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Application of Fermi hypernetted-chain theory to spin-polarized higher-order
fractional quantum Hall states
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We apply Fermi hypernetted-chain theory to study the spin polarization of higher-order fractional quantum
Hall (FQH) states at filling factors in between the primary FQH sequences, ν = p/(qep ± 1), where qe is an even
integer and p is a nonzero integer. The filling factors related to the higher-order FQH states include ν = 3/8,
4/11, 5/13, 5/17, 4/13, 6/17, 7/11, and so on. We use a model of strongly interacting fermions with different
spin degrees of freedom to explain the states beyond primary FQH sequences. We calculate the correlation energy,
the radial distribution function, as well as the static structure function associated with the Halperin wave function
adopted for the mixture states of fermions with different spins. The results are comparable with those from the
residual interaction between composite fermions.
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I. INTRODUCTION

The fractional quantum Hall effect [1] (FQHE) results from
a strongly correlated incompressible fluid state [2] formed in
a two-dimensional electron-gas (2DEG) system with special
uniform electron densities ρ in the extreme limit of a strong
transverse magnetic field (B > 5 T), low temperature (T <

2 K), and high mobility of electrons (μ > 105 cm2 V/s). From
a theoretical point of view, it was originally assumed that the
Zeeman splitting is sufficiently large such that the spins of all
electrons in the Landau level at filling factors of the form ν =
1/m (m = 1,3,5, · · · ) are completely polarized [3]. However,
due to the small effective electron mass m∗

b (m∗
b = 0.067me,

me the electron mass) and the small g factor (g = −0.44),
in GaAs the Zeeman term is about 70 times smaller than
the cyclotron energy h̄ωc (for GaAs, h̄ωc = 20B in Kelvin,
with B in Tesla) [4]. Meanwhile, FQHE can also be observed
at relatively low magnetic fields, where the Coulomb energy
scale can easily mix the different spin channels. The interaction
energy, which is roughly of the same order as the cyclotron
energy for typical experimental parameters, is also much larger
than the Zeeman energy. Therefore, it may sometimes be
energetically favorable for finite particles to reverse their spins,
provided that they can gain more in interaction energy than
they lose in Zeeman energy. Exact diagonalization studies
on small systems [5–12] confirmed that this does indeed
occur at sufficiently low Zeeman energy. There have also
been experimental investigations [13–31] of the nonfully spin
polarized FQH states as well as transitions between them as a
function of the Zeeman energy.

For the primary FQH sequences, ν = p/(qep ± 1), where
p is a nonzero integer and qe is an even integer, the
composite fermion (CF) model [32–35], proposed by Jain,
has been very successful around major even-denominator
fractions, ν = 1/qe (p → ∞). In this model, the dominant
Coulomb interaction between carriers in a 2DEG system in
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high magnetic fields is very effectively incorporated by the
adiabatic capture of an even number qe of magnetic flux quanta
to each electron. This gives rise to composite fermions as
quasiparticles. The CF model is a remarkably simple picture
in which CFs can be regarded as independent particles in an
effective magnetic field, B∗ = B − qeφ0ρ, which is reduced
from the external magnetic field B by the density ρ of the
captured magnetic flux, where φ0 = hc/e is the magnetic
flux quantum. At special filling factors ν = φ0ρ/B = 1/qe

the effective magnetic field B∗ vanishes, so the system of
CFs can be described as free fermions in a zero magnetic
field, characterized by a Fermi wave vector and a Fermi
energy. When B∗ deviates from zero, Landau levels p of CFs
develop, giving rise to an integer quantum Hall effect (IQHE)
of noninteracting composite fermions. This IQHE of CFs in
the effective magnetic field becomes equivalent to the FQHE
of the original interacting electrons exposed to the external
magnetic field.

However, as experimental conditions are improved,
higher-order FQH states are observed at filling factors
ν = 4/11, 5/13, 6/17, 4/13, 5/17, and 7/11, which lie in
between the primary FQH states (IQH states of CFs) [23,24,28]
ν = 2/3 and 2/7 by Pan et al. [24,25], and observed at ν = 3/8
in the photoluminescence spectra of 2DEG by Bellani
et al. [26]. Further, in a recent experiment, higher-order filling
factors in the region of 1/3 < ν < 2/5, as ν = 5/13, 6/17,
and 3/8, have been observed by Samkharadze et al. [27]. As
a consequence, assuming qe vortices bound to each CFs, the
filling factor ν∗ of new incompressible CFs states caused from
the interaction between CFs is produced from the relation
of ν = ν∗/(qeν

∗ ± 1) [36]. For example, ν = 4/11 and
6/17 correspond to ν∗ = 1 + 1/3 and 1 + 1/5, respectively,
indicating fractional fillings in the topmost CF Landau level.
In a model for partially spin-polarized QHE with respect to
this problem, the residual interaction between CFs, which
occupy only the topmost CF Landau level with fractional
filling [36,37], can be responsible for the higher-order FQHE.

In this paper we adopt a model of strongly interacting
two types of fermions to study the spin polarization of
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FQH states at filling factors, which are located in between
primary FQH states. For numerical calculation we apply
Fermi hypernetted-chain (FHNC) theory to the Halperin
wave function (HWF) [2,4] with SU(2) symmetry. In
contrast to the CF model, we know that the HWF does not
cover all the representation of FQH states at filling factors
ν = p/(qep ± 1). Nonetheless, the HWF may be a good
candidate for the investigation of spin-polarized FQH states
at higher-order filling factors in the regime 2/3 > ν > 2/7.

The HWF for a system of two types of strongly interacting
fermions, i.e., consisting of N↑ spin-up (major) electrons and
N↓ spin-down electrons (N = N↑ + N↓), is given by

�lmq(R↑,R↓) =
N↑∏
i<j

(z↑
i − z

↑
j )l

N↓∏
i<j

(z↓
i − z

↓
j )m

N↑,N↓∏
i,j

(z↑
i − z

↓
j )q

×
N↑∏
i

e
− |z↑

i
|2

4�2
0

N↓∏
j

e
− |z↓

j
|2

4�2
0 , (1)

where Rσ denotes coordinates (zσ
1 ,zσ

2 , . . . ,zσ
Nσ ) of all spin σ

electrons, zi = xi + iyi is the position of the ith electron in
complex coordinates, �0 = (ch̄/eB)1/2 is the magnetic length,
l and m are odd integers, and q is an integer. By construc-
tion, neglecting Landau-level mixing, this wave function lies
entirely in the lowest Landau level (LLL) and describes a
translational invariant isotropic and incompressible liquid of
electrons at the LLL filling factor

ν = ν↑ + ν↓ = l + m − 2q

lm − q2
. (2)

The filling factors ν↑ and ν↓ are, respectively, determined as

ν↑ = m − q

lm − q2
, ν↓ = l − q

lm − q2
. (3)

Therefore, the spin polarization ζ of FQH states at a filling
factor ν is defined as

ζ = ν↑ − ν↓

ν↑ + ν↓ = m − l

m + l − 2q
, (4)

where q is an integer with the restriction of q < l,m, due
to 0 � ζ � 1. For the case of the fully spin-polarized state
(ζ = 1), by eliminating one of the spin components in Eq. (1),
this wave function becomes the Laughlin wave function for
spinless (as fully spin polarized) electrons, which describes
the electronic state at filling factor ν = 1/m. With a choice
of l = m, the electronic states in the LLL at filling factors
ν = 2/(l + q) are spin unpolarized, (ζ = 0); otherwise, the
states are partially spin polarized (ζ < 1). For example, the
spin polarization of the FQH state at filling factor ν = 4/11 is
determined as the spin polarization ζ = 3/4 by construction
of (l,m,q) = (3,15,1) and ζ = 1/2 with (l,m,q) = (3,5,2).
The electronic state at filling factor ν = 4/11 with ζ = 1/2
is more energetically favorable than the others (see Sec. III).
Furthermore, we can also find a good trial wave function for the
ground state at filling factors with even denominator, namely,
ν = 1/2 and 1/4, by construction of (l,m,q) = (3,3,1) and
(5,5,3) in Eq. (1), respectively.

The outline of the remainder of this paper is as follows.
Section II introduces how to apply FHNC theory to the

Halperin wave function, and introduces FHNC formalism to
compute the radial distribution function. Section III is devoted
to the results and the conclusions.

II. METHOD

As an application of the FHNC theory to the FQHE, we can
rewrite HWF given by Eq. (1) as the Jastrow-Slater type wave
function:

�(R↑,R↓) =
N↑∏
i<j

f ↑↑(zi,zj )
N↓∏
i<j

f ↓↓(zi,zj )

×
N↑,N↓∏

i,j

f ↑↓(zi,zj )
↑
0 


↓
0 , (5)

where spin-dependent dynamical correlation factors,
f σσ ′

(zi,zj ) ≡ exp[uσσ ′
(zi,zj )/2], are generated by

pseudopotentials uσσ ′
(zi,zj ) given as u↑↑(zi,zj ) = 2(l − 1)

ln(z↑
i − z

↑
j ), u↓↓(zi,zj ) = 2(m − 1) ln(z↓

i − z
↓
j ), and

u↑↓(zi,zj ) = 2q ln(z↑
i − z

↓
j ). Slater (Vandermonde)

determinants 
σ
0 of renormalized single-electron wave

functions, ϕσ
α = cσ

α zα exp(−πρσ |z|2/2), with spin σ and
a normalization constant cσ

α , where α = 0,1, . . . ,Nσ − 1,
describe only the noninteracting system of spin σ electrons in
the LLL. The density of the spin σ electron is ρσ = νσ /(2π�0),
which relates to the filling factor given by Eq. (2).

Since the HWF is completely in the LLL, the kinetic energy
per particle is restricted to having the lowest cyclotron energy
h̄ωc/2, where ωc = eB/cm∗ is the cyclotron frequency, and
m∗ is the effective mass of the electron in the background.
The spin-dependent Coulomb interaction between electrons is
given by

VC =
N↑∑
i<j

e2

ε|z↑
i − z

↑
j |

+
N↓∑
i<j

e2

ε|z↓
i − z

↓
j |

+
N↑,N↓∑

i,j

e2

ε|z↑
i − z

↓
j |

,

(6)

where ε is the dielectric constant of the background material.
The interaction energy per particle for any given wave function
is given by

E = 〈VC + Vex〉
N

= 1

2

(ρ↑)2

ρ

∫
dr[g↑↑(r) − 1]vc(r)

+ 1

2

(ρ↓)2

ρ

∫
dr[g↓↓(r) − 1]vc(r)

+ ρ↑ρ↓

ρ

∫
dr[g↑↓(r) − 1]vc(r), (7)

where Vex implies the interactions between electron and
background ion and those among background ions, and
vc(r) = e2/εr with r ≡ rij = |zi − zj |. The spin-dependent
radial distribution functions gσσ ′

(rij ) are defined by

gσσ (rij ) = Nσ (Nσ − 1)

ρσ 2〈�|�〉
∫

dR(zσ
i ,zσ

j )|�(R↑,R↓)|2, (8)

g↑↓(rij ) = N↑N↓

ρ↑ρ↓〈�|�〉
∫

dR(z↑
i ,z

↓
j )|�(R↑,R↓)|2, (9)
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with σσ = ↑↑,↓↓, where dR(zσ
1 ,zσ

2 ) denotes the product of
all volume elements, except d2zσ

i and d2zσ
j , and ρσ is the

spin σ electron density. The spin-dependent static structure
functions Sσσ ′

(k) associated with the Fourier transform of
radial distribution functions Eqs. (8) and (9) are defined as

Sσσ ′
(k) = δσσ ′ +

√
ρσρσ ′

∫
dr[gσσ ′

(r) − 1]eik·r. (10)

The spin-dependent single-particle density matrix of the
system is defined by

nσ
(
zσ

1 ,z′σ
1

) = Nσ

〈�|�〉
∫

dR(zσ
1 ,z′σ

1 )�∗(zσ
1 ,zσ

2 , · · · ,zσ
Nσ

)

×�
(
z′σ

1 ,zσ
2 , · · · ,zσ

Nσ

)
. (11)

In order to obtain the interaction energy of Eq. (7)
we should find the spin-dependent radial distribution func-
tion gσσ (rij ) through the application of FHNC theory. The
integrand |�|2 in Eqs. (8) and (9) can be expanded in
powers of the spin-dependent direct bond functions hσσ ′

(rij ) =
[f σσ ′

(rij )]
2 − 1, which has the property of hσσ ′

(rij ) → 0, at
rij → ∞, as

|�|2 =
⎧⎨
⎩1 +

∑
σσ ′

⎡
⎣ N∑

i<j

hσσ ′
(rij )

N∑
i<j

N∑
k<l

hσσ ′
(rij )hσσ ′

(rkl)

+ · · ·
⎤
⎦

⎫⎬
⎭

∣∣
σ
0

∣∣2∣∣
σ ′
0

∣∣2
. (12)

We analytically determine the statistical exchange bond func-
tion, defined by �σ (zi,zj ) = nσ

0 (zi,zj )/ρσ , where nσ
0 (zi,zj )

is the uncorrelated one-body density matrix, from the Slater
determinants |
σ

0 |2, |
σ ′
0 |2 in the form

nσ
0 (zi,zj ) =

Nσ −1∑
α=0

ϕ∗σ
α (zi)ϕ

σ
α (zj ). (13)

In our case, the exchange bond function is explicitly deter-
mined as the form in the thermodynamic limit,

�σ (zi,zj ) = exp

(
− π

2
ρσ |zi − zj |2

)

× exp[−iπρσ riri sin(θi − θj )], (14)

where θi is given by zi = ri exp(iθi). As a consequence, the
spin-dependent radial distribution functions gσσ ′

(rij ), given by
Eqs. (8) and (9), are expressed as a sum of all irreducible cluster
diagrams, which are constructed with both bond functions,
hσσ ′

(rij ) and �σ (zi,zj ). All irreducible diagrams, obeying
well-defined topological rules [38,39], are distinguished by
three types of diagrams: nodal, non-nodal, and elementary
diagrams. For each type of diagram there are four different
classes, namely, dd (direct-direct), de (direct-exchange), ee

(exchange-exchange), and cc (circular-circular) for each spin
configuration σσ ′ = ↑↑,↑↓,↓↑,↓↓.

The sums of spin-dependent non-nodal (diagrams) func-
tions of the four types are given by

Xσσ ′
dd (r) = �σσ ′

dd (r) − Nσσ ′
dd (r) − 1, (15)

Xσσ ′
de (r) = �σσ ′

dd (r)
[
Nσσ ′

de (r) + Eσσ ′
de (r)

] − Nσσ ′
de (r), (16)

Xσσ ′
ee (r) = �σσ ′

dd (r)
{
Nσσ ′

ee (r) + Eσσ ′
ee (r) + [

Nσσ ′
de (r)

+Eσσ ′
ee (r)

]2} − δσσ ′�σσ ′
dd (r)

[
Nσσ ′

cc (r) + Eσσ ′
cc (r)

− �σ
]2 − Nσσ ′

ee (r), (17)

Xσσ
cc (r) = �σσ

dd (r)
[
Nσσ

cc (r) + Eσσ
cc (r)

]
+[

1 − �σσ
dd (r)

]
�σ − Nσσ

cc (r) − 1, (18)

with

�σσ ′
dd (r) = exp

[
uσσ ′

(r) + Nσσ ′
dd (r) + Eσσ ′

dd (r)
]
. (19)

The class of spin-dependent nodal (diagrams) functions is
given by convolution equations in the form

Nσσ ′
dd (r12) =

∑
σ3

ρσ3

∫
dr3

[
X

σσ3
dd (r13) + X

σσ3
de (r13)

][
N

σ3σ
′

dd (r32) + X
σ3σ

′
dd (r32)

]

+
∑
σ3

ρσ3

∫
dr3X

σσ3
dd (r13)

[
N

σ3σ
′

ed (r32) + X
σ3σ

′
ed (r32)

]
, (20)

Nσσ ′
de (r12) =

∑
σ3

ρσ3

∫
dr3

[
X

σσ3
dd (r13) + X

σσ3
de (r13)

][
N

σ3σ
′

de (r32) + X
σ3σ

′
de (r32)

]

+
∑
σ3

ρσ3

∫
dr3X

σσ3
dd (r13)

[
Nσ3σ

′
ee (r32) + Xσ3σ

′
ee (r32)

]
, (21)

Nσσ ′
ee (r12) =

∑
σ3

ρσ3

∫
dr3

[
X

σσ3
ed (r13) + Xσσ3

ee (r13)
][

N
σ3σ

′
de (r32) + X

σ3σ
′

de (r32)
] +

∑
σ3

ρσ3

∫
dr3X

σσ3
ed (r13)

[
Nσ3σ

′
ee (r32) + Xσ3σ

′
ee (r32)

]
,

(22)

Nσσ
cc (r12) =

∑
σ

ρσ

∫
dr3X

σσ
cc (r13)

[
Nσσ

cc (r32) + Xσσ
cc (r32)

] +
∑

σ

ρσ

∫
dr3X

σσ
cc (r13)�σ (r32). (23)
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The spin-dependent radial distribution function is composed
of the components

gσσ ′
(r) = 1 +

∑
αβ

[
Xσσ ′

αβ (r) + Nσσ ′
αβ (r)

]
, (24)

where αβ denotes dd,de,ed, and ee.
All spin-dependent nodal functions, except Nσσ

cc (r12), can
be factorized in the reciprocal spaces through the Fourier
transformations of Eqs. (20)–(22). We determine the explicit
expression for spin-dependent nodal functions in the reciprocal
space after some algebra, which we show in the Appendix.
They are useful tools in an iteration procedure for the
numerical calculation. In general, due to the phase factor of
the exchange bond function, implied in cc nodal functions, the
spin-dependent Nσσ ′

cc of Eq. (23) must be solved by using a
multidimensional integration.

The FHNC equations provide a closed set of equations
for the nodal functions in the reciprocal space represented
in the Appendix, and additionally in Eqs. (23) and the
non-nodal functions in Eqs. (15)–(19), only if the elementary
diagrams Eσσ ′

αβ are known. For simplicity, we can neglect all
elementary diagrams, a so-called FHNC//0 approximation.
In the numerical calculation pseudopotentials uσσ (r) can
be divided into short-range and long-range parts, namely,
uσσ (r) = uσσ

s (r) + uσσ
l (r).

In our case, we can separate the pseudopotential u↑↑(r) =
2(l − 1) ln r into u

↑↑
s (r) = −2(l − 1)K0(Qr) and u

↑↑
l (r) =

2(l − 1)[ln r + K0(Qr)], where K0(Qr) is the modified Bessel
function and Q is a cutoff parameter of the order of
unity. Since K0(Qr) = − ln(Qr/2) − γ as r → 0, where
γ = 0.5772 · · · is the Euler constant, u

↑↑
l (0) = −2(l − 1)γ ,

u
↓↓
l (0) = −2(m − 1)γ , and u

↑↓
l (0) = −2qγ at r = 0.

III. RESULTS AND DISCUSSION

We adopted a system of strongly correlated fermions with
different spin degrees of freedom which may be represented
by the HWF of Eq. (1), and applied the FHNC theory
to study the spin-polarization effects in higher-order FQHE
states at filling factors ν = 2/5, 3/8, 5/13, 4/11, and 5/17,
located in the filling factor regime 2/3 > ν > 2/7, reported in
the experimental results of Ref. [24]. We report numerical
results on the ground-state interaction energy per particle,
given by Eq. (7), through calculation of spin-dependent radial
distribution functions, gσσ ′

(r), at various filling factors in this
range, by a FHNC//0 approximation in which all elementary
diagrams are neglected on the cluster expansion.

Figure 1 compares gσσ ′
ν (x), expressed by Eqs. (8) and (9),

at filling factors ν = 4/11 (black lines) and 3/7 (blue lines),
as functions of dimensionless variable x = √

ν/2r/�0. Here,
g↑↑

ν (x) are denoted with solid lines, g↑↓
ν (x) with dashed lines,

and g↓↓
ν (x) with dotted lines. They are quantities proportional

to the probability of finding two electrons of spins σ and
σ ′ at distance x. This shows that while filling factors vary
in accord with the varied spin ratio in the LLL the peak
positions of gσσ ′

ν (x) for electrons with unlike spins and those
with the same spin move in different directions. The LLLs
at filling factors ν = 4/11 and 3/7, represented by the HWF
with (l,m,q) = (3,5,2) and (3,5,1), respectively, possess spin

0 1 2 3 4 5 6
x

0

0.5

1.0

1.5

gσσ
’ (x
)

ν=4/11
ν=3/7

FIG. 1. Spin-dependent radial distribution functions gσσ ′
(x) for

filling factors ν = 4/11 (black lines) and 3/7 (blue lines) as a function
of dimensionless variable x = √

ν/2r/�0, for spin polarizations ζ =
1/2 (ν↑ = 3/11 and ν↓ = 1/11) and 1/3 (ν↑ = 2/7 and ν↓ = 1/7),
respectively, calculated with the HWF by FHNC//0 approximation.
g↑↑(x) at both filling factors are shown by solid lines, g↑↓(x) by
dashed lines, and g↓↓(x) by dotted lines.

polarizations ζ = 1/2 (ν↑ = 3/11 and ν↓ = 1/11) and 1/3
(ν↑ = 2/7 and ν↓ = 1/7) according to Eqs. (3) and (4). For
both filling factors, g↑↓

ν (x) obviously shows the characteristics
of liquid states, and has a more pronounced peak than gσσ

ν (x),
i.e., electrons with unlike spins correlate better than those
with the same spin. Figure 2 shows the spin-polarization
dependence of gσσ ′

ν (x) at filling factor ν = 4/11. According
to increasing spin polarizations from ζ = 1/2 to 3/4 at filling
factor ν = 4/11, which correspond to (l,m,q) = (3,5,2) and
(3,15,1) in the HWF, respectively, i.e., varying the spin

0 1 2 3 4 5 6 7
0

0.5

1

1.5

0 1 2 3 4 5 6 7
x

0

0.5

1.0

1.5

gσσ
’ (x
)

ζ=1/2

ζ=3/4

FIG. 2. Spin-dependent radial distribution functions gσσ ′
(x) for

spin polarization ζ = 1/2 (solid lines) and 3/4 (dashed lines) at
a filling factor ν = 4/11, as a function of dimensionless variable
x = √

ν/2r/�0. g↑↑(x) in terms of spin polarizations are denoted by
black lines, g↑↓(x) by red lines, and g↓↓(x) by blue lines. g↓↓(x)
is changed drastically by varying of the spin concentrations from
η↓ = 1/4 to 1/8.
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concentration, defined by ησ = Nσ/N , from η↓ = 1/4 to 1/8,
g↓↓

ν (x) (blue lines) change drastically.
We find the interaction energy per particle of the FQH state

in terms of spin polarizations at filling factor ν = 4/11, related
closely to gσσ ′

ν (x) through Eq. (7), to be Eν(ζ ) = −0.41297 in
units of e2/ε�0 for ζ = 1/2, and Eν(ζ ) = −0.40364 (e2/ε�0)
for ζ = 3/4. As a comparison, decrease of spin polarizations
from ζ = 3/4 to 1/2 with respect to increase of spin-down
concentrations from η↓ = 1/8 to 1/4 causes a reduction in the
ground-state energy of the system with the value of �Eν =
0.0093(e2/ε�0), which is the energy required to flip the spin
of one electron, and this energy must be equal to the Zeeman
energy, in order for the partially spin-polarized state at ν =
4/11 for ζ = 1/2 to be possible. We evaluate the Zeeman
energy per particle from EZ = (1 − 2η↑)sgμB , where η↑ is the
ratio of the number of spins parallel to the magnetic field to the
total number of spins, μB = eh̄/2mec is the Bohr magneton,
and s = 1/2, from Ref. [2]. For GaAs parameters (the Landé
g factor g = −0.44 and ε = 13.6) EZ � 0.0093(e2/ε�0) for
B � 16 T, where η↑ = 7/8 in terms of the 4/11 state for
ζ = 3/4.

Our results are in reasonable agreement with the estimates
Eν(ζ ) = −0.42054 (e2/ε�0) by Chang et al. [36] at ν = 4/11
for ζ = 1/2, proposed with a diagonalization method of the
CF basis wave function of a rather large system with respect
to residual interactions between CFs in spherical geometry
through a Monte Carlo method. Applying the FHNC//4 ap-
proximation, in which only four particle elementary diagrams
are additionally considered in the FHNC theory, we can obtain
quantitatively better results than when those are ignored, but in
this paper we have not done so. The work of Park and Jain [40]
with mixed states of CF carrying two and four vortices has also
shown that the FQHE state at filling ν = 4/11 is partially spin
polarized or unpolarized. It is not clear whether the ν = 4/11
state observed in a tilted magnetic field by Pan et al. [24] is
fully polarized or not. However, it is quite possible that the
state is fully polarized, since it is observed in high magnetic

fields. This issue has been investigated theoretically by Jain’s
group [36]. Mukherjee et al. [41] have shown that a special kind
of correlation between CFs in their partially filled effective
Landau level is responsible for fully spin-polarized FQHE
states in ν = 4/11 and 5/13.

Due to the restricted structure of HWF, we cannot here
treat the ground-state energy of the fully spin-polarized state at
ν = 4/11. However, we might predict the ground-state energy
of E4/11(1) � −0.3912(e2/ε�0) through using the relation
of the Zeeman energy as η↓ → 0 at ν = 4/11. This counts
more than the estimates of E4/11(1) � −0.4219(e2/ε�0) for a
system of four electrons by Chakraborty [2], and E4/11(1) =
−0.41412(e2/ε�0) by Chang et al. [36]. Such a discrepancy is
due to the unsuitable HWF chosen for the full spin polarization
at ν = 4/11. Therefore, we restrict the HWF to study the
spin polarization in between primary FQHE states, according
to Eqs. (2)–(4). In accordance with our approach, the 3/7
filling state, belonging to the primary FQHE sequences, is also
partially spin polarized with ζ = 1/3. Experimental evidence
for this filling state has been provided in the luminescence
spectra measurement by Kukushkin et al. [20].

Table I presents our results on the ground-state energy per
particle at various filling factors with spin polarizations in
higher-order FQH states, lying in between primary FQHE
states. Table I also shows the dependence of ground-state
energies on partial and full spin polarizations at the same filling
factor. The result on the ground-state energy at ν = 4/11 for
ζ = 1/2 by FHNC//0 approximation is in good agreement
within a few percent with that of Chang and Jain [36].
The interaction energy per particle at filling factor ν = 3/8
with respect to spin polarization ζ = 2/3 is E3/8(2/3) =
−0.40735(e2/ε�0).

The static structure function, defined by Eq. (10), is related
to the radial distribution function by Fourier transform. The
two quantities appeal to different intuitions. For completeness,
in Fig. 3, we plot spin-dependent static structure functions
Sσσ (q) at various filling factors ν = 4/11 (black lines) and

TABLE I. Ground-state energy per particle Eν(ζ ) in units of e2/ε�0 at various filling factors, ν = 2
9 , 3

7 , 2
5 , 2

7 , 3
8 , 4

11 , 5
13 , 5

17 , and 6
17 , where ζ

is the spin polarization. The first column indicates the filling factors of the ground states. The second column displays our results by FHNC//0
approximation, using the HWF for the spin polarizations at various filling states in the thermodynamic limits. We compare them in the third
and fourth columns with the estimates of Jain and Kamilla for full spin polarization [42], by using projected CF wave functions in the spherical
geometry, results of Morf et al. by Monte Carlo method [43], the estimates of Dharma-Wardana [44], and more. References [36,41,45–47]
have used the CF-diagonalization method.

ν Eν(ζ )

2
9 Eν(0) = −0.33830 Eν(1) = −0.3428 [42] Eν(1) = −0.340[44]

Eν(1/2) = −0.33514
3
7 Eν(1/3) = −0.42724 Eν(1) = −0.44228 [42] Eν(1) = −0.445 [44]
2
5 Eν(0) = −0.43345 Eν(1) = −0.43280 [42] Eν(1) = −0.4142 [43]

Eν(1/2) = −0.41601
2
7 Eν(0) = −0.36925 Eν(1) = −0.3773 [43]
3
8 Eν(2/3) = −0.40735 Eν(1/3) = −0.4256 [45] Eν(1) = −0.41952 [45]
4
11 Eν(1/2) = −0.41297 Eν(1/2) = −0.4219 [36]

Eν(3/4) = −0.40364 Eν(1) = −0.41412 [36,41]
5
13 Eν(3/5) = −0.41058 Eν(1) = −0.42431 [41]
5
17 Eν(1/5) = −0.35781 Eν(1) = −0.38591 [46]
6
17 Eν(2/3) = −0.40756 Eν(1) = −0.41228 [47]
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0 2 4 6
q

-0.5

0

0.5

1.0

1.5

S
σσ
’ (q
)

ν=3/7
ν=4/11

FIG. 3. Spin-dependent static structure functions Sσσ ′
(q) for ν =

4/11 (black lines) and 3/7 (blue lines) as a function of q = √
2/νk�0,

obtained from the HWF by FHNC//0. S↑↑(q) for different filling
factors are shown by solid lines, S↑↓(q) by dashed lines, and S↓↓(q)
by dotted lines.

3/7 (blue lines), as a function of the dimensionless variable
q = √

2/νk�0.
In addition, we obtain results for the FQHE states at

even-denominator fractions, ν = 1/2 and 1/4, represented
by the HWF of (l,m,q) = (3,3,1) and (5,5,3), in Eq. (1),
respectively, with respect to the spin polarization of a model
system. Neither of them are spin polarized by Eq. (4). In
Fig. 4, we plot gσσ ′

(x) at filling factors ν = 1/2 (black line)
and 1/4 (red lines) as a function of x, where gσσ (x) is
depicted by solid lines, and g↑↓(x) by dashed lines. Figure 4
shows that g↑↓(x) at even-denominator filling states also has
a pronounced peak, as likely shown in Figs. 1 and 2, whereas
gσσ (x) at both filling factors displays the characteristic of a

0 1 2 3 4 5 6
x

0

0.5

1.0

1.5

gσσ
’ (x
)

ν=1/2
ν=1/4

FIG. 4. Spin-dependent radial distribution function Sσσ ′
(x) for

the filling factors ν = 1/2 (black lines) and 1/4 (red lines) as a
function of dimensionless x = √

ν/2r/�0, obtained from the HWF
by FHNC//0. Solid lines indicate g↑↑(x) = g↓↓(x) for both filling
factors, and dashed lines indicate g↑↓(x).

TABLE II. Ground-state energy per particle E(ν) in units of
e2/ε�0 at filling factors of even denominators, ν = 1

2 and 1
4 . The

second column displays our results employed with the HWF by
FHNC//0 approximation.

ν Eν(ζ ) References

1
2 Eν(0) = −0.4567 Eν(1) = −0.425 [37]

Eν(1) = −0.469 [49]
Eν(1) = −0.479 [48]

1
4 Eν(0) = −0.3542 Eν(1) = −0.3624 [48]

system of weakly correlated particles, as a free-electron gas.
This means that the pair correlations between unlike spins
dominate at even-denominator filling factors. In Table II, we
report the ground-state energies at even-denominator fillings
for the unpolarized spin, compared with results for the fully
spin-polarized even-denominator fillings, which are referred
to in Refs. [37,48,49]. There are small discrepancies among
them. However, in the ν = 1/2 case, our result E1/2(0) =
−0.4567(e2/ε�0) falls within the error bar of E1/2(1) obtained
by others. Therefore we cannot tell which state is more
favorable between the fully polarized state and the unpolarized
one.

Finally, in Fig. 5 we plot the spin-dependent Sσσ ′
(x) for

the filling factors ν = 1/2 (black lines) and 1/4 (red lines) as
a function of the dimensionless variable q = √

2/νk�0. Solid
lines indicate S↑↑(q) for both filling factors, and dashed lines
indicate S↑↓(q). Figure 5 also shows that Sσσ (x) are almost
the same at both of the filling factors, in contrast to S↑↓(x).

IV. CONCLUSIONS

Using the Halperin wave function to represent the partially
spin-polarized states of a system of strongly correlated
fermions with the spin degree of freedom at the lowest Landau
level, we have calculated the radial distribution functions and

0 2 4 6
q

-0.5

0

0.5

1.0

1.5

S
σσ
’ (q
)

ν=1/2
ν=1/4

FIG. 5. Spin-dependent static structure functions Sσσ ′
(x) for the

filling factors ν = 1/2 (black lines) and 1/4 (red lines) as a function
of dimensionless variable q = √

2/νk�0, employed with the HWF by
FHNC//0 approximation. Solid lines indicate S↑↑(q) for both filling
factors, and dashed lines indicate S↑↓(q).
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the static structure functions through application of the Fermi
hypernetted-chain theory in order to study the spin polarization
of the fractional quantum Hall effect at a filling factor range
of 2/3 > ν > 2/7, and of even-denominator fractions. Our
result for the ground-state energy at the filling factor ν = 4/11
with the spin polarization of ζ = 1/2 is in agreement with the
estimates by Chang and Jain, proposed with a diagonalization
method of the composite fermion basis wave function of
a rather large system with respect to residual interactions
between composite fermions in spherical geometry through
a Monte Carlo method. Our future aim would be using the
FHNC theory to study a system of fermions with spin and
Dirac-valley degrees of freedom such as graphene. Such a
system has been already well studied by others, for instance,
by Modak et al. [50] using Chern-Simons theory. Note that our
formalism deals with a system which can be described by the
Halperin wave function. The FHNC theory provides not only
ground-state energy but also detailed information about the
pair-correlation functions, which give us better understanding
on the stability of the states.
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APPENDIX: SPIN-DEPENDENT NODAL FUNCTIONS
IN THE RECIPROCAL SPACE

The class of spin-dependent nodal functions Nσσ ′
αβ (with

αβ = dd,de,ed,ee), given by Eqs. (20)–(22), can be solved
explicitly in the reciprocal space as the following forms:

N
↑↑
dd (k) = −X

↑↑
dd (k) + 1

P (k)

× {
a1X

↓↑
dd (k) − b1X

↑↑
dd (k) − δ1

[
N

↑↑
ed (k) + X

↑↑
ed (k)

]
− δ2

[
N

↓↑
ed (k) + X

↓↑
ed (k)

]}
, (A1)

N
↑↓
dd (k) = −X

↑↓
dd (k) + 1

P (k)

× {
a1X

↓↑
dd (k) − b1X

↑↓
dd (k) − δ1

[
N

↑↓
ed (k) + X

↑↓
ed (k)

]
− δ2

[
N

↓↓
ed (k) + X

↓↓
ed (k)

]}
, (A2)

N
↓↑
dd (k) = −X

↓↑
dd (k) + 1

P (k)

× {
b2X

↑↑
dd (k) − a2X

↓↑
dd (k) − β1

[
N

↑↑
ed (k) + X

↑↑
ed (k)

]
−β2

[
N

↓↑
ed (k) + X

↓↑
ed (k)

]}
, (A3)

N
↓↓
dd (k) = −X

↓↓
dd (k) + 1

P (k)

× {
b2X

↑↓
dd (k) − a2X

↓↓
dd (k) − β1

[
N

↑↓
ed (k) + X

↑↓
ed (k)

]
−β2

[
N

↓↓
ed (k) + X

↓↓
ed (k)

]}
, (A4)

with

a1 = −ρ↓

ρ

[
X

↑↓
dd (k) + X

↑↓
de (k)

]
,

a2 = 1 − ρ↑

ρ

[
X

↑↑
dd (k) + X

↑↑
de (k)

]
, (A5)

b1 = 1 − ρ↓

ρ

[
X

↓↓
dd (k) + X

↓↓
de (k)

]
,

b2 = −ρ↑

ρ

[
X

↓↑
dd (k) + X

↓↑
de (k)

]
, (A6)

β1 = ρ↑

ρ

[
a1X

↓↑
dd (k) − b2X

↑↑
dd (k)

]
,

β2 = ρ↓

ρ

[
a1X

↓↓
dd (k) − b2X

↑↓
dd (k)

]
, (A7)

δ1 = ρ↑

ρ

[
b1X

↑↑
dd (k) − a2X

↓↑
dd (k)

]
,

δ2 = ρ↓

ρ

[
b1X

↑↓
dd (k) − a2X

↓↓
dd (k)

]
, (A8)

where the denominator P (k) is defined as P (k) = a1b2 − a2b1.
The de-nodal functions in the reciprocal coordinates are given
by

N
↑↑
de (k) = −X

↑↑
de (k) + 1

P (k)

× {
a1X

↓↑
de (k) − b1X

↑↑
de (k) − δ1

[
N↑↑

ee (k) + X↑↑
ee (k)

]
− δ2

[
N↓↑

ee (k) + X↓↑
ee (k)

]}
, (A9)

N
↑↓
de (k) = −X

↑↓
de (k) + 1

P (k)

× {
a1X

↓↓
de (k) − b1X

↑↓
de (k) − δ1

[
N↑↓

ee (k) + X↑↓
ee (k)

]
− δ2

[
N↓↓

ee (k) + X↓↓
ee (k)

]}
, (A10)

N
↓↑
de (k) = −X

↓↑
de (k) + 1

P (k)

× {
b2X

↑↑
de (k) − a2X

↓↑
de (k) − β1

[
N↑↑

ee (k) + X↑↑
ee (k)

]
−β2

[
N↓↑

ee (k) + X↓↑
ee (k)

]}
, (A11)

N
↓↓
de (k) = −X

↓↓
de (k) + 1

P (k)

× {
b2X

↑↓
de (k) − a2X

↓↓
de (k) − β1

[
N↑↓

ee (k) + X↑↓
ee (k)

]
−β2

[
N↓↓

ee (k) + X↓↓
ee (k)

]}
. (A12)

Furthermore, the ee-nodal functions Nσσ ′
ee (k)(σσ ′ =

↑↑,↑↓,↓↑,↓↓) can be expressed only with non-nodal
functions Xσσ ′

αβ in the form

N↑↑
ee (k) = −X↑↑

ee (k) + 1

D(k)

[ − L4X
↑↓
ee (k) + R1X

↑↑
de (k)

+R2X
↑↓
de (k) + R3X

↑↑
ee (k)

]
, (A13)

N↑↓
ee (k) = −X↑↓

ee (k) + 1

D(k)

[ − L4X
↓↓
ee (k) + R1X

↑↓
de (k)

+R2X
↓↓
de (k) + R3X

↑↓
ee (k)

]
, (A14)
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N↓↑
ee (k) = −X↓↑

ee (k) + 1

D(k)

[ − L1X
↓↑
ee (k) + C1X

↑↑
de (k)

+C2X
↑↓
de (k) + C3X

↑↑
ee (k)

]
, (A15)

N↓↓
ee (k) = −X↓↓

ee (k) + 1

D(k)

[ − L1X
↓↓
ee (k) + C1X

↑↓
de (k)

+C2X
↓↓
de (k) + C3X

↑↓
ee (k)

]
, (A16)

where D(k) is given as follows:

D(k) = ρ↑

ρ
L2

[
X

↓↑
de (k) + X↓↑

ee (k)
] + ρ↑

ρ
L4X

↓↑
de (k)

− ρ↓

ρ
L3

[
X

↓↓
de (k) + X↓↓

ee (k)
] − L1

[
1 − ρ↓

ρ
X

↓↓
de (k)

]
,

(A17)

and

L1 = P (k)

[
1 − ρ↑

ρ
X

↑↑
ed (k)

]
+ ρ↑

ρ
δ1

[
X

↑↑
ed (k)−X↑↑

ee (k)
]

+ ρ↓

ρ
β1[X↑↓

ed (k)−X↑↓
ee (k)], (A18)

L2 = δ2

[
1 − ρ↑

ρ
X

↑↑
ed (k)

]

− ρ↑ρ↓2

ρ3

[
X

↑↓
dd (k)X↓↑

dd (k) + X
↑↑
dd (k)X↓↓

dd (k)
]

× [
X

↑↓
ed (k) + X↑↓

ee (k)
] − ρ↑

ρ
δ1X

↑↓
ed (k), (A19)

L3 = β2

[
1 − ρ↑

ρ
X

↑↑
ed (k)

]

− ρ↓ρ↑2

ρ3

[
X

↑↓
dd (k)X↓↑

dd (k) − X
↑↑
dd (k)X↓↓

dd (k)
]

× [
X

↑↑
ed (k) + X↑↑

ee (k)
] + ρ↓

ρ
β1X

↑↓
ed (k), (A20)

L4 = −ρ↑

ρ
δ2

[
X

↑↑
ed (k) + X↑↑

ee (k)
] − ρ↓

ρ
β2

[
X

↑↓
ed (k) + X↑↓

ee (k)
]

+ ρ↓

ρ
P (k)X↑↓

ed (k). (A21)

Notations Rj and Cj (j = 1,2,3), respectively, are given by

R1 =
{

ρ↑

ρ
b1

[
X

↑↑
ed (k) + X↑↑

ee (k)
] − ρ↓

ρ
b2

[
X

↑↓
ed (k) + X↑↓

ee (k)
]}[

1 − ρ↓

ρ
X

↓↓
ed (k)

]

+ ρ↑ρ↓

ρ2

{
b1X

↑↓
ed (k) + ρ↓

ρ
X

↓↓
dd (k)

[
X

↑↓
ed (k) + X↑↓

ee (k)
]}[

X
↓↑
ed (k) + X↑↓

ee (k)
]

− ρ↑ρ↓

ρ2

{
b2X

↑↓
ed (k) + ρ↓

ρ
X

↓↓
dd (k)

[
X

↑↑
ed (k) + X↑↑

ee (k)
]}[

X
↓↓
ed (k) + X↓↓

ee (k)
]
, (A22)

R2 =
{

ρ↓

ρ
a2

[
X

↑↓
ed (k) + X↑↓

ee (k)
] − ρ↑

ρ
a1

[
X

↑↑
ed (k) + X↑↑

ee (k)
]}[

1 − ρ↓

ρ
X

↓↓
ed (k)

]

− ρ↑ρ↓

ρ2

{
a1X

↑↓
ed (k) + ρ↓

ρ
X

↑↓
dd (k)

[
X

↑↓
ed (k) + X↑↓

ee (k)
]}[

X
↓↑
ed (k) + X↑↓

ee (k)
]

+ ρ↓2

ρ2

{
a2X

↑↓
ed (k) + ρ↑

ρ
X

↑↓
dd (k)

[
X

↑↑
ed (k) + X↑↑

ee (k)
]}[

X
↓↓
ed (k) + X↓↓

ee (k)
]
, (A23)

R3 = −P (k)

[
1 − ρ↓

ρ
X

↓↓
ed (k)

]
− ρ↑

ρ
δ2

[
X

↑↓
ed (k) + X↑↓

ee (k)
] − ρ↓

ρ
β2

[
X

↓↓
ed (k) + X↓↓

ee (k)
]
, (A24)

C1 = ρ↑

ρ

{
b1

[
1 − ρ↑

ρ
X

↑↑
ed (k)

]
− ρ↑ρ↓

ρ2
X

↓↑
dd (k)

[
X

↑↓
ed (k) + X↑↓

ee (k)
]}[

X
↓↑
ed (k) + X↑↓

ee (k)
]

+ ρ↓

ρ

{
ρ↑

ρ
X

↓↑
dd (k)

[
X

↑↑
ed (k) + X↑↑

ee (k)
] − b2

[
1 − ρ↑

ρ
X

↑↑
ed (k)

]}[
X

↓↓
ed (k) + X↓↓

ee (k)
]

+ ρ↑

ρ

{
ρ↑

ρ
b1

[
X

↑↑
ed (k) + X↑↑

ee (k)
] − ρ↓

ρ
b2

[
X

↑↓
ed (k) + X↑↓

ee (k)
]}

X
↓↑
dd (k), (A25)

C2 = ρ↑

ρ

{
ρ↑ρ↓

ρ2
X

↑↑
dd (k)

[
X

↑↓
ed (k) + X↑↓

ee (k)
] − a1

[
1 − ρ↑

ρ
X

↑↑
ed (k)

]}[
X

↓↑
ed (k) + X↑↓

ee (k)
]

+ ρ↓

ρ

{
a2

[
1 − ρ↑

ρ
X

↑↑
ed (k)

]
− ρ↑2

ρ2
X

↑↑
dd (k)

[
X

↑↑
ed (k) + X↑↑

ee (k)
]}[

X
↓↓
ed (k) + X↓↓

ee (k)
]

+ ρ↑

ρ

{
ρ↓

ρ
a1

[
X

↑↓
ed (k) + X↑↓

ee (k)
] − ρ↑

ρ
a1

[
X

↑↑
ed (k) + X↑↑

ee (k)
]}

X
↓↑
ed (k), (A26)
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C3 = ρ↑

ρ
δ1

[
X

↓↓
ed (k) + X↓↓

ee (k)
] + ρ↓

ρ
β1

[
X

↓↓
ed (k) + X↓↓

ee (k)
] − ρ↑

ρ
P (k)X↓↑

ed (k). (A27)
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