds a 1D SPT phase onto a loop of sites, which takes

USPT :

{
X2i → Z

†
2i−1X2iZ2i+1,

X2i+1 → Z2iX2i+1Z
†
2i+2.

(A5)

The appropriate operator can be identified by taking a
temporary conceptual detour, in which we consider the Zn

spin to be embedded in a continuous U (1) rotor variable:
Xi → eiφi , where φi ∈ [0,2π ), and then after having identified
the correct unitary transformation in the rotor language, we
can restrict ourselves back to the discrete Zn configurations,

φi ∈ { 2πj

n
}n−1

j=0
. In this continuous U (1) representation, Zi acts

like ω�i , where �i is the momentum conjugate to φi . Then, the
operator eiα�i acts like a translation operator that shifts φi ; e.g.,
e−iα�i eiφi eiα�i = eiαeiφ1 . Then, we see that the rotor operator
that implements the desired transformation in Eq. (A5) for
sites in a closed loop, , is

(USPT,)rotor =
∏
j∈

ω(−1)j �j �j+1 . (A6)

Since this operator always shifts φi by an integer multiple of
2π/n, we can then simply restrict it to the rotor basis. This USPT

operator, then commutes with symmetry, and can be written
as e−Hpump, , where Hpump, involves multiple spin operators of
size up to the length of .

Just as for the n = 2 case described in the main text
[Eq. (5)], we can then use these ingredients to write down
a model for the 2D Zn × Zn root FSPT which pumps the
minimal 1D SPT onto the edge during each cycle:

H (t) =
{

2H1 = 2
∑

P Hpump,P , 0 � t < 1/2,

2H2 = ∑
i h

(j )
i (Xi)j + H.c., 1/2 � t < 1,

(A7)

where h
(j )
i are random complex coefficients, such that U (T ) =

e−iH2USPT,∂�, where ∂� is the boundary of the system.
Again, we may consider the edge theory resulting from

this Hamiltonian. It is now convenient to consider the Floquet
evolution operator for n periods:

U (nT )edge = (
e−iH2USPT

)n =
n−1∏
j=0

e−i(U †
SPT)j H2(USPT)j . (A8)

We see that the edge is constantly cycled among the
different n SPT 1D SPT phases. We can analyze the resulting
edge dynamics explicitly in the limit of |h(j )

i | � 1. In this limit,

defining U (nT ) = e−iH
(n)
eff , we have

H
(n)
eff ≈

n−1∑
j,k=0

∑
i

[
h

(k)
2i (Z†

2i−1)jkXk
2i(Z2i+1)jk

+h
(j )
2i (Z2i−1)jkXk

2i(Z
†
2i+1)jk

] + H.c. + · · · , (A9)

where · · · are subleading in |h(j )
i |, but preserve the cyclic

“symmetry” associated with the edge Hamiltonian being
invariant under incrementing the 1D SPT invariant of the edge
(j → j + 1).

As for the n = 2 case, it is instructive to map this
Hamiltonian into two Zn clock models, via the duality
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transformation

Z
†
2i−1X2iZ2i+1 → ζA,iζA,i+1,

Z2iX2i+1Z
†
2i+2 → ζB,iζB,i+1,

(A10)
X2i−1 → ξA,i,

X2i → ξB,i ,

where the dual variables ζA/B and ξA/B satisfy the commutation
relations of the original Z and X spins, respectively, and
ζB/A commutes with ξA/B . In this dual language, the edge
Hamiltonian for n periods reads

H
(n)
eff =

n−1∑
j,k=1

∑
i

h
(k)
2i (ζ †

A,iζA,i+1)jk +
n−1∑
k=1

h
(k)
2i−1(ξA,i)

k

+ [A ↔ B,(2i) ↔ (2i − 1)] + H.c. (A11)

Again, we find that in the dual language, the A and B

Zn-chain couplings are related by exchanging spin-exchange
terms of A for transverse field terms of B. Then if the A

sublattice lies at the critical point between the Zn ordered

and disordered phases (in the dual language), so too will the B

sublattice spins. In the original spin language, this corresponds
to the edge being in a symmetry-preserving, quantum critical
state, which can be interpreted as the critical point between the
1D SPT and trivial phases. Note however that unlike the n = 2
case, there are n spin-exchange terms, and 1 transverse field
term, so the statistical translation invariance of hi is no longer
sufficient to ensure the criticality of the edge. Rather, the even
and odd fields must be fine tuned to achieve the critical edge
termination for n > 2.

More generally, we expect the edge of this model to exhibit
localized and spontaneously symmetry-breaking phases for
strongly disordered edge couplings, h(k)

i , or to exhibit a thermal
phase for weakly disordered edge couplings. Nonetheless,
even in the infinite-temperature thermal edge, a sign of the
underlying SPT order persists, namely, if one considers the
system on a cylinder and inserts a ZA

n -symmetry flux through
the cylinder axis. Then the ZB

n charge of each edge state is
incremented by one unit for each Floquet period, returning to
its original value only after n cycles. This feature is also present
even when the edges are thermal and at infinite effective
temperature.
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