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Addressing electron-hole correlation in core excitations of solids: An all-electron many-body
approach from first principles
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We present an ab initio study of core excitations of solid-state materials focusing on the role of electron-hole
correlation. In the framework of an all-electron implementation of many-body perturbation theory into the
exciting code, we investigate three different absorption edges of three materials, spanning a broad energy
window, with transition energies between a few hundred to thousands of eV. Specifically, we consider excitations
from the Ti K edge in rutile and anatase TiO2, from the Pb M4 edge in PbI2, and from the Ca L2,3 edge in CaO.
We show that the electron-hole attraction rules x-ray absorption for deep core states when local fields play a
minor role. On the other hand, the local-field effects introduced by the exchange interaction between the excited
electron and the hole dominate excitation processes from shallower core levels, separated by a spin-orbit splitting
of a few eV. Our approach yields absorption spectra in good agreement with available experimental data and
allows for an in-depth analysis of the results, revealing the electronic contributions to the excitations, as well as
their spatial distribution.
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I. INTRODUCTION

An accurate first-principles description of excited-state
properties in crystalline materials requires a high-level treat-
ment of electron correlation. Green’s-function-based many-
body perturbation theory (MBPT) [1] including the GW

approximation [2,3] and the solution of the Bethe-Salpeter
equation (BSE) [4,5] represents the state of the art for
calculating charged and neutral excitations in the optical
region, respectively [6–8]. While the former yields quasi-
particle energies, accounting for electron-electron correlation,
the latter gives excitation energies of the electron-hole pairs.
These methods are routinely applied on top of a mean-field de-
scription of the ground state obtained from density-functional
theory (DFT) [9,10].

Correlation effects enter the description of core excitations
differently. Several approaches are adopted, often with good
results, depending on the range of the transition energies
[11,12]. Excitations from deep-lying core states, which are
highly localized and decoupled from the surrounding electron
cloud, are dominated by the long-range electron-hole (e-h)
attraction. As such, these excitations have been successfully
described by a constrained DFT-based scheme, the so-called
core-hole or final-state rule approximation [13]. With the
core-hole potential directly included in the calculation of
the electronic states, this method is well suited for extended
systems [14–16], although requiring supercell calculations to
avoid spurious interactions between core holes of neighboring
unit cells. For shallower core states, however, the overlap
between the initial core state and the conduction bands
is usually more relevant, and the local treatment of the
electron-hole correlation becomes problematic [17]. Indeed,
the core-hole approximation is known to fail in the case of
excitations involving shallow core or even semicore states,
which may interact with the surrounding electrons [18].
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Other mean-field methodologies, such as multiple scattering
calculations [11,19,20], are often successfully adopted for
finite systems but are hardly applicable to solids.

BSE-based approaches to core excitations have proven to
overcome these issues and to be reliable for many crystalline
materials. However, most of the schemes proposed so far are
based on either the pseudopotential approximation [21,22]
or, in an all-electron framework, on the description of the
core states in terms of local orbitals as part of the valence
region, neglecting spin-orbit coupling. While the latter choice
has turned out to be effective in many cases [18,23–26], this
approximate treatment of core states is limited to a specific
energy window and initial states. In particular, excitations from
core levels with a non-negligible spin-orbit splitting need a rel-
ativistic treatment, even for low transition energies. Excitations
from 2p1/2 and 2p3/2 states in transition-metal oxides are an
exemplary case that requires an enhanced spinorial treatment
of the core electrons [27]. In such systems local-field effects
are crucial for the spectra, and an accurate description of the
e-h exchange interaction is essential to achieve reliable results.

In this work, we aim to address correlation effects in core
excitations of solids by exploring the spectra of different edges
of several materials, spanning a broad range of transition
energies. To do so, we adopt an ab initio approach based
on the solution of the BSE in an all-electron framework. After
presenting the formalism and the essence of its implementation
into theexciting code [28], we show x-ray absorption spectra
of three materials, focusing on excitations from the Ti K edge
in rutile and anatase TiO2, from the M4 edge in PbI2, and
from the Ca L2,3 edge in CaO. We discuss the role of the e-h
attraction and exchange and analyze our results to gain insight
into the nature of these excitations.

II. METHODOLOGY

A. Theoretical background

In many-body perturbation theory, absorption spectra are
usually computed in three steps: First, the electronic structure
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of the system is calculated within DFT. On top of this, the
quasiparticle (QP) energies and wave functions are deter-
mined to account for electron-electron interactions. While
calculations of the self-energy for valence and conduction
states are nowadays routinely performed in the GW scheme,
quasiparticle corrections to the core region are, at present, still
largely unexplored. Early attempts to estimate the self-energy
of core states date back to the pioneering works of Bechstedt
[29] and Hedin [30]. More recently, a numerical study on
shallow d-core states has disclosed the challenges related to
the QP correction further from the valence region [31]. One of
the main reasons is the poor starting point provided by DFT
for such localized and dispersionless states when semilocal
exchange-correlation functionals are employed. Some degree
of self-consistency in GW or vertex corrections have to be
included to overcome this limitation. While these methods are
becoming the state of the art for evaluating the electronic
properties of solids in the valence and conduction region
[32,33], in theoretical core spectroscopy it is still common
practice to mimic the QP correction of both unoccupied and
core states with a scissors shift [27,34]. The exact value of
the corresponding operator is chosen such that the onsets of
calculated and experimental spectra are aligned [27,34]. Shifts
of a few tens of eV are typically applied, with the contribution
coming from the core states being largely dominating.

As a third step, neutral excitations are described by the
macroscopic response function P̄ (r1,t1,r′

1,t
′
1; r2,t2,r′

2,t
′
2). This

quantity is used to obtain the macroscopic dielectric function
εM without the inversion of the microscopic dielectric function
εGG′ [35,36]. It is determined by a Dyson-like equation P̄ =
P0 + P0�̄P̄ , which connects the response function P̄ with
its noninteracting irreducible polarization function P0 through
the interaction kernel �̄. This is the so-called Bethe-Salpeter
equation [5]. As detailed in Ref. [8], the matrix inversion
P̄ = [1 − P0�̄]−1P0 is typically mapped onto an effective
eigenvalue problem

∑
c′u′k′

HBSE
cuk,c′u′k′A

λ
c′u′k′ = EλAλ

cuk, (1)

where, in our case, the summation is limited to the initial
core states, labeled by c, and the final unoccupied states,
labeled by u. The core states are defined by the absorption
edge considered, while the number of unoccupied states
needs to be carefully converged. The eigenvalues Eλ and
the corresponding eigenstates Aλ

cuk uniquely define the two-
particle excitations of the system. The former represent the
excitation energies and are typically associated with the bind-
ing energies Eb, which are usually defined as the difference
between Eλ and the energy of the lowest transition within
the independent-quasiparticle approximation (IQPA), Eb =
Eλ − E

IQPA
0 . In this work, we adopt a scissors operator �.

Thus, the QP energy difference between core and conduction
states reads as follows: E

QP
uk − EQP

c ≈ εuk − εc + �, where
εuk and εc are the Kohn-Sham eigenvalues of the conduction
and core states, respectively. To avoid confusion with results
obtained from GW calculations, we chose the nomenclature
independent-particle approximation (IPA) when the electron-
hole interaction is totally neglected.

The square modulus of the transition coefficients

tλi =
∑
cuk

Aλ
cuk

〈ck|p̂i |uk〉
εuk − εc

(2)

gives the oscillator strength of the excitation. Both eigenvalues
and eigenvectors of Eq. (1) enter the expression of the
macroscopic dielectric function

ε
ij

M (ω) = δij + 4π

V

∑
λ

tλi
[
tλj

]∗

ω − Eλ + iδ
. (3)

The eigenvectors Aλ
cuk determine the two-particle wave func-

tion 	λ, corresponding to an excitation with energy Eλ:

	λ(rese,rhsh) =
∑
cuk

Aλ
cukψuk(rese)ψ∗

ck(rhsh)

=
∑
m,m′

∑
cuk

Aλ
cukϕ

m
uk(re)ϕm′

ck (rh)∗ηm(se)η∗
m′(sh),

(4)

using the expression ψnk(rs) = ∑
m=↑,↓ ϕm

nk(r)ηm(s) for the
single-particle states in the case of noncollinear spin, with
ηm(s) being the spinor wave function and ϕm

nk being the spatial
one [37]. In reciprocal space, the character and the distribution
of the e-h wave function can be expressed by the weight of a
transition at each k point:

wλ
uk =

∑
c

∣∣Aλ
cuk

∣∣2
. (5)

The effective Hamiltonian in the Tamm-Dancoff approxima-
tion [38] can be separated into three contributions, HBSE =
H diag + Hd + Hx , where the diagonal term H

diag
cuk,c′u′k′ =

(εuk − εc + �)δcc′δuu′δkk′ describes transitions within the IPA.
Hx is the repulsive exchange part of the Coulomb kernel

Hx
cuk,c′u′k′ =

∫
d3rd3r ′ ∑

m

ϕm
ck(r)

[
ϕm

uk(r)
]∗

v̄(r,r′)

×
∑
m′

[
ϕm′

c′k′(r′)
]∗

ϕm′
u′k′(r′), (6)

with v̄(r,r′) being the short-range bare Coulomb potential. Hd

is the attractive direct term,

Hd
cuk,c′u′k′ = −

∫
d3rd3r ′ ∑

m

ϕm
ck(r)

[
ϕm

c′k′(r)
]∗

W (r,r′)

×
∑
m′

[
ϕm′

uk(r′)
]∗

ϕm′
u′k′(r′), (7)

where W (r,r′) is the statically screened Coulomb interaction.
We note that due to the summations over the quantum number
m = ↑,↓ of the spin projection on the z component, Eqs. (6)
and (7) are valid for the general case of noncollinear spin
polarization.

B. All-electron implementation

Employing the BSE approach for core spectroscopy re-
quires the explicit determination of the matrix elements
between two core and two conduction states involved in the
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excitation. To avoid the computationally cumbersome integra-
tion over nonlocal quantities, the matrix elements of Eqs. (6)
and (7) are expanded into a plane-wave basis. In this way, the
Fourier transforms WGG′(q) and v̄G(q) of the screened and bare
Coulomb potentials, respectively, can be straightforwardly
evaluated. Using plane-wave matrix elements

Mijk(q + G) = 〈ψik|e−i(q+G)|ψj (k+q)〉, (8)

where i,j ∈ [c,u], the exchange interaction [Eq. (6)] can be
written as

Hx
cuk,c′u′k′ = 1

V

∑
G

M∗
cuk(G)v̄G(q = 0)Mc′u′k′(G), (9)

and the direct term [Eq. (7)] can be written as

Hd
cuk,c′u′k′ = − 1

V

∑
GG′

M∗
cc′k(q + G)WGG′(q)M∗

uu′k(q + G′),

(10)
with q = k − k′ and V being the unit-cell volume. While,
in principle, the summations in both equations include all
reciprocal lattice vectors G, in practice they are limited to
vectors fulfilling the condition |G + q| � |G + q|max. The
matrix elements of the screened Coulomb potential WGG′(q)
are obtained as

WGG′(q) = 4πε−1
GG′

|q + G||q + G′| , (11)

where the inverse microscopic dielectric tensor ε−1
GG′ is com-

puted within the random-phase approximation (RPA). While
the long-range term of the potential is accounted for only in
the attractive part of the electron-hole interaction of Eq. (10),
the short-range term appears in both the attractive direct term
and the repulsive exchange interaction. Specifically, the latter
describes the so-called local-field effects (LFE) [39,40].

Single-particle wave functions are obtained from all-
electron full-potential DFT calculations, as implemented in the
exciting code [28]. In this package, valence and conduction
states are computed employing the linearized augmented
plane-wave plus local-orbital [(L)APW+LO] basis set. In this
formalism, the electronic wave functions are expanded into
an atomic part around the nuclear positions defined by the
muffin-tin (MT) radius RMT , whereas in the space between
the nonoverlapping MT spheres a plane-wave expansion is
adopted. More details about the LAPW+LO method and
its implementation in exciting can be found in Ref. [28].
Conduction states ψikα

scalar are obtained as eigenstates of the
scalar-relativistic Hamiltonian. In a MT sphere around the
atom α, they are expressed most generally by an expansion in
spherical harmonics Ylm(r̂α):

ψikα
scalar(rα) =

∑
lm

uik
lα(rα)Ylm(r̂α), (12)

where rα = r − Rα and Rα is the position of atom α. To
calculate matrix elements between spinorial core states and
conduction bands, the latter are assumed to take the form

ψik(rs) =
∑
m

1√
2
ψik

scalar(r)ηm(s), (13)

where ψik
scalar denotes the eigenstates of the scalar-relativistic

Hamiltonian, representing an average between the two spin
channels. This approximation significantly reduces the compu-
tational effort, introducing only a small exchange-like error in
the excitonic energies compared to a fully relativistic treatment
of the conduction states.

The initial core states, which are highly localized and
dominated by relativistic effects, are obtained as solutions of
the Dirac equation in a spherically symmetric potential. The
full Dirac equation can be transformed into a set of coupled
radial equations (for a full derivation, see Refs. [41,42]).
As the Dirac Hamiltonian commutes with the total angular
momentum operator Ĵ = L̂ + Ŝ, it can be decomposed into
radial and spherical parts. As such, the four-component Dirac
wave function is written as [43]

ψκ,M (r) =
(

uκ (r)�κ,M (r̂)

−ivκ (r)�−κ,M (r̂)

)
, (14)

where the quantum number κ is introduced as a unique index
for a state defined by the quantum numbers 2S+1LJ :

κ =
{

−L − 1 for J = L + 1
2 ,

L for J = L − 1
2 .

(15)

The so-called spin spherical harmonics �L,S,J,M (r̂) are given
by

�(L, 1
2 )L+ 1

2 ,M (r̂) =
⎛
⎝

√
L+M+ 1

2
2L+1 YL,M− 1

2
(r̂)√

L−M+ 1
2

2L+1 YL,M+ 1
2
(r̂)

⎞
⎠ (16)

and

�(L, 1
2 )L− 1

2 ,M (r̂) =
⎛
⎝−

√
L−M+ 1

2
2L+1 YL,M− 1

2
(r̂)√

L+M+ 1
2

2L+1 YL,M+ 1
2
(r̂)

⎞
⎠.

In this way, the wave functions ψκ,M in Eq. (14) are four-
dimensional Dirac vectors composed of two two-dimensional
spinors �κ,M , where the radial function of the large component
is uκ (r) and that of the small component is −ivκ (r). The radial
functions are obtained by solving the coupled radial Dirac
equations [41]

∂uκ

∂r
= 1

c

(
vs

eff − εκ

)
vκ +

(
κ − 1

r

)
uκ,

∂vκ

∂r
= −κ + 1

r
vκ + 2c

[
1 + 1

2c2

(
εκ − vs

eff

)]
. (17)

In order to calculate matrix elements with the scalar-relativistic
states in the conduction band, the small component of the
core states is neglected, thereby producing spinor solutions
ψκ,M (r) for a given atom α at position Rα . This approximation,
commonly adopted in full-potential codes (see, e.g., Ref. [44]),
is required since the conduction states are solutions of
the scalar-relativistic Hamiltonian and therefore the small
component of these states is not accessible. The core wave
function of an atom α finally takes the form

ψκ,Mα(r) =
{
uκα(rα)�κ,M (r̂α) for rα � RMT ,

0 else.
(18)
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Bloch states ψk
κ,Mα are obtained from the localized core states

as

ψk
κ,Mα(r) =

∑
R

ψκ,Mα(rα − R)eikR, (19)

where R is a lattice vector.

III. RESULTS

A. Titanium K -edge spectra of TiO2

We start our analysis by investigating near-edge excitations
from the Ti 1s electrons in the rutile and anatase phases of
TiO2. Due to their tetragonal crystal symmetry, these materials
are characterized by two inequivalent optical components,
corresponding to parallel and perpendicular light polarization.
The computed x-ray near-edge absorption spectra (XANES)
shown in Fig. 1(a) represent an average of both, as no
information about the experimental setup is provided [45]. We
choose to align the computed spectrum with respect to peak A3

FIG. 1. (a) Ti K-edge spectra of anatase (top panel) and rutile
(bottom panel) TiO2. The results obtained from BSE (red line)
are compared with their counterpart from the independent-particle
approximation (IPA; gray shaded area), as well as with experimental
results (black circles; from Ref. [45]). A Lorentzian broadening of
0.5 eV is used for both theoretical spectra. (b) Pre-edge features of
rutile (bottom panel) and anatase (top panel). A smaller Lorentzian
broadening of 0.1 eV is adopted to resolve individual features.
The BSE absorption spectra are obtained from an average over the
diagonal components of the dielectric tensor and are aligned to the
experimental ones at the peak A3. The labels denote the peaks in the
experimental spectra.

since the latter appears with the same oscillator strength in all
optical components. Excitations from the Ti K edge occur at
very high energy, i.e., approximately 5 keV, and are therefore
probed by hard x rays. Three distinct peaks are visible in the
spectra. Following the notation adopted in Ref. [45], C1 and
C2 are the so-called edge-crest peaks, while D is the first edge
peak. In the rutile phase, C1 has relatively large oscillator
strength, whereas C2 is barely visible as a shoulder of D.
Our results reproduce very well the experimental data of both
TiO2 phases in terms of position and relative intensity of the
peak D. The comparison with the IPA spectrum, also shown in
Fig. 1(a), reveals that at the absorption onset excitonic effects
do not play a major role. Except for a natural blueshift of
the peaks due to the missing electron-hole interaction, the
overall spectral shape, which is very similar in both phases, is
qualitatively captured also by a mean-field description of the
transitions. This is not surprising, considering that the latter
involve unoccupied states in the continuum.

Correlation effects come relevantly into play in the pre-edge
features, which also determine the XANES fingerprints of
the two phases [Fig. 1(b)], as extensively discussed in Refs.
[46–51]. In anatase the lowest-energy feature corresponds to an
intense bound exciton, A1, with a binding energy of 3.42 eV.
About 2 eV higher in energy, a weaker peak, A2, appears
with a binding energy of 1.54 eV. These two peaks show a
strong polarization dependence: While A1 appears only in the
optical component perpendicular to the tetragonal axis, A2 is
present only in the parallel component. On the contrary, in
rutile these two excitations are dark, and the first active peak is
A3. Remarkably, a similar behavior occurs also in the optical
region, where the anatase phase exhibits bright bound excitons,
although at these frequencies binding energies are two orders
of magnitude smaller than in the core spectrum [52,53]. The
high-energy part of the pre-edge spectra is characterized by
two intense and broad peaks labeled A3 and B, stemming from
transitions into the low-energy part of the conduction region.
As shown in Fig. 2(a), the first unoccupied states in both phases
are dominated by Ti 3d states hybridized with the 4p ones.
The contribution from the latter is crucial to make excitations
into these bands dipole allowed. Obviously, the low oscillator
strength of the pre-edge features is consistent with the
dominant 3d character of the lowest-energy conduction bands.

The distinct pre-edge spectral signatures of rutile and
anatase can be ascribed to the differences in the unoccupied
electronic structure of the two phases and, in turn, to the
Coulomb interaction between the core-hole and the excited
electron. In Figs. 2(b) and 2(c) we show the contributions to the
excitations from different conduction states by projecting the
coefficients wλ

ck [Eq. (5)] onto the respective band structure. In
both phases, the lowest-energy exciton A1 stems from transi-
tions to the t2g band [see also Fig. 2(a)] with predominantly Ti
3d character. The distribution of the exciton weights over the
entire Brillouin zone points to a localization in real space typ-
ical of bound excitons. It is worth noting that the contributions
coming from all the bands of the t2g manifold are an indication
of the importance of correlation effects. A closer look at the
projected density of states in the conduction region [Fig. 2(a)]
reveals that in anatase the hybridization of the Ti 3d band
with 4p states in this energy window is enhanced compared to
rutile. Since only transitions to Ti 4p states are allowed by the
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FIG. 2. (a) Projected density of states (DOS) in the conduction-
band region of rutile and anatase. The Ti p contributions are multi-
plied by a factor of 100 to enable their visualization. Contributions
of individual bands to the excitons in the (b) A1 and (c) A2 prepeaks
in the Ti K-edge spectra of anatase (left) and rutile (right). The size
of the colored circles (blue for A1 and green for A2) quantifies the
weight of each band in the excitonic eigenstates. Energies are given
relative to the onset of the conduction band.

dipole selection rules, the oscillator strength of A1 is nonzero
in the former phase while vanishing in the latter. The second
exciton, A2, also involves in both phases transitions to the eg

manifold at higher energies. Again, the relative weight of 4p

states is larger in anatase compared to rutile, and therefore,
the intensity of A2, although very weak, is nonzero. Also
in this case, the analysis of the exciton weights reveals that
the electron-hole correlation induces a remarkable mixing of
single-particle transitions over the whole Brillouin zone.

Previous results obtained from multiple-scattering calcula-
tions [46–49] correctly describe the overall spectral shape in
both phases but show limitations regarding the bound excitons
in the pre-edge region. A better description of the latter features
is achieved by a BSE treatment [50,51] and further improved
by the all-electron approach adopted in this work. Overall,
we find good agreement with experimental data [45,54],
considering that the latter are a result of indirect measurements
and, as such, may include scattering, losses, and higher-order
effects. We notice, however, that in anatase the intensity of
the first peak A1 is overestimated in our calculation, while the
second one, A2, is too weak. The absolute energy of these two
excitations is redshifted by approximately 1 eV compared to
the experiment. This discrepancy is likely due to the adopted
spinor approximation for the conduction states [Eq. (13)].
In this way, the repulsive exchange interaction is slightly

underestimated, resulting in the observed redshift of the bound
excitons. Quasiparticle corrections to the energy eigenvalues
of the correlated Ti 3d conduction bands may further improve
the relative peak positions. Additionally, lattice contributions
to the screening, which are neglected in the current work, might
further influence the binding energies of the bound excitons in
the pre-edge region.

B. Lead M4-edge spectrum of PbI2

As a second case, we study the XANES of PbI2 from the
Pb M4,5 edge. The Pb 3d states are deep core levels, but their
binding energies are only about half of those of the Ti 1s states.
Although, in principle, transitions from all Pb 3d states have to
be considered, in practice, the M5 and M4 edges can be treated
separately. As the spin-orbit splitting between the Pb 3d3/2 and
3d5/2 electrons is about 104 eV, transitions from these initial
states cannot interact significantly. In the following, we focus
only on the M4 edge since the M5 edge spectrum displays the
same features.

The dielectric function shown in Fig. 3(a) is characterized
by a sharp peak at 2537 eV, followed by two broader features at
approximately 2546 and 2554 eV, respectively. The first peak
is formed by two bound excitons with large oscillator strength
and binding energies of 0.95 and 0.90 eV, respectively. A
second group of excitations occurs between 2538 and 2540 eV,
contributing to the first peak as a weak shoulder. Above
2541 eV, a continuum of low-intensity excitations character-
izes the spectrum, giving rise to a broad hump. In order to
understand the nature of these excitations, we now compare
the spectrum computed from the solution of the BSE with
the one obtained in the IPA. The spectral shape is essentially
the same with and without excitonic effects. However, the
electron-hole interaction shifts the spectral weight, thereby
increasing the oscillator strength of the excitations at the onset.
This is the typical behavior exhibited in the optical region by
bound excitons in solid-state materials [35]. However, it should
be noted that bound excitons in core spectra typically have
much larger binding energies. In the case of PbI2, the binding
energy of the first bound exciton is about 3 eV, two orders of
magnitude larger than the first optical excitation [55]. These
indications confirm the dominant role of the screened Coulomb
interaction in ruling the core excitations in PbI2 from the
Pb M4 edge.

The intense feature at the absorption onset can be analyzed
in terms of the projected density of states [Fig. 3(b)]. We
notice that the low-energy region is dominated by an intense
peak coming from the Pb p states, which are only very weakly
hybridized with Pb f states. Transitions to these states are
dipole allowed and therefore give rise to the large oscillator
strength at the onset of the IPA spectrum. The excitonic
nature of the lowest-energy excitation obtained from BSE is
revealed by the analysis of the real-space distribution of the
electron-hole pair [Fig. 3(c)]. While the electron probability is
overall localized around the absorbing lead atom, significant
contributions also come from the six nearest-neighbor iodide
atoms. The correlated electron distribution for a fixed core-hole
position, which exceeds the unit cell [dashed line in Fig. 3(c)],
is confined within the layer of the absorbing atom. Its extension
beyond the size of the unit cell of the material is a signature
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FIG. 3. (a) Pb M4-edge absorption spectrum of PbI2 obtained
from BSE (red line) and within the independent-particle approxi-
mation (IPA; gray shaded area). The oscillator strength of the BSE
excitations is indicated by vertical bars. A Lorentzian broadening
of 0.5 eV is used in both calculated spectra to mimic the excitation
lifetime. The calculated absorption spectrum is obtained from an
average over the diagonal components of the dielectric tensor. (b)
Density of states projected onto the Pb s, p, d , and f states in
PbI2. The onset of the conduction band is set to zero. (c) Real-space
representation of the electron distribution of the lowest-energy
exciton for a fixed position of the core hole. The absorbing atom
is marked in yellow. Iodide atoms are displayed in purple; lead atoms
are in gray.

of the electron-hole correlation, which is typical of bound
excitons in the core [17,18,23,56], as well as in the valence
region (see, e.g., [8,57]). It is worth noting that the first core
exciton in PbI2 is much more localized than its counterpart in
the optical region [55].

C. Calcium L2,3-edge spectrum of CaO

As a final case, we study the excitations from the Ca 2p1/2

and 2p3/2 states in CaO. Here, the core levels are considerably
higher in energy than the Ti 1s and Pb 3d states considered
before. Moreover, they are separated by a spin-orbit splitting
of about 3.7 eV. Thus, transitions from both Ca 2p1/2 and
2p3/2 initial states have to be considered simultaneously. The
XANES from the Ca L2,3 edge of CaO shown in Fig. 4 exhibits
the prototypical white-line form of L2,3-edge spectra also
found in many 3d transition metals [59]. The spectral shape is

FIG. 4. Ca L2,3-edge absorption spectrum of CaO expressed by
the imaginary part of the dielectric function (red line) compared with
experimental data (black dots; from Ref. [58]) offset for clarity. The
oscillator strength of individual excitations is indicated by vertical
bars. A Lorentzian broadening of 0.3 eV is used in the calculated
spectrum to mimic the excitation lifetime.

dominated by four intense excitonic peaks, associated with the
L3 (A1 and A2, following the notation used in Ref. [58]) and
L2 (B1 and B2) sub-edges. This spectrum is strongly affected
by correlation effects due to the considerable e-h exchange
interaction. This type of interaction is associated with the
local fields acting in the system, generated by the anisotropic
character of electronic charge distribution and described
by the short-range part of the bare Coulomb interaction
[Eq. (9)].

To explain the essential role of LFE in capturing the features
of the Ca L2,3-edge spectrum of CaO, we consider the result
obtained by neglecting the exchange term in the solution of the
BSE Hamiltonian. In this scenario [setting |G + q|max = 0 in
Eqs. (9) and (10)], the screened Coulomb potential in Eq. (11)
gives a nonzero contribution, while v̄ vanishes by definition. As
discussed in Refs. [57,60,61] for optical spectra, in this case the
screened Coulomb interaction merely induces a rigid redshift
of the IPA spectrum. Indeed, the resulting spectrum shown in
Fig. 5(a) is very broad and rather featureless, with no excitonic
peaks appearing. This is a clear indication that the G = 0
term of the e-h attraction alone is not capable of describing
the core excitations. However, as indicated in Fig. 5(a), it
is sufficient to take into account only 24 |G + q| vectors,
corresponding to a cutoff |G + q|max = 2 a−1

0 , to obtain the
correct spectral shape, although with inaccurate relative peak
heights. Thus, the screened Coulomb attraction between the
electron and core hole is well captured already with a relatively
low |G + q|max cutoff. Conversely, the repulsive electron-hole
exchange, which mixes transitions from the two sub-edges,
requires a more accurate description of local-field effects. It is
worth noting that even our best result, obtained by including
approximately 3000 |G + q| vectors, corresponding to a cutoff
of 10 a−1

0 , does not perfectly reproduce the strength of the
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FIG. 5. (a) Ca L2,3-edge spectra of CaO computed at increasing
values of |G + q|max. (b) |G + q|max dependence of the energy
differences between peaks B1 and B2, �(B2 − A2) (circles), and
between B2 and A2, �(B2 − B1) (triangles), and the branching ratio
L3/(L2 + L3) (diamonds). The former are relative to the final values
of (B2 − A2) = 3.69 eV and (B2 − B1) = 1.46 eV. (c) Absorption
spectra of CaO obtained including only Ca 2p1/2 (L2) and Ca 2p3/2

(L3) as initial states. The cross terms, L2,3 − (L2 + L3), between the
total L2,3 spectrum and the individual L2 and L3 spectra are also
shown (solid area).

measured peaks (Fig. 4) since the relative intensity between
A1 (B1) and A2 (B2) is still underestimated.

The trends described above are summarized in Fig. 5(b),
where the energy differences between the peaks within each
sub-edge (triangles) and between the two sub-edges (circles)
are plotted at increasing plane-wave cutoff. On the one hand,
the relative distance between the more intense peaks A2 and
B2, given by transitions from the Ca 2p3/2 and 2p1/2 states,
respectively, is essentially independent of how accurately
LFE are treated, provided that the latter are not completely
neglected. On the other hand, the energy separation between
the two peaks, B1 and B2, within the L2 edge is very sensitive
to LFE: Only cutoff values larger than 9 a−1

0 ensure a reliable

TABLE I. Energy differences B1 − B2 and B2 − A2 and
branching ratio L3/(L2 + L3) for the Ca L2,3-edge spectrum of
CaO. The values computed from BSE are compared with available
experimental data and with results obtained with the configuration
interaction (CI) method.

Method B1 − B2 (eV) B2 − A2 (eV) L3/(L2 + L3)

BSE (this work) 1.46 3.69 0.44
CI [58] 1.51 3.60 0.42
Experiment [58] 1.53 3.40 0.38

result. The comparison with literature data reported in Table I
corroborates this conclusion.

The relative intensity of the peaks between the two sub-
edges also depends crucially on the treatment of LFE. This
value, commonly called the branching ratio and indicated
in Fig. 5(b) as L3/(L2 + L3), is expected to be equal to
2/3 (the so-called statistical value) in a pure single-particle
picture. The statistical branching ratio arises from the fact
that 2p1/2 states are twofold degenerate while the 2p3/2 ones
are fourfold degenerate. Hence, ignoring spin-orbit coupling,
the intensity of the L3 sub-edge is expected to be twice
as large as the L2 one. However, in the XANES from the
L2/3 edge of metal oxides the branching ratio is typically
smaller than the statistical value. Indeed, the strong exchange
interaction induces a mixing between transitions from the
2p1/2 and 2p3/2 initial states [27,58,62]. A similar behavior
occurs also for CaO. To quantify this effect, we consider the
integrated oscillator strength of the Ca L3 and L2 sub-edges.
Such analytic integration is performed at increasing values
of |G + q|max in the energy range of 336–350 eV for the L3

and 350–357 eV for the L2 edge. A Lorentzian broadening
of 0.5 eV is adopted in all cases. The resulting branching
ratios are plotted in Fig. 5(b) (diamonds). For the lowest
nonzero cutoff value, L3/(L2 + L3) = 0.69, which is very
close to the statistical value. With increasing |G + q|max, the
branching ratio exhibits a monotonic decrease, down to 0.44,
obtained for |G + q|max > 8 a−1

0 . This result indicates that
only a very accurate description of the e-h correlation in terms
of the exchange interaction can yield the correct spectrum.
Our results are in good agreement with available experimental
data, as well as with calculations based on the configuration
interaction method [58] (see Table I).

The XANES computed for the individual sub-edges can be
compared with the full L2,3 spectrum in order to evaluate the
role of mixing between the two initial states, 2p3/2 and 2p1/2.
To do so, we also show in Fig. 5(c) the so-called cross terms
[L2,3 − (L2 + L3)]. This plot indicates that, indeed, part of the
intensity coming from the L3 sub-edge is transferred to the L2

one. In CaO such an effect is not as strong as in transition-metal
oxides [27] but is still relevant for an accurate description of
the spectra.

IV. CONCLUSIONS

We have presented an in-depth analysis of electron-hole
correlation effects in core excitations by studying the XANES
of three prototypical solid-state materials, namely, TiO2 (rutile
and anatase phases), PbI2, and CaO, considering excitations
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from the K , M4, and L2,3 absorption edges, respectively. By
means of an accurate ab initio approach based on the solution
of the Bethe-Salpeter equation in an all-electron framework,
we have shown that electron-hole correlation is always crucial
in the description of these spectra, although manifesting itself
in different forms. For transitions from very deep core levels
(>1 keV), such as from the Ti 1s and Pb 3d3/2 states, the
attractive e-h interaction dominates the absorption process,
giving rise to localized bound excitons. On the other hand,
for excitations from the Ca L2,3 edge in the metal oxide CaO,
occurring at around ∼350 eV, an accurate treatment of the
electron-hole exchange becomes crucial. For this purpose, a
careful description of local-field effects turns out to be essential
to correctly reproduce the relative intensity of the peaks, as
well as the energy difference between them. The correct spin-
orbit splitting between the initial states is captured through
an explicit description of core electrons, as enabled by the
all-electron formalism adopted in this work. The inclusion
of momentum transfer and the extension of this formalism
to include quasiparticle correction in the underlying electronic
structure, including core states, is envisaged to further improve
the predictive power of this methodology.

Input and relevant output files of the calcu-
lations can be found in the NoMaD Repository
http://dx.doi.org/10.17172/NOMAD/2016.12.06-1.
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APPENDIX A: COMPUTATIONAL DETAILS

In the study of the Ti K-edge absorption spectra of
TiO2, we adopt the lattice parameters a = b = 4.64 Å and
c = 2.97 Å for rutile (simple tetragonal structure, space
group P 42/mnm), as well as a = b = 3.73 Å and c = 9.76 Å
for anatase (body-centered tetragonal structure, space group
I41/amd). These values, in good agreement with experimental
data [63,64], are obtained from a full lattice relaxation [65].
Ground-state calculations are performed using a k grid of
4 × 4 × 6 and a plane-wave cutoff RMT |G + k|max = 12 for
rutile and a k grid of 6 × 6 × 2 and RMT |G + k|max = 7 for
anatase. MT spheres with radius RMT = 1.8 a0 were employed
for both elements in both phases. For the calculation of the core
absorption spectrum of rutile we adopt RMT |G + k|max = 7
and a 6 × 6 × 9 q grid shifted by �q = (0.05,0.15,0.25).
To treat LFE we adopt a cutoff of |G + q|max = 4 a−1

0 . The
screening of the Coulomb potential is calculated in the

random-phase approximation (RPA), including all valence
bands and 100 unoccupied ones. Fifty unoccupied bands are
considered in the diagonalization of the BSE Hamiltonian. For
anatase, the spectrum is obtained with RMT |G + k|max = 7
and a shifted 8 × 8 × 3 q grid [�q = (0.05,0.15,0.25)], with
a plane-wave cutoff of |G + q|max = 3 a−1

0 to account for LFE.
Seventy unoccupied states are included in the diagonalization
of the BSE Hamiltonian. Scissors operators of 113 eV (rutile)
and 114 eV (anatase) are applied to align peak A3 of the
BSE spectra with its experimental counterpart, extracted
from Ref. [45]. The same scissors shifts are adopted for the
corresponding IPA spectra.

We investigate PbI2 in the hexagonal phase (space group
P 3̄m1). Lattice parameters of a = 4.54 Å and c = 6.98 Å,
obtained from volume optimization, are in good agreement
with the experimental values [66]. Ground-state calculations
are performed using a 6 × 6 × 4 k mesh, a plane-wave cutoff
RMT |G + k|max = 10, and MT spheres with radius RMT =
2 a0 for both elements. The absorption spectrum from the
Pb M4 edge is calculated with |G + q|max = 2 a−1

0 , a shifted
8 × 8 × 6 q grid, RMT |G + k|max = 10, 30 conduction bands
in the BSE Hamiltonian, and 100 unoccupied ones in the RPA
screening. The q shift is identical to the one used for TiO2.
We use a muffin-tin radius RMT = 2.6 a0 for both elements. In
the absence of any published experimental reference, we have
not applied any scissors operator to our calculated spectrum.
Thus, we expect the absorption onset to be underestimated
by approximately 50 eV compared to the experimental one.
For the visualization of the excitonic wave function, the core
hole is shifted with respect to the position of the absorbing Pb
atom by 7% along the x axis to avoid the node of the 3d wave
functions. The corresponding plot is produced with the VESTA

software [67].
CaO is a cubic material (space group Fm3̄m, number

225). Volume optimization yields a lattice constant of a =
4.76 Å, in good agreement with the experimental one [68].
Ground-state calculations are performed using a k mesh of
7 × 7 × ×7, a plane-wave cutoff RMT |G + k|max = 12, and
MT spheres with radius RMT = 2a0 for both elements. The
L2,3-edge spectrum is calculated using a shifted 5 × 5 × 5 q
grid [�q = (0.05,0.15,0.25)], RMT |G + k|max = 7.9, 20 con-
duction bands in the BSE Hamiltonian, and 100 unoccupied
bands in the RPA calculation of the screening. A plane-wave
cutoff |G + q|max = 10 a−1

0 is adopted to account for LFE.
A scissors operator of 23.5 eV is applied to align the BSE
spectrum to peak A2 in the experimental one, extracted from
Ref. [58]. The same shift is applied also to the IPA spectrum.
The intensity plot in Fig. 1 is normalized to 6 × 10−6 for rutile
and to 2.5 × 10−6 for anatase.

The above-listed computational parameters adopted for the
BSE spectra ensure a reliable convergence of the spectral
shape, as well as an accuracy of 10 meV for the lowest-energy
eigenvalue for all investigated systems.
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