
PHYSICAL REVIEW B 95, 155119 (2017)

Nonconventional screening of the Coulomb interaction in FexO y clusters: An ab initio study
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From microscopic point-dipole model calculations of the screening of the Coulomb interaction in nonpolar
systems by polarizable atoms, it is known that screening strongly depends on dimensionality. For example, in
one-dimensional systems, the short-range interaction is screened, while the long-range interaction is antiscreened.
This antiscreening is also observed in some zero-dimensional structures, i.e., molecular systems. By means of
ab initio calculations in conjunction with the random-phase approximation (RPA) within the FLAPW method,
we study screening of the Coulomb interaction in FexOy clusters. For completeness, these results are compared
with their bulk counterpart magnetite. It appears that the on-site Coulomb interaction is very well screened both
in the clusters and bulk. On the other hand, for the intersite Coulomb interaction, the important observation is
made that it is almost constant throughout the clusters, while for the bulk it is almost completely screened. More
precisely and interestingly, in the clusters antiscreening is observed by means of ab initio calculations.
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I. INTRODUCTION

The huge interest in nanotechnology is fuelling the trend
of downscaling devices. Naturally, this will reach the regime
of small clusters. However, also from a fundamental point
of view, clusters are very interesting. In general, clusters
behave completely different from their bulk counterpart. In
particular, the removal or addition of just one atom can change
the electronic and magnetic properties completely [1–4]. This
clearly provides a huge playground for the design of new
devices.

For an efficient design, a proper fundamental understanding
of the system is essential. This is usually complicated by
correlation effects that inhibit an exact solution to the problem.
Therefore, in practice, approximate methods have to be
considered. In order to find a proper method, knowledge of
the correlation effects is crucial. For example, for weakly
correlated systems, it is known that density functional theory
(DFT) works very well, while for strong local correlations
a (generalized) Hubbard model provides a good description.
Actually, it is the gradient of the (screened) Coulomb interac-
tion that matters [5]. For a very small gradient, i.e., an almost
constant effective Coulomb interaction, clearly a mean-field
approach and thus single-particle approach is justified. On the
other hand, for a very large gradient, i.e., for only a local
effective Coulomb interaction, the Hubbard model becomes
adequate.

It is this important information on the effective Coulomb
interaction that is provided in this work for the FexOy clusters.
More precisely, Fe2O3, Fe3O4, and Fe4O6 are selected since
they are well studied in literature [6–14]. Furthermore, two of
them are antiferromagnetic, while the other is ferromagnetic.
There exist several methods to calculate the effective Coulomb
interaction. For example, in the bulk usually a uniform
dielectric theory can be used [15]. Here the system is modeled
as a continuum and the (q-dependent) dielectric constant is
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obtained within a mean-field approximation. For example,
the Clausius-Mossotti approximation can be used for ionic
insulators. Since the dielectric constant depends only on the
distance between the charges (and not the crystal structure),
this approximation is only good when local field corrections
can be neglected. However, it is well known that these
local field corrections become important for low dimensional
systems. The microscopic point-dipole model can be used to
take local field corrections into account [5,15]. This method
is based on the assumption that the charge distribution of a
polarized system can be considered as a collection of localized
point dipoles. This assumption works reasonably for localized
charge distributions like in ionic insulators, but becomes inade-
quate for systems with delocalized charges due to for example
covalent bonds. Since it is not clear from the beginning to
which regime FexOy clusters belong, we use ab initio theory
in conjunction with the random phase approximation (RPA).
In this way, also local field corrections are included.

Iron-oxide clusters and nanoparticles have applications in
catalysis, magnetic data storage and biomedical treatment due
to their unique catalytic, magnetic and biochemical properties
[16–18]. Furthermore, iron-oxide interactions are interesting
in general for corrosion and biological oxygen transport pro-
cesses. Thus a detailed understanding of FexOy clusters could
contribute to a better understanding of such processes and new
technological applications. Due to this interest there have been
a number of experimental and theoretical studies [6–14]. Most
theoretical studies are performed with DFT and focus on the
geometric structure. From a comparison of the experimental
and calculated vibrational spectrum, the structure of some
FexOy clusters is well established [12,13]. Furthermore, some
studies address in some detail the electronic and magnetic
structure. However, to our knowledge, a detailed consideration
of correlation and screening effects does not exist. In our
opinion such an understanding is crucial and should form the
basis in determining which methods to use for further studies.

The aim of the present work is the ab initio determination
of the screened Coulomb interaction in Fe2O3, Fe3O4, and
Fe4O6 clusters. Employing the random-phase approximation
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(RPA) within the full-potential linearized augmented plane
wave (FLAPW) method using Wannier functions we show
that in these clusters the on-site Coulomb interaction is
well screened, while the intersite Coulomb interactions are
barely screened or even antiscreened. The important conse-
quence being that the Coulomb interaction is almost constant
throughout the clusters. For completeness we compared these
results with their bulk counterpart magnetite. Herein only
the on-site Coulomb interaction is appreciable, while the
intersite Coulomb interactions are almost completely screened.
The rest of the paper is organized as follows. The method
and computational details are presented in Secs. II and III,
respectively. Section IV deals with the results and discussion,
and finally in Sec. V, we give the conclusions.

II. METHOD

In this work, we study partially and fully screened Coulomb
interaction parameters calculated with the ab initio cRPA
and RPA methods, respectively. The noninteracting reference
system is taken from a preceding DFT calculation.

The effective Coulomb interaction is defined as

W (r,r ′,ω) =
∫

d r ′′ε−1(r,r ′′,ω)v(r ′′,r ′), (1)

where ε(r,r ′′,ω) is the dielectric function and v(r ′′,r ′) is the
bare Coulomb interaction potential. Since an exact expression
for the dielectric function is not accessible, an approximation
is required. In the RPA, the dielectric function is approximated
by

ε(r,r ′,ω) = δ(r − r ′) −
∫

d r ′′v(r,r ′′)P (r ′′,r ′,ω), (2)

where the polarization function P (r ′′,r ′,ω) is given by

P (r,r ′,ω)

=
∑

σ

occ∑
k,m

unocc∑
k′,m′

ϕσ
km(r)ϕσ∗

k′m′ (r)ϕσ∗
km(r ′)ϕσ

k′m′ (r ′)

×
(

1

ω − �σ
km,k′m′

− 1

ω + �σ
km,k′m′

)
. (3)

Here, �σ
km,k′m′ = εσ

k′m′ − εσ
km − iη with εσ

km the single particle
Kohn-Sham eigenvalues obtained from DFT and η a positive
infinitesimal. Further, the ϕσ

km(r) are the single-particle Kohn-
Sham eigenstates with spin σ , wave number k, and band index
m. The tags “occ” and “unocc” above the summation symbol
indicate that the summation is respectively over occupied and
unoccupied states only.

Equations (1)–(3) constitute what is called the RPA of the
dynamically screened Coulomb interaction. In the constrained
RPA, the effective Coulomb interaction between a specific
type of electrons in the system is considered. For example,
in this work, the effective Coulomb interaction between the
3d electrons of iron will be investigated. Two types of RPA
calculations are performed leading to fully and partially
screened (effective U or Hubbard U ) Coulomb interaction
parameters. In the latter, the screening due to the electrons
under consideration is excluded, i.e., in our case the 3d

electrons of iron. Thus such a cRPA calculation provides the

effective interaction that the electrons in the 3d Hubbard model
would experience; in other words, it yields the corresponding
Hubbard U parameter. Obviously, it also gives insight to the
importance of these 3d electrons in the screening process.

In order to exclude the screening due to certain electrons
one separates the polarization function in Eq. (3) as follows:

P = Pl + Pr. (4)

Here, in our case, Pl includes only transitions between the
strongly correlated 3d states of iron and Pr is the remainder.
Then, the frequency dependent effective Coulomb interaction
is given schematically by the matrix equation

U (ω) = [1 − vPr (ω)]−1v, (5)

where v is the bare Coulomb interaction.
The problem with the separation of Eq. (4) is that it is

only well defined for disentangled states. For entangled states
different methods have been developed [19–21]. In this work,
we use the method described in Ref. [21]. Here we first define
the probability to find a strongly correlated electron (3d state
of iron in our case) in eigenstate ϕσ

km as

cσ
km =

∑
i,n

∣∣T σ k
i,mn

∣∣2
. (6)

Here the unitary matrices T σ k
i,mn are determined from the

concept of maximally localized Wannier functions,

wσ
in(r) = 1

N

∑
k

e−ik·Ri

∑
m

T σ k
i,mnϕ

σ
km(r), (7)

where wσ
in(r) is a maximally localized Wannier function

located at site i, N is the number of discrete k points in the
full Brillouin zone and Ri the position vector of atomic site i.
The matrices T σ k

i,mn are determined by minimizing the spread
of the Wannier functions,

	 =
∑
i,n,σ

(〈
wσ

in

∣∣r2
∣∣wσ

in

〉 − 〈
wσ

in

∣∣r∣∣wσ
in

〉2)
. (8)

Here the sum runs over all Wannier functions. It can be shown
that the maximally localized Wannier functions constitute an
orthonormal basis and that they resemble atomic orbitals, i.e.,
they are centered at an atomic site and decay with increasing
distance from the site. Further, there is an efficient algorithm to
find the T σ k

i,mn under the condition that the spread is minimized.
From Eq. (7), it is clear that a choice has to be made on
which bands to include for the construction of the maximally
localized Wannier states. In practice (for entangled states), we
make sure that enough bands are selected such that all the
strongly correlated electron character is contained. Then, in
general the number of maximally localized Wannier functions
obtained from this space is larger than the dimensions spanned
by the strongly correlated electrons. Therefore a selection has
to be made. Since the strongly correlated electrons are more
localized than the other electrons, the idea is that the subset
consisting of the most maximally localized Wannier functions
correspond to the strongly correlated electrons.

For entangled states, the probability cσ
km < 1 in Eq. (6),

while for disentangled states cσ
km = 1. Then, the probability

of an electron to be in the 3d correlated subspace before and
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after a transition ϕσ
km → ϕσ

k′m′ is given by

pσ
km→k′m′ = cσ

kmcσ
k′m′ . (9)

Thus for disentangled states pσ
km→k′m′ = 1 and for entangled

states pσ
km→k′m′ < 1. The polarization function Pl now be-

comes

Pl(r,r ′,ω)

=
∑

σ

occ∑
k,m

unocc∑
k′,m′

(
pσ

km→k′m′
)2

ϕσ
km(r)ϕσ∗

k′m′ (r)ϕσ∗
km(r ′)ϕσ

k′m′(r ′)

×
(

1

ω − �σ
km,k′m′

− 1

ω + �σ
km,k′m′

)
. (10)

By calculating the total polarization from Eq. (3) and Pl from
Eq. (10), Pr can be obtained from Eq. (4). For completeness,
the effective Coulomb matrix within the selected subspace is
computed by

U
σ1,σ2
in1,jn3,in2,jn4

(ω)

=
∫∫

d rd r ′wσ1∗
in1

(r)wσ2∗
jn3

(r ′)U (r,r ′,ω)wσ2
jn4

(r ′)wσ1
in2

(r).

(11)

In this work, we only consider the static limit (ω = 0).
Furthermore, we use Slater parametrization,

Ui = 1

(2l + 1)2

∑
m,m′

U
σ1,σ2
im,im′,im,im′ (ω = 0) and

(12)

Vij = 1

(2l + 1)2

∑
m,m′

U
σ1,σ2
im,jm′,im,jm′ (ω = 0).

Here, Ui is the effective on-site Coulomb interaction at site
i and Vij the effective intersite Coulomb interaction between
sites i and j . Note that although the matrix elements of the
Coulomb potential are formally spin-dependent due to the
spin dependence of the Wannier functions, we find that this
dependence is negligible in practice.

III. COMPUTATIONAL DETAILS

The DFT calculations are performed with the FLEUR
code, which is based on a full-potential linearized augmented
plane wave (FLAPW) implementation [22]. All calculations
are performed with an exchange-correlation functional in
the generalized gradient approximation (GGA) as formulated
by Perdew, Burke, and Ernzerhof (PBE) [23]. Further, all
calculations are without spin orbit coupling.

Since it is a k-space code, a supercell approach was
employed for the cluster calculations, with a large empty space
between clusters that were repeated in a periodic lattice. In our
calculations, a large unit cell of at least 12 Å dimensions is used
in order to prevent the interaction between clusters of different
unit cells. Further, for the cluster calculations the cutoff for
the plane waves is 3.6 Bohr−1, lcut = 8 and the 
 point is
the only k-point considered. The ground-state geometric and
magnetic structure of the Fe2O3, Fe3O4, and Fe4O6 clusters is
obtained from Refs. [13,14] (see also Fig. 1). More precisely,
the geometries are optimized structures obtained from hybrid
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FIG. 1. The geometry of the Fe2O3, Fe3O4, and Fe4O6 clusters.
Here the red spheres correspond to the oxygen atoms, while the brown
and green spheres correspond to iron atoms with antiparallel local
magnetic moments. The distances between some atoms are provided
in angstroms.

(B3LYP) functional calculations [24]. The Fe2O3 and Fe4O6

clusters are antiferromagnetic, while Fe3O4 is ferromagnetic.
For magnetite the geometric and magnetic structure is

obtained from Refs. [25,26]. Here the structure of magnetite
is monoclinic with 56 atoms in the unit cell. The chemical
formula is Fe3+

A [Fe2+,Fe3+]BO4 with A referring to tetrahedral
sites occupied by Fe3+ and B to octahedral sites containing
both Fe2+ and Fe3+. The magnetic moments of the B sites are
antiparallel to those of the A sites. For the k mesh a grid of
6 × 6 × 2 equidistant k points is used. The cutoff for the plane
waves is 4.0 Bohr−1 and lcut = 8.

The DFT calculations are used as an input for the SPEX

code to perform RPA and cRPA calculations for the screened
Coulomb interaction [27]. The SPEX code uses the WANNIER90

library to construct the maximally localized Wannier functions
[28,29]. For this construction we used six states per iron atom,
i.e., five 3d states and one 4s state.

IV. RESULTS AND DISCUSSION

In Fig. 1, the geometry and magnetic structure of the
Fe2O3, Fe3O4, and Fe4O6 clusters is depicted. The red
spheres correspond to the oxygen atoms, while the brown
and green spheres correspond to iron atoms with antiparallel
local magnetic moments. The distances between some of
the atoms are given in Å. Further, Fe2O3 and Fe4O6 are
antiferromagnetic, while Fe3O4 is ferromagnetic. From Fe4O6,
it can be observed that the direction of the local magnetic
moment has a small influence on the bonding, i.e., the distance
between two iron atoms with parallel and antiparallel moments
is 2.90 and 2.94 Å.

In the following, we will discuss the matrix elements of
the fully screened Coulomb interaction (RPA) as well as
the partially screened effective Coulomb interaction (cRPA)
for FexOy clusters. The latter is important in dealing with
correlation effects in clusters as well as it provides information
on the contribution of the Fe(3d) → Fe(3d) screening channel
to the total screening process. In Table I, the bare and fully
screened on-site and intersite average Coulomb interaction
parameters for Fe-3d and O-2p orbitals are presented for all
three FexOy clusters. Note that due to symmetry for each
cluster some iron and oxygen atoms are equivalent. For the
smallest Fe2O3 cluster oxygen atoms 3 and 4 are equivalent,
while for the Fe3O4 cluster all iron atoms and oxygen atoms
4, 6, and 7 are equivalent. In the case of the largest Fe4O6

cluster, iron atoms 1, 3 and 2, 4 are equivalent, while for
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TABLE I. The bare (unscreened) and fully screened (RPA)
average Coulomb interaction parameters for the Fe-3d and O-2p
orbitals of the FexOy clusters obtained from ab initio calculations.
Here U1 corresponds to the on-site Coulomb interaction of atom 1
and V1,2 to the intersite Coulomb interaction between atoms 1 and
2 (see Fig. 1). The second column indicates between what type of
atoms this refers and the third column corresponds to the distance
(in Å) between them. Note that due to symmetry oxygen atoms 3
and 4 are equivalent for the Fe2O3 cluster. While in Fe3O4 cluster
all iron atoms and oxygen atoms 4, 6, and 7 are equivalent. In the
case of Fe4O6 cluster, iron atoms 1, 3 and 2, 4 are equivalent, while
for oxygen atoms 5, 7, 8, 10 and 6, 9 are equivalent. In bold face,
the intersite Coulomb interactions at which antiscreening occurs are
presented.

Fe2O3

U/V Atom Distance (Å) Bare (eV) RPA (eV)

U1 Fe 0 21.7 7.7
U2 Fe 0 22.2 7.8
U3 O 0 17.8 8.2
U5 O 0 17.7 7.9
V2,5 Fe-O 1.67 8.6 6.7
V2,3 Fe-O 1.79 8.0 6.5
V1,3 Fe-O 1.82 7.8 6.4
V1,2 Fe-Fe 2.45 5.9 6.5
V3,4 O-O 2.66 5.6 6.0
V3,5 O-O 3.16 4.8 6.0
V1,5 Fe-O 4.11 3.9 6.0

Fe3O4

U/V Atom Distance (Å) Bare (eV) RPA (eV)
U1 Fe 0 22.2 7.4
U4 O 0 17.8 7.8
U5 O 0 17.9 8.1
V1,6 Fe-O 1.84 7.8 5.8
V1,5 Fe-O 1.99 7.2 5.7
V1,2 Fe-Fe 2.50 5.8 5.8
V4,5 O-O 2.73 5.4 5.3
V4,6 O-O 3.40 4.5 5.1
V1,4 Fe-O 3.45 4.4 5.3

Fe4O6

U/V Atom Distance (Å) Bare (eV) RPA (eV)
U1 Fe 0 22.3 5.9
U3 Fe 0 22.3 5.9
U5 O 0 18.1 6.8
U6 O 0 18.0 7.0
V1,5 Fe-O 1.80 8.0 5.1
V1,6 Fe-O 1.83 7.8 5.0
V1,3 Fe-Fe 2.90 5.1 5.3
V5,7 O-O 2.92 5.1 4.8
V1,2 Fe-Fe 2.94 5.0 5.2
V5,6 O-O 3.00 5.0 4.8
V5,9 O-O 3.00 5.0 4.8
V1,7 Fe-O 3.43 4.4 5.0
V1,9 Fe-O 3.54 4.3 4.9
V5,10 O-O 4.13 3.8 4.7
V6,9 O-O 4.34 3.7 4.7

oxygen atoms 5, 7, 8, 10 and 6, 9 are equivalent. Thus only
symmetry unequivalent interactions are presented. As seen for
all three clusters the on-site Coulomb interactions are very well

screened. On the other hand the intersite Coulomb interaction
is much less screened and is more or less constant as function
of intersite distance.

Considering the smallest Fe2O3 cluster, starting from an
intersite distance of 2.45 Å antiscreening is observed (bold
face numbers in Table I), i.e., the fully screened interaction
is larger than the bare interaction. For example, for the
intersite Coulomb interaction between the two iron atoms,
the antiscreening contribution is 0.6 eV and between iron
atom 1 and oxygen atom 5 it is even 2.1 eV. Also in
the other two clusters, Fe3O4 and Fe4O6, antiscreening is
observed. Although, as seen in Table I for Fe3O4 antiscreening
starts to occur at a larger intersite distance. More precisely,
between two iron atoms the bare and fully screened Coulomb
interactions are equal and therefore there is strictly speaking no
antiscreening. On the other hand between two oxygen atoms,
and iron and oxygen antiscreening occurs at respectively 3.40
and 3.35 Å. Here the antiscreening contribution is 0.6 eV
for the former and 0.9 eV for the latter. For Fe4O6, the
antiscreening is a bit more complex. It occurs between two
iron atoms at intersite distances of 2.90 and 2.94 Å, while it is
absent between two oxygen atoms until an intersite distance
of 4.13 Å. Between iron and oxygen antiscreening starts at an
intersite distance of 3.43 Å.

The total screening calculated via ab initio can be de-
composed into different screening channels. For the present
systems the main contribution to the screening process stems
from the O(2p) and Fe(3d) states present around the chemical
potential via O(2p) → O(2p), O(2p) → Fe(3d), and Fe(3d)
→ Fe(3d) transitions. As the O(2p) states are fully occupied
their contribution to the total polarization function is small [see
Eq. (3)]. In order to investigate the influence of the Fe(3d) →
Fe(3d) transitions for the Fe(3d) orbitals, we present in Table II
the partially screened Coulomb interaction parameters for the
Fe(3d) orbitals by excluding Fe(3d) → Fe(3d) transitions.
It can be observed that for all three clusters for the on-site
Coulomb interaction this contribution is very small, about 1 eV,
compared to that of the Fe(3d) → O(2p) screening channel
of more than 13 eV. On the hand for the intersite iron-iron

TABLE II. The partially screened (cRPA) average Coulomb
interaction parameters for the Fe(3d) orbitals of the FexOy cluster
obtained from ab initio calculations. Here, U1 corresponds to the
on-site Coulomb interaction of atom 1 and V1,2 to the intersite
Coulomb interaction between atoms 1 and 2 (see Fig. 1 to which atoms
these numbers refer). For comparison, the bare Coulomb interaction
parameters are presented in parenthesis.

cRPA (eV) Atom Fe2O3 Fe3O4 Fe4O6

U1 Fe 8.7 (21.7) 8.6 (22.2) 6.9 (22.3)
U2 Fe 8.9 (22.2) 8.6 (22.2) 6.9 (22.3)
U3 Fe 8.6 (22.2) 6.9 (22.3)
U4 Fe 6.9 (22.3)
V1,2 Fe 6.3 (5.9) 5.5 (5.8) 5.2 (5.0)
V1,3 Fe 5.5 (5.8) 5.4 (5.1)
V2,3 Fe 5.5 (5.8) 5.2 (5.1)
V1,4 Fe 5.2 (5.0)
V2,4 Fe 5.4 (5.1)
V3,4 Fe 5.2 (5.0)
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Coulomb interaction the Fe(3d) → Fe(3d) channel contributes
significantly, 0.2 eV, to the total antiscreening effect of 0.6 eV
in the case of smallest cluster Fe2O3. For the Fe3O4 cluster,
there is no antiscreening contribution from the Fe(3d) → O(2p)
channel, i.e., it reduces the bare interaction by about 0.3 eV,
while the Fe(3d) → Fe(3d) channel has an antiscreening
contribution of 0.3 eV. For the largest cluster Fe4O6, it appears
from Table II that there is no antiscreening contribution from
the Fe(3d) → Fe(3d) channel. Instead there is a very small
screening contribution of 0.1 eV between two iron atoms
with parallel magnetic moments and no contribution between
two iron atoms with antiparallel moments. Finally, as the
cluster size increases the effective on-site Coulomb interaction
parameters for Fe(3d) electrons decreases from 8.7 to 6.9 eV
as expected.

Previous studies have shown that antiscreening strongly
manifest itself in low-dimensional semiconductors and insu-
lators [5,30]. Using a point-dipole interaction model van den
Brink and Sawatsky calculated the screened intersite Coulomb
interaction for finite size systems like molecules (benzene,
naphtaline, C60, etc.) and one-dimensional atomic chains [5].
The authors found that, in contrast to three-dimensional bulk
semiconductors, in low-dimensional systems the local field
effects play a very important role in screening of the Coulomb
interaction. It turns out that the Coulomb interaction is strongly
r-dependent, i.e., at short distances, it is strongly screened,
at intermediate distances it is antiscreened, and at large
distances it is unscreened. The occurrence of antiscreening
in low-dimensional systems was attributed to the sign change
of the induced polarization around the test charge with
distance. In three-dimensional insulators and semiconductors,
the induced polarization is negative over all space, while in
low-dimensional systems, it can change sign with distance
resulting in an antiscreening. The critical distance rc, where
the transition from screening to antiscreening takes place,
depends very much on the dimensionality and polarization
of the system. For instance, in zero-dimensional molecules
(benzene, naphthalene) rc is rather small, 3–4 Å [5], while
in quasi-one-dimensional single-wall carbon nanotubes, it is
around 20 Å [30]. For the FexOy clusters considered in the
present work, the critical distance rc can be even shorter than
the zero dimensional systems studied in literature. Here the
critical distance is estimated by the first intersite distance
at which antiscreening occurs. Then, for Fe2O3, Fe3O4, and
Fe4O6 the critical distance is respectively 2.45, 3.40, and
2.90 Å. Note that even in three-dimensional bulk materials
the nonlocal antiscreening takes place within the subspace of
the correlated electrons as recently shown by Nomura et al.,
for the case of SrVO3 [31].

It is interesting to compare these cluster results with their
bulk counterpart magnetite. In Table III, the calculated results
are shown for magnetite. Here the first column shows on or
between which sublattices the interaction is considered and the
second column contains the distance between these sublattices
(a zero indicates an on-site interaction). For the sublattices, the
same nomenclature is adopted as in Ref. [25]. From Table III, it
can be observed that the intersite Coulomb interaction is almost
completely screened, which is in strong contrast with the zero-
dimensional cluster results. The on-site Coulomb interaction
is also more screened than for the clusters. Furthermore, the

TABLE III. The bare, partially screened (cRPA) and fully
screened (RPA) average Coulomb interaction parameters for the
Fe-3d orbitals of magnetite obtained from ab initio calculations. Here
the first column shows on or between which sublattice the interaction
is considered and the second column contains the distance between
these sublattices (a zero referring to an on-site interaction). For the
sublattices the same nomenclature is adopted as in Ref. [25].

r(Å) Bare (eV) cRPA (eV) RPA (eV)

A1 0 22.9 4.3 1.53
A2 0 22.9 4.3 1.51
B1a 0 22.9 4.8 0.75
B1b 0 22.9 4.8 0.77
B2a 0 22.9 4.7 0.82
B3 0 22.9 4.6 0.81
A1-A2 6.93 2.4 0.01 0.01
B1a-B2a 5.10 3.0 0.09 0.02
B1a-B1b 2.97 4.9 0.35 0.02
B1b-B3 2.86 5.1 0.37 0.04

cRPA calculations reveal that the effect of the screening due
to the iron 3d states in magnetite is quite a bit larger than for
the clusters.

Finally, we would like to comment on the strength of the
electronic correlations in three-dimensional magnetite Fe3O4

and zero-dimensional FexOy clusters. The short-range nature
of the Coulomb interaction with large gradient in magnetite
makes it a correlated material and thus electronic structure
methods which go beyond the standard DFT are necessary for
an accurate description of the electronic structure of magnetite.
For instance, the experimentally observed charge order in mag-
netite cannot be captured in DFT. From Ref. [25], it is known
that an additional treatment of the on-site correlations between
the Fe 3d electrons is needed. It was found that the DFT+U
approach, a static mean-field treatment of on-site correlations,
gives a charge ordering in agreement with experiment. On the
other hand, due to the almost constant Coulomb interaction in
zero-dimensional FexOy clusters, DFT calculations employing
standard functionals can be expected to capture the essential
physics. For example, from a comparison of the experimental
vibrational spectrum with the theoretical spectra of different
isomers and magnetic structures, the geometric and magnetic
structure are obtained in good agreement with the experiment
[12,14].

V. CONCLUSION

We have performed RPA (and cRPA) calculations to
investigate the screening of the Coulomb interaction in the
Fe2O3, Fe3O4, and Fe4O6 clusters and their bulk counterpart
magnetite. It has been demonstrated that both in the clusters
and bulk the on-site Coulomb interaction is very well screened.
Here the main screening contribution stems from the Fe(3d) →
O(2p) channel. On the other hand the intersite Coulomb inter-
action is barely screened or even antiscreened in the clusters,
while in the bulk it is almost completely screened. In Fe2O3 and
Fe3O4, the antiscreening starts at a certain intersite distance,
2.45 and 3.40 Å respectively. For Fe4O6 the antiscreening
nature is a bit more complex. It first occurs at a distance of
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2.90 Å, then both screening and antiscreening can be observed
until a distance of 3.43 Å from which on it is of antiscreening
nature only. The important consequence is that in the clusters
the Coulomb interaction is almost constant, while in the bulk,
it has a large gradient. Therefore a proper treatment of corre-
lations are expected to be more important for the bulk than the
clusters.
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