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We consider the capacitive interaction between a charge qubit and a sensor quantum dot (SQD) perturbatively to
the second order of their coupling constant at zero temperature by utilizing the method of nonequilibrium Green’s
functions together with infinite-U Lacroix approximation and employing Majorana fermion representation for
qubit isospin operators. The effect of back-actions on dynamics of the system is taken into account by calculating
the self-energies and the Green’s functions in a self-consistent manner. To demonstrate the applicability of the
method, we investigate relevant physical quantities of the system at zero and finite bias voltages. In the regime
of weak SQD-qubit coupling, we find a linear relation between the stationary-state expectation values of the
third component of the qubit isospin vector, 〈τ3〉, and the differential conductance of the SQD. Furthermore, our
numerical results predict that the effect of SQD-qubit coupling on differential conductance of the SQD should
be maximized at zero bias voltage. Moreover, we obtain an analytical expression to describe the behavior of the
differential conductance of the SQD with respect to the qubit parameters. Our results at zero bias voltage are
consistent with the results of numerical renormalization group method.
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I. INTRODUCTION

Typically, the state of a solid-state qubit could be indirectly
extracted by measuring the conductance of a current-carrying
electrometer which is capacitively coupled to the qubit. This
detector, which could be realized in the experiment by a
quantum point contact (QPC) [1–8] or a single-electron
transistor (SET) [9–16], provides us with measurements of
the charge fluctuations of qubit. The usage of SETs is,
however, more advantageous to the QPCs because of their
much greater sensitivity to the charge fluctuations [16]. In
practice, the coupling of the sensor quantum dot (SQD) of
the SET with qubit is made so weak in order to reduce the
effect of measurements on the qubit state. However, no matter
how weak it is, the system inevitably suffers from coupling
effects, which results in a coherent backaction on the qubit
dynamics and renormalization of the system energy levels
[17,18].

Using SET as a qubit detector has been the subject of
several theoretical studies [19–31]. Much work has been
devoted to investigating the time-dependent dynamics of the
reduced density matrix of the system taking into account the
leading-order tunneling processes in the SET and ignoring
the backaction of qubit and SET on each other [21–24].
The problem of considering the effects of backactions on
the SET-qubit system in the presence of external bias was
also studied in Refs. [25–31]. Recently, Hell et al. [30,31]
studied the coherent backaction of the measurements on the
SET-qubit system in the presence of finite bias by deriving
Markovian kinetic equations for the system taking into account
next-to-leading-order corrections in the tunneling processes of
the SET and the effects of the energy levels’s renormalization
of the system.

Here, we consider the application of the method of nonequi-
librium Green’s functions for describing the nonequilibrium
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dynamics of the SET-qubit system. We calculate the steady-
state nonequilibrium Green’s functions of the system at zero
temperature using second-order self-energies of the capacitive
coupling between a SQD and a qubit. Due to the lack of
applicability of Wick’s theorem for Pauli operators, we utilize
the Majorana fermion representation [32–34] for the qubit
isospin operators by which a systematic diagrammatic pertur-
bative expansion of the system’s Green’s functions become
possible. In order to take into account strong electron-electron
interaction on the SQD, which is necessary to keep it in the
Coulomb blockade regime, we employ the infinite-U Lacroix
approximation [35] to calculate the bare Green’s functions of
the SQD. The backaction effects on the average occupations
of the SQD and the qubit are accounted for by calculating
the self-energies and the Green’s functions self-consistently.
Using the calculated interacting Green’s functions of the
system, we investigate the density of states of the SQD and
the steady-state expectation value of the third component
of the isospin operator of the qubit, 〈τ3〉. Furthermore, we
determine the differential conductance of the SQD at zero and
finite bias voltages and show that there is a linear relation
between the SQD’s differential conductance and the steady-
state expectation value 〈τ3〉. We check the accuracy of our
results at zero bias by comparing them with the results obtained
from the numerical renormalization group (NRG) method [36].

Our approach differs basically from density-matrix-based
approaches [37]. In the latter, it is the coupling of a SQD with
electrodes which is considered perturbatively for calculating
the reduced density matrix of the subsystem. Hence, the
possible partial coherences between different charge states
of the SQD during tunneling processes are ignored trivially.
Instead, in our approach, the parameter that is used for
perturbatively obtaining the Green’s functions of the system is
the capacitive coupling between the SQD and the qubit while
the effects of coupling between the SQD and the metallic
electrodes are incorporated nonperturbatively into the Green’s
functions of the SQD, which retains the possible partial
coherences of the SQD’s charge states.
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FIG. 1. Schematic representation of the model system. The
sensor quantum dot, characterized with gate voltage εd and on-site
interaction U , coupled to two metallic leads and simultaneously in-
teracts capacitively with one double quantum dot through interaction
constants λ+ and λ−. The on-site energies of DQD are ±ω0/2 and
the tunneling energy between its dots is specified by �/2.

The paper is organized as follows. In Sec. II A, the model
Hamiltonian is presented. Then in Sec. II B, we present the
derivation of nonequilibrium Green’s functions of the SQD-
qubit system. After that, in Sec. II C, we give some expressions
for relating different physical quantities of the system with the
Green’s functions. We present our numerical results in Sec. III.
Then, in Sec. IV, we give a summary of our work and some
concluding remarks related to it.

II. THEORETICAL FORMALISM

A. Model Hamiltonian

Our model system, as depicted in Fig. 1, consists of a SQD
in a Coulomb-blockade regime tunnel coupled to two metallic
electrodes while simultaneously interacting capacitively with
a charge qubit which is modeled by a double quantum dot
(DQD). The total Hamiltonian of the system can be written as

H = HSET + HDQD + HI . (1)

The first term is the Hamiltonian of SET, which is given by

HSET =
∑

ν

εd c
†
d,νcd,ν + Und,↑nd,↓

+
∑
k,α,ν

(εk + μα) c
†
k,α,νck,α,ν

+ tα (c†k,α,νcd,ν + H.c.), (2)

where the operator c
†
d,ν (cd,ν) creates (annihilates) an electron

with spin ν = ↑,↓ in the SQD, nd,ν = c
†
d,νcd,ν is the spin-

dependent electron occupation operator of SQD, εd is the ap-
plied gate voltage, and U is the on-site electron-electron inter-
action energy in SQD. Similarly, the operator c

†
k,α,ν (ck,α,ν) is

the corresponding operator for electron creation (annihilation)
with energy εk in the left and right leads (α = L,R), each of
which is treated as half-filled quasi-one-dimensional normal
metals with chemical potentials μL and μR , respectively. The
coupling of the SQD with each lead is assumed to be energy
and spin independent and characterized by a hybridization
constant, tL,R .

The second term in Eq. (1) is the Hamiltonian of the
charge qubit, which is modeled as a double quantum dot [38]
containing only one electron, with on-site energies ±ω0

2 and
hybridization energy �

2 . Representing the state of the electron
on each of the DQD’s dots by |+〉 and |−〉, in terms of isospin
operators (τ1,τ2,τ3) the DQD’s Hamiltonian takes the form

HDQD = −ω0

2
τ3 + �

2
τ1. (3)

The last term in Eq. (1) is the capacitive interaction between
the SQD and the DQD, which is 2nd (λ+n+ + λ−n−), where
λ+,− is an interaction constant and nd = nd,↑ + nd,↓ is the
total electron number operator of the SQD. Furthermore,
n+,− represents the occupation number operator of each dot
of the DQD. By using the relation n± = 1

2 (1 ± τ3) and an
appropriate renormalization of εd , the interaction can be
expressed as λndτ3, where λ ≡ λ+ − λ−. In addition, for later
convenience, we explicitly take into account the mean-field
backaction effects by adding and subtracting the operator A =
λ(〈nd〉τ3 + 〈τ3〉nd ) to the total Hamiltonian. This modifies the
on-site energies of the SQD and DQD to ε̃d = εd + λ〈τ3〉 and
ω̃0 = ω0 − 2λ〈nd〉, respectively, and then the interaction term
of the Hamiltonian becomes

HI = λ(nd − 〈nd〉)(τ3 − 〈τ3〉). (4)

In order to use perturbation theory, we need to express
the isospin operators in terms of Majorana fermion operators
by [34]

τa = −iεabcηbηc (5)

for a,b,c = 1,2,3, where εabc is the Levi-Civita antisymmetric
tensor and (η1,η2,η3) are three Majorana fermion operators sat-
isfying usual fermionic equal-time anticommutation relation
{ηa,η

†
b} = δa,b, with η

†
a = ηa .

B. Nonequilibrium Green’s functions

The nonequilibrium Green’s function method is a usual
choice to study out-of-equilibrium systems [39]. We will treat
HSQD + HDQD and HI as the noninteracting and interaction
parts of Hamiltonians, respectively. A complete description
of the nonequilibrium steady state of a system requires the
knowledge of four Green’s functions; we choose the retarded,
advanced, lesser, and greater, defined, respectively, for the
noninteracting system as

gR
s,mn(t,t ′) = −iθ (t − t ′)〈{
s,m(t),
†

s,n(t ′)}〉0, (6a)

gA
s,mn(t,t ′) = iθ (t ′ − t)〈{
s,m(t),
†

s,n(t ′)}〉0, (6b)

g<
s,mn(t,t ′) = i〈
†

s,n(t ′)
s,m(t)〉0, (6c)

and

g>
s,mn(t,t ′) = −i〈
s,m(t)
†

s,n(t ′)〉0, (6d)

where s = d,η determines the corresponding subsystem for
which the Green’s functions are defined and m,n represent
degrees of freedom for the corresponding subsystem, that is,
in the case of the SQD, 
d,m = cd,m, with m = ↑,↓ while
for the DQD, 
η,m = ηm, with m = 1,2,3. In addition, 〈· · · 〉0
is the expectation value with respect to the ground state of
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HSQD + HDQD at zero temperature. In the sequel, the term
interacting/noninteracting is used to account for the interaction
between the SQD and the DQD and not for the on-site
interactions in the SQD. Also, we will present noninteracting
and interacting Green’s functions as g and G, respectively.
Furthermore, because our Hamiltonian does not explicitly
depend on time, the Green’s functions become functions of
time differences only and it is therefore more preferable to
express them in the frequency space by Fourier transformation.

The inclusion of interactions is performed by using the
Dyson equation through which the exact retarded Green’s
function of the system could be determined by

GR(ω) = [GA(ω)]† = gR(ω) + gR(ω)�R(ω)GR(ω), (7)

while the exact lesser Green’s function has the form

G<(ω) = GR(ω)�<(ω)GA(ω), (8)

where �R,<(ω) stands for the total proper retarded and lesser
self-energies of the system. The greater Green’s function is
then obtained using G>(ω) = GA(ω) − GR(ω) + G<(ω).

1. Green’s functions of SQD

In order to maximize the sensitivity of the SET, the energy
level of the SQD should be tuned to the flank of the Coulomb
blockade peak. In this regime, the cotunneling processes
between the SQD and the leads become dominant and the
conventional sequential tunneling approximations ceased to
be applicable for describing the state of the SQD. Therefore,
we use the infinite-U Lacroix approximation, which is believed
to consider cotunnelings in the Coulomb-blockade regime, in
order to obtain the Green’s functions of the SQD, gR

d , which
will be used later as building blocks of the self-energies. By
using Eq. (17) of Ref. [40], we obtain the Fourier transform of
the diagonal elements of the SQD’s retarded Green’s function
matrix as

gR
d,νν(ω) = 1 − 〈nd,ν̄〉 + Pν(ω)

ω + iδ − ε̃d + i(�L + �R) − Qν(ω)
, (9)

where δ is an infinitesimal positive constant and �L,R ≡
π |tL,R|2ρ0 is the broadening of the SQD’s energy level due
to its coupling to the leads in the standard wideband limit in
which the density of states of the leads, ρ0, is assumed to be
independent of energy. Furthermore,

Pν(ω) =
∑

α=L,R

�α

π

∫
dω1

gA
d,νν(ω1)fα(ω1)

ω + iδ − ω1
(10a)

and

Qν(ω) =
∑

α=L,R

�α

π

∫
dω1

[
1 + i�gA

d,νν(ω1)
]
fα(ω1)

ω + iδ − ω1
, (10b)

where fL,R(ω) = θ (μL,R − ω) and θ (· · · ) is the standard
Heaviside-θ function. For the noninteracting lesser Green’s
function of the SQD, g<

d (ω), we have

g<
d (ω) = gR

d (ω)�(U)<
d (ω)gA

d (ω), (11)

where �
(U)<
d is calculated using the ansatz [41]

�
(U)<
d (ω) = {[

gR
d (ω)

]−1 − [
gA

d (ω)
]−1} ∑

α=L,R

�αfα(ω)

�
.

(12)

Using the second-order self-energies of the SQD, which
are given in Appendix A, the interacting retarded and lesser
Green’s functions of the SQD can be obtained as

GR
d (ω) = gR

d (ω) + gR
d (ω)�(2nd)R

d (ω)GR
d (ω) (13)

and

G<
d (ω) = GR

d (ω)
[
�

(U)<
d (ω) + �

(2nd)<
d (ω)

]
GA

d (ω). (14)

2. Green’s functions of DQD

Using the method of equations of motion, the Fourier
transform of the noninteracting retarded Green’s functions of
the DQD, gR

η , can be computed from a set of nine equations,

(ω + iδ)gR
η,mn = δmn + δ1mω̃0g

R
η,2n

− δ2m

(
ω̃0g

R
η,1n + �gR

η,3n

) + δ3m�gR
η,2n,

(15)

where m,n = 1,2,3 and δmn is the Kronecker-delta. The
solution of the above equations in matrix form is

gR
η (ω) =

⎛
⎝ω + iδ −iω̃0 0

iω̃0 ω + iδ i�

0 −i� ω + iδ

⎞
⎠

−1

. (16)

Accordingly, the noninteracting lesser Green’s function of the
DQD is

g<
η (ω) = −2iIm

[
gR

η (ω)
]
f (ω), (17)

where f (ω) = θ (−ω).
Now we can use the self-energies of the DQD, which are

derived in Appendix A, to calculate the interacting retarded
and lesser Green’s functions of the DQD:

GR
η (ω) = gR

η (ω) + gR
η (ω)�(2nd)R

η (ω)GR
η (ω) (18)

and

G<
η (ω) = GR

η (ω)�(2nd)<
η (ω)GA

η (ω). (19)

C. Physical quantities

By using the definition of the lesser Green’s function
[Eq. (6c)], the expectation values of nd and τ3 are

〈nd〉 = − i

2π

∫
dωTr[G<

d (ω)] (20)

and

〈τ3〉 = −2
∫

dω

2π
G<

η,12(ω). (21)

Furthermore, the average electric current through the SQD in
the steady state could be calculated by

I = −e

h̄

∫
dω

2π
�LTr

{
Im

[
G<

d (ω) + 2GR
d (ω)fL(ω)

]}
, (22)
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FIG. 2. Comparison of single-spin spectral densities of the SQD
calculated by the perturbation method (solid lines) and with the NRG
method (dashed lines), with U = 0, � = �, and Vb = 0. For (a),
εd = 0, 2λ = ω0 = 3�,15�; for (b), εd = 2�, λ = 2

3 ω0 = 2�,10�.

from which we can obtain the differential conductance of the
SQD through G = dI

dVb
.

For future reference, we also define the “signal differential
conductance” of the SQD [16,42], which is defined as the
difference of the SQD’s conductance in the presence of the
DQD and in the absence of it. It is represented by

δG = Gλ �=0 − Gλ=0. (23)

III. RESULTS AND DISCUSSIONS

Here we present our numerical results for zero and finite
bias voltages. We calculate self-consistently the self-energies
and the Green’s functions of the system (see Appendix B for a
brief outline of our self-consistent calculations method). The
calculations are performed at zero temperature T = 0, and
� = �L + �R is taken as unit of energy. Furthermore, we take
h̄ = e = c = 1. The finite bias is established by considering a
symmetric bias voltage between two metallic leads as μL =
−μR = Vb

2 . In zero bias, we check our results by comparing
them with NRG results which are obtained by utilizing the
“NRG LJUBLJANA” [43] package. In all NRG calculations we
set the logarithmic discretization parameter to � = 2 and kept
up to 1000 states for each iteration diagonalizations.

A. Spectral densities and average occupation values

In Fig. 2, we compare the single-spin QD’s local density
of states, Aσ (ω) = − 1

π
Im[GR

d,σσ (ω)], obtained from our per-
turbative approach and the NRG method. For simplicity, we
take U = 0 and fix the value of � to �, while we set different
values to the λ, ω0, and εd . In Fig. 2(a), for the particle-hole
symmetric case, εd = 0 and 2λ = ω0, we see good agreement
between perturbative results and NRG except the rate of
narrowing of the central peak and the height of the broad
sidebands in the case of large λs. In Fig. 2(b), we show density
of states for two particle-hole asymmetric configurations. The

FIG. 3. Average values of τ3 with respect to εd for ω0 = 0,
� = 0.1�, and λ = 0.01� at (a) zero bias and (b) finite bias.

position of the broad peaks are in good agreement with NRG,
whereas their heights differ with it.

Next we consider the presence of large on-site interactions
on the SQD (infinite U ) and focus on the weak-coupling
parameter regime where the condition λ 	 � 	 � is satisfied.
We set the energy difference between the two dots of DQD to
zero, ω0 = 0, and study the average occupation values of qubit
for different gate voltages of the SQD in Fig. 3. Generally, it is
expected that the value of 〈τ3〉 becomes zero, i.e., (〈n±〉 = 1

2 ),
when there is no electron in the SQD and, by the presence
of an electron on the SQD, the 〈τ3〉 acquires a negative value
to recover itself in the new potential energy of the qubit. In
Fig. 3(a) the average values 〈τ3〉, obtained separately by our
self-consistent method and the NRG, are depicted as a function
of εd for fixed � = 0.1� and λ = 0.01� when there is no
applied bias. We see almost good agreement with the NRG. In
the presence of finite bias voltages, as is shown in Fig. 3(b),
we see that by increasing bias voltages, a step starts to appear
in the average values 〈τ3〉 in the range −Vb

2 < εd < Vb

2 , where
the SQD has merely the same probability for being occupied
or unoccupied and therefore 〈τ3〉 acquires a midvalue between
zero and its minimum value.

B. Differential conductance

For a SQD with U = 0 and in the weak-coupling parameter
regime, we can find an analytical expression for δG which
clearly shows linear relation with 〈τ3〉 (see Appendix C for
a derivation). Our numerical results for this case are also
giving this linear relation perfectly (not shown here). On the
other hand, in the case of a SQD with infinite U , due to
the requirement of self-consistent calculations, obtaining an
analytical expression for δG is seems to be impossible, at
least in the context of the nonequilibrium Green’s functions
formalism. Thus, in order to check the linear dependence of
δG on 〈τ3〉, we concentrate only on numerical results. In
Fig. 4, our numerical results for δG as a function of 〈τ3〉
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FIG. 4. Plot of δG calculated by the perturbative method (circles)
and the NRG method (triangles) with respect to 〈τ3〉 in zero
bias (black) and finite bias (red) voltages with εd = 0, � = 0.1�,
λ = 0.01�.

at zero and finite bias voltages are shown. We see that our
perturbative results (circles) are fitted entirely to a line which
clearly demonstrates the linear dependence of δG on 〈τ3〉.
An important feature in Fig. 4 is the linear dependence of
NRG results (triangles) for δG with respect to 〈τ3〉 at zero
bias. This NRG linear dependence could be thought of as a
complementary confirmation for our observations although its
line slope differs slightly from that of our perturbative results.

In Fig. 5, the dependence of δG on the various parameters
of the system is shown. In Fig. 5(a), δG is depicted as a
function of εd for different bias voltages while the values
of �, λ, and ω0 are kept fixed. We see that the curves of
δG go from an infinitesimal positive value for εd 	 0 to an
infinitesimal negative value for εd 
 0, while for intermediate
values of εd , they show some oscillations. By increasing the
value of Vb, the oscillations change from a “one-peak, one-dip”
to a “two-peak, two-dip” shape, and also the positions of the
peaks/dips are pushed from the center. Another remarkable
feature is the decreasing of the amplitude of the δG curves by
increasing the bias voltage. In other words, we predict that the
amplitudes for oscillations of signal differential conductances
are maximized at zero bias voltage. Next, we study the impact
of changing � on δG in Fig. 5(b). We see that increasing
� has a reduction effect on δG and decreases the amplitude
of the differential signal conductances. The other parameter
of the system which should have some effects on δG is the
energy difference between the two quantum dots of the charge
qubit (ω0). In Fig. 5(c), we investigate the impact of different
values of ω0 on δG. We see that the positions εd of the peaks
are almost intact; however, the amplitudes of the δG curves
change considerably by changing ω0.

In order to describe the aforementioned dependence of δG

on � and ω0, we focus on the peaks which are specified
in Figs. 5(b) and 5(c) by vertical dashed lines and plot the
calculated values of δG with respect to the ω0 and �, respec-
tively, in Figs. 6(a) and 6(b). Surprisingly, we see that both
numerical data points in Figs. 6(a) and 6(b) are fitted perfectly
to the function f [ω0,�] = c(ω0 − a)/

√
(ω0 − a)2 + �2. We

could intuitively interpret this behavior by the fact that the
ground-state expectation value of τ3 for an isolated charge

FIG. 5. Differential signal conductance of the SQD as a function
of εd for λ = 0.01� with respect to (a) Vb, (b) �, and (c) ω0.

qubit, with the same configuration as in our model system, is
equal to 〈τ3〉isolated = −ω0/

√
ω2

0 + �2. As a result, the above
functional form for δG would be expected to describe correctly
the linear relation of δG with the ground-state expectation
value of τ3 of a charge qubit which is capacitively coupled to
the SQD.

From an experimental point of view, the above relation
for δG suggests a possible indirect measurement of the
stationary-state value of 〈τ3〉 by measuring δG. By setting
the value of ω0 to a very large value (ω0 → ±∞), the two
end points of the lines in the Fig. 4 are obtained. Therefore,
one could find the value of constant c by using the relation
c = [δG(ω0 
 0) − δG(ω0 	 0)]/2. We emphasize that this
measured stationary-state value for 〈τ3〉 is by no means related
to its initial-sate value (i.e., its value before the measurement
starts) because the initial-state’s information of the qubit
is washed out by the detector during the readout process.
Nevertheless, the study of stationary-state properties of a qubit
could be still desirable in the sense that one can obtain certain
knowledges about the qubit-detector coupled system and use
them in performing manipulations or measurements on the
qubit [19,44–49].

155113-5



S. MOJTABA TABATABAEI PHYSICAL REVIEW B 95, 155113 (2017)

FIG. 6. (a) Plot of δG as a function of ω0 for � = 0.1�;
(b) plot of δG as a function of � for ω0 = −0.1�. Other parameters
are εd = −1.1�, Vb = 0.5�, and λ = 0.01�. Circles are perturbative
results and solid lines are fittings to the function f [ω0,�], with
a = 1.6×10−2 and c = −6.9×10−4.

At this point, it is interesting to compare our results for the
dependence of δG curves on � with the results of Ref. [30].
In that work, it is claimed that the overall shapes of δG would
not be altered to the first order in �. To show that our results
are in accordance at some approximate level with the results of
Ref. [30], we could expand the function δG = f [ω0,�] around
small values of �; then it is revealed that the correspondence
between δG and � in Fig. 5(b) is actually provided through
next-to-leading order in �, i.e., δG�→0 ≈ c + O(�2), which
is in accord with the above reference.

IV. CONCLUSIONS

We used the method of nonequilibrium Green’s functions
to study the effect of electron-electron interaction between a
SQD and a singly occupied DQD (charge qubit) on their static
and dynamic properties at zero- and finite-bias voltages. To
this end, we utilized the infinite-U Lacroix approximation and
the Majorana fermion representation of spin operators to find
the interacting Green’s functions of the system perturbatively
to second order in the SQD-qubit coupling constant. We
calculated the Green’s functions and self-energies of the
system in a self-consistent manner with which we could take
into account the backaction effects on the system. At zero
bias, we checked the accuracy of our results by comparing
them with the NRG method. The agreement was good for
the density of states of SQD and the expectation value of
difference electron occupations of qubit (〈τ3〉). We found
a linear relation between the differential conductance of
SQD (δG) and stationary-state expectation value of 〈τ3〉.
Concerning with this linear relation, we gave NRG results at
zero bias, as a support for our perturbative results, from which
perfect linear relation was observed. We also investigated
the dependency of δG on various parameters of the system
such as Vb, �, ω0, and εd . We found that the δG curves are
best pronounced at zero-bias voltage and their amplitudes are
decreased relatively by increasing bias voltages. Furthermore,
we found an approximate functional form for δG with respect
to � and ω0. By using this analytical expression, we became

able to describe the reason why the authors of Ref. [30] stated
that the δG curves are not dependent on the values of �.
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APPENDIX A: EXPRESSIONS FOR SELF-ENERGIES
OF SQD AND DQD

In this Appendix, we give the expressions for self-energies
of the SQD and the DQD due to the interaction Hamiltonian
HI . The first-order self-energies are identically zero for both
the SQD and the DQD because we have taken into account
their effect in the noninteracting Green’s functions.

The SQD’s second-order self-energies are

�
(2nd)R
d (ω) = λ2

∫
dω1

2π

[
g<

d (ω)�R(ω − ω1)

+ gR
d (ω)�<(ω − ω1) + gR

d (ω)�R(ω − ω1)
]

(A1a)

and

�
(2nd)<
d (ω) = λ2

∫
dω1

2π
g<

d (ω)�<(ω − ω1), (A1b)

where

�R(ω) =
∫

dω1

2π

[
g<

η,11(ω + ω1)gA
η,22(ω1)

+ gR
η,11(ω + ω1)g<

η,22(ω1)

− g<
η,12(ω + ω1)gA

η,21(ω1)

− gR
η,12(ω + ω1)g<

η,21(ω1)
]

(A2a)

and

�<(ω) =
∫

dω1

2π
[g<

η,11(ω + ω1)g>
η,22(ω1)

− <
η,12(ω + ω1)g>

η,21(ω1)]. (A2b)

For the DQD, the second-order self-energies are

�(2nd)R,<
η (ω) =

⎛
⎜⎝

F
R,<
22 (ω) F

R,<
21 (ω) 0

F
R,<
12 (ω) F

R,<
11 (ω) 0

0 0 0

⎞
⎟⎠, (A3)

where

FR
mn(ω) = λ2

∑
ν=↑,↓

∫
dω1

2π

[
g<

η,mn(ω)�R
ν (ω − ω1)

+ gR
η,mn(ω)�<

ν (ω − ω1)

+ gR
η,mn(ω)�R

ν (ω − ω1)
]

(A4a)

and

F<
mn(ω) = λ2

∑
ν=↑,↓

∫
dω1

2π
g<

η,mn(ω)�<
ν (ω − ω1). (A4b)
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In Eqs. (A4), the functions �R,<
ν (ω) are given by

�R
ν (ω) =

∫
dω1

2π

[
g<

d,νν(ω + ω1)gA
d,νν(ω1)

+ gR
d,νν(ω + ω1)g<

d,νν(ω1)
]

(A5a)

and

�<
ν (ω) =

∫
dω1

2π
g<

d,νν(ω + ω1)g>
d,νν(ω1). (A5b)

APPENDIX B: SELF-CONSISTENT CALCULATIONS

In our numerical results, we have calculated the set of four
unknown quantities [Pν(ω), Qν(ω), 〈nd,ν〉, and 〈τ3〉] by solving
self-consistently Eqs. (10), (20), and (21). This way we assure
that the backaction effects are correctly taken into account in
the results. We used the following scheme.

(i) We start with an initial guess for 〈nd〉 and 〈τ3〉 and set
P (ω) = Q(ω) = 0 and then compute gR

d (ω) from Eq. (9).
(ii) We calculate P (ω) and Q(ω) from computed gR

d (ω) and
use them to obtain a new gR

d (ω). We iterate this step until
convergence over gR

d (ω) is attained.

(iii) Using the calculated g
R,<
d (ω) and gR,<

η (ω), the self-
energies are calculated straightforwardly, and then we use the
interacting lesser Green’s functions, Eqs. (14) and (19), to
calculate new 〈nd〉 and 〈τ3〉.

We iterate these three steps until convergence over 〈nd〉 and
〈τ3〉 is attained.

APPENDIX C: ANALYTICAL EXPRESSION FOR δG

For a SQD with U = 0, it is possible to obtain an analytical
expression for the linear relation between δG and 〈τ3〉. To
this end, we expand Eq. (23) to the first order in λ, i.e.,
δGλ→0 ≈ λ

∂Gλ �=0

∂λ
|
λ=0

, and then, using Eq. (22) and GR
d (ω) =

[ω − εd − λ〈τ3〉 + i� − �
(2nd)R
d (ω)]

−1
, we obtain

δGλ→0 ≈ λ
∑

V =± Vb
2

{
�(εd + V )

π [(εd + V )2 + �2]2

}
〈τ3〉 + O(λ2).

One immediate consequence of this expression is that even at
the zero-bias voltage there would be an obvious conductance
difference in the system; i.e., δGVb=0 ≈ λ 2�εd

π(ε2
d+�2)

2 〈τ3〉 +
O(λ2).
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