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We investigate the nature of the electronic states in a variety of nonsymmorphic collinear antiferromagnets
with glide reflection symmetry, a combination of mirror and half-lattice translation. In particular, the study refers
to a class of systems with two-band itinerant electrons that are spin-orbit coupled and interacting with a magnetic
background having a zigzag pattern. We describe the symmetry properties of the model system by focusing on
the role of nonsymmorphic transformations arising from the antiferromagnetic structure of the spin ordering.
Gapless phases with Dirac points having different types of symmetry-protection as well as electronic structures
with triple and quadruple band-crossing points are obtained. A glide semimetal is shown to be converted into a
gapless phase with Dirac points protected by inversion and time-inversion symmetry combination. Interestingly,
we find a relation between the states in the glide sectors that provides a general mechanism to get multiple band
touching points. The split of the multiple Fermi points drives the transition from a point node to a line node
semimetal or to a metal with nontrivial winding around the Fermi pockets and an electronic structure that is tied to
the presence of glide symmetric Dirac points. Besides a new perspective of ordered states in complex materials, our
findings indicate relevant paths to topological gapless phases and edge states in a wide class of magnetic systems.
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I. INTRODUCTION

Topological materials have become the focus of intense
research in the last years [1–4] not only for the perspective
of new physical phenomena with potential technological
applications, but also for being a test bed for fundamental
concepts of physics theories. Along this line, recent efforts
led to the theoretical prediction [5–8] and experimental
realization [9–11] of topological insulators in materials with
strong spin-orbit coupling (SOC). One of the hallmarks of TIs
is the existence of protected gapless edge states, which are
due to a nontrivial topology of the bulk band structure. Such
manifestation of topological order, however, is not limited
to insulators as electronic structures with gapless topological
modes have been predicted [12–20] and their relevance further
boosted by the discovery of novel materials [21–23,30–32]
with nontrivial band crossing points in the momentum space
and robust edge states.

Among various kinds of topological matter, correlated
materials [24,25] with strong spin-orbital-charge entangle-
ment [26–29], e.g., transition-metal oxides, represent a
unique platform to explore topological effects combined to
a large variety of intriguing collective properties emerg-
ing from electron-electron interaction, as superconductivity,
magnetism, magnetoelectricity and Mott insulating phases.
In these systems, complex magnetic orders generally arise
from competing ferromagnetic (FM) and antiferromagnetic
(AF) correlations with a frustrated localized-itinerant nature
and a strong dependence on the orbital character of the
transition metal d shells. Magnetic patterns constructed by
antiferromagnetically coupled zigzag FM chains [Figs. 1(a)
and 1(b)] are one generic manifestation of such competing
effects and often occur in the class of correlated materials
as demonstrated in manganites [37–39], ruthenates [40–43],
dichalcogenides [44–46], iridates [47,48], nickelates [49–52],
etc. A relevant mark of zigzag patterns is the symmetry under
nonsymmorphic (NS) transformations that combine point
group operations with translation that are a fraction of a Bravais

lattice vector [36]. Recently, NS groups have been recognized
as a new source of topological symmetry protection both in
gapped [53–66] and gapless [67–81] systems. Hence, given
the wide range of physical phenomena in both topological and
correlated materials, the identification of novel topological
phases in the presence of nontrivial orderings and their
material realizations represent a fundamental challenge in the
condensed matter area.

In this paper, we investigate the nature of the electronic
states occurring in a variety of nonsymmorphic collinear
antiferromagnets with glide reflection symmetry. In particular,
the study refers to a class of systems with two-orbital
itinerant electrons that are coupled to an antiferromagnetic
background having a zigzag pattern (Fig. 1). We describe the
symmetry properties of the model Hamiltonian by focusing
on the role of nonsymmorphic transformations that arise
from the antiferromagnetic structure of the spin ordering.
The electronic phase diagram reflects the rich symmetry
structure of the model system. It exhibits different types of
insulating configurations that are separated or surrounded in
the parameters space by a variety of gapless states with distinct
symmetry protection and topological features. Indeed, we find
semimetal (SM) phases with Dirac points (DPs) exhibiting
different type of symmetry protection as well as three-
and fourfold degeneracy. Besides the nonsymmorphic glide
symmetry protection, we demonstrate that combination of
inversion and time or particle-hole symmetry can also protect
the DPs, thus building up robust gapless phases. Remarkably,
we find a relation between the states in the two glide sectors that
explains the origin of the multiple band touching points in the
glide plane and provides a general mechanism for sticking the
DPs. We show that the splitting of multiple degenerate Fermi
points (FPs) leads to anomalous gapless phases. Indeed, due to
the symmetry protection of the DPs in the glide plane and the
presence of a chiral nonsymmorphic symmetry, a transition
from a point node semimetal to a gapless phase with a line
of semi-Dirac points can be obtained. Otherwise, close to the
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FIG. 1. Zigzag spin patterns with (a) length Lz = 2 (z2), (b)
Lz = 3 (z3), and (c) schematic view of the orbital dependent
hopping processes in undistorted system—orbital flavors a/b can
be associated to effective layers of a single-band bilayer system.
In this framework, the spin-orbit coupling λ acts as an interlayer
antisymmetric hopping. Orange and blue squares indicate spin-up
and spin-down orientation. The unit cell is marked by a thick blue
frame while â1,2 are the translation directions. Dashed lines indicate
the mirror planes m1 and m2, with m2 being related to the gliding
symmetry. The effect of the glide transformation is sketched by the red
dots and the black arrows; the dot is subjected to the reflection m2 then
it is translated by a vector �t parallel to the mirror plane m2. For the z2
configuration, these two steps separately do not reproduce the original
lattice. For the z3 phase, the connected red and green dots indicate the
additional second and third neighbor hopping processes that preserve
all the symmetries of the Hamiltonian. The black dots are the inversion
centers.

triple band-touching point the electronic structure is marked
by multiple Fermi pockets with nontrivial winding number.

The paper is organized as follows. In Sec. II, we present
the model Hamiltonian employed to describe the zigzag
antiferromagnets. The symmetry properties of the model
system are provided in Sec III. Section IV is devoted to the
phase diagram and the analysis of the most relevant gapless
configurations emerging among the obtained electronic struc-
tures. In Sec. V, we provide the summary and the concluding
remarks. Other details related with the symmetries of the
Hamiltonian and the zigzag antiferromagnetic phases are given
in the Appendices A–D.

II. MODEL

We consider an effective orbital-directional double-
exchange model describing itinerant electrons (e.g., t2g or
p bands) in the presence of an anisotropic SOC, as due to
tetragonal crystal field splitting, and Hund coupled to localized

spin moments forming zigzag pattern with characteristic
length Lz � 2. The model Hamiltonian is given by

H =
∑
i,σ

∑
α,β=a,b

γ̂=â,b̂

−tγ,αβ (d†
i,ασ di+γ̂ ,βσ + H.c.)

− JH

∑
i,α=a,b

sz
iα · Sz

i + λ
∑

i

Sz
i l

z
i , (1)

where d
†
i,ασ is the electron creation operator at the site i

with spin σ for the orbital α, (a,b,c) are the (yz,xz,xy)
orbitals, which are perpendicular to the corresponding bond
direction, with â, b̂, and ĉ being the unit vectors along
the lattice symmetry directions. α, siα = d

†
i,μ,ασ z

α,βdi,μ,β and
Sz

i = ±1 denote the spins for the dxz/yz and dxy orbitals,
respectively. JH stands for the Hund coupling, while λ is
the SOC for the projected subspace of (a,b) orbitals, with
lzi = i(d†

i,a,σ di,b,σ − d
†
i,b,σ di,a,σ ) the z component of the local

angular momentum. tγ̂ ,αβ is the nearest-neighbor hopping
amplitude between α and β for the bond along the γ̂ direction.
We assume tetragonal symmetric hopping amplitudes, i.e.,
tâ,bb = tb̂,aa = t with t as energy scale unit and tγ̂ ,ab = 0—see
Fig. 1(c) for the schematic view of the hopping processes. The
AF states are collinear and the spin z projection is a conserved
quantity due to the anisotropic SOC.

While the Hamiltonian resembles the double-exchange
model widely applied in the context of manganese oxides, it
contains extra microscopic ingredients as orbital directionality
and spin-orbit coupling that contribute to give unique features
in the phase diagram and the electronic spectra. For instance,
zigzag states have been demonstrated to be among the
energetically most favorable configurations in a large range
of doping concentration for the case of dxz/yz bands [33] and
orbital directionality is a key ingredient for understanding the
occurrence of zigzag spin patterns with length Lz = 2 (i.e.,
z2) in Mn-doped bilayer ruthenates Sr3Ru2O7 and in other
similar hybrid oxides. Furthermore, the model Hamiltonian has
a more general range of application as it can be considered as
an effective low-energy description of correlated t2g electrons
in transition metal oxides with orbital selective localized and
itinerant bands such as to yield a double exchange model.
Indeed, as a consequence of the atomic Coulomb interaction
in multiorbital systems, an orbital selective Mott transition
can occur and lead to electronic localization in a subgroup of
the t2g bands. Such reduction from a multiorbital correlated
system to an effective double exchange has been generally
addressed and demonstrated to be applicable in the context of
orbital-selective Mott physics [34,35].

The general form of the Hamiltonian in Eq. (1) for a
zigzag spin pattern can be obtained by analyzing the possible
hopping processes for a given unit cell, as shown in Fig. 1. Its
matrix representation for a given momentum �k and fixed spin
polarization of the itinerant electrons, being a good quantum
number, can be conveniently written as a block matrix in the
form

H�k =

⎛⎜⎜⎜⎜⎝
Hbb

↓↓ Hbb
↓↑ Hba

↓↓ Hba
↓↑

Hbb
↑↓ Hbb

↑↑ Hba
↑↓ Hba

↑↑
Hab

↓↓ Hab
↓↑ Haa

↓↓ Haa
↓↑

Hab
↑↓ Hab

↑↑ Haa
↑↓ Haa

↑↑

⎞⎟⎟⎟⎟⎠. (2)
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Here, the blocks Hαβ

σσ ′(σ,σ ′ = ↑,↓ and α,α′ = a,b) are of size N↓ = N↑ = 2Lz − 2, associated to the spin-up and spin-down
domains within the unit cell (see Fig. 1). The indices (σα) and (σ

′
β) mean that the block describes hopping processes from the

spin σ to spin σ ′ domains and orbitals α and β, respectively. For instance, for z2 magnetic pattern, the blocks for the electrons
in the b-orbital sector are given by the equations

Hbb
σσ =

(
−σJH −e−ik2 t

−eik2 t −σJH

)
, Hbb

↓↑ = (Hbb
↑↓)† =

(
0 −t

−e−ik1 t 0

)
, (3)

while for the a-orbital sector are

Haa
σσ =

(
−σJH −t

−t −σJH

)
, Haa

↓↑ = (
Haa

↑↓
)† =

(
0 −e−ik2 t

−ei(k2−k1)t 0

)
. (4)

Concerning the interorbital sector, the only nonvanishing entries in the undistorted system are those which originate from SOC,
i.e.,

Hba
σσ = (

Hab
σσ

)† = −iσλ1, Hba
σ,−σ = (

Hab
σ,−σ

)† = 0. (5)

We note that the spin sectors for the itinerant electrons are completely equivalent. For the zigzag z3, the size of the spin domain
is N↓ = 4 and thus the blocks are twice larger. Then, for the b-orbital sector, we have

Hbb
σσ =

⎛⎜⎜⎜⎝
−σJH 0 0 −e−ik2 t

0 −σJH 0 0

0 0 −σJH −t

−eik2 t 0 −t −σJH

⎞⎟⎟⎟⎠, Hbb
↓↑ = (Hbb

↑↓)† =

⎛⎜⎜⎜⎝
0 −t 0 0

−e−ik1 t 0 −t 0

0 −e−ik1 t 0 0

0 0 0 0

⎞⎟⎟⎟⎠, (6)

and for the a-orbital sector

Haa
σσ =

⎛⎜⎜⎜⎝
−σJH −t 0 0

−t −σJH −t 0

0 −t −σJH 0

0 0 0 −σJH

⎞⎟⎟⎟⎠, Haa
↓↑ = (Haa

↑↓)† =

⎛⎜⎜⎜⎝
0 0 0 −e−ik2 t

0 0 0 0

0 0 0 −e−ik1 t

−ei(k2−k1)t 0 −t 0

⎞⎟⎟⎟⎠. (7)

The structure of the mixing orbitals sector is the same as in
Eq. (5).

When dealing with zigzag z3, we are also interested in long-
range hopping processes as they will be relevant for analyzing
the evolution of the electronic structure upon the application
of symmetry conserving perturbations. These are second- and
third-neighbor hoppings along the zigzag paths that connect
corresponding corners and internal sites within the vertical
and horizontal three-site segments [see Fig. 1 (b)]. A distinct
feature of such terms is that they preserve all the symmetries of
the Hamiltonian (1) as we will discuss thoroughly in the next
section. In presence of these hopping processes with amplitude
δ the intraorbital-intradomain blocks Hαα

σσ are modified in the
following way, Hαα

σσ → Hαα
σσ + hαα

σσ with

hαα
σσ = δσ

⎛⎜⎜⎜⎜⎝
0 0 1 + e−ik2 0

0 0 0 1 + e−ik2

1 + eik2 0 0 0

0 1 + eik2 0 0

⎞⎟⎟⎟⎟⎠.

(8)

III. SYMMETRIES

The symmetry properties of the model Hamiltonian include
transformations that act on the internal (e.g., spin, orbital,
charge) and spatial degrees of freedom, or combine them,

including the possibility of having groups with fractional
nonprimitive lattice vector translational (i.e., nonsymmorphic
groups). In this section, we will present the structure and
properties of the internal, symmorphic, and nonsymmorphic
symmetries exhibited by the model Hamiltonian in Eq. (1).
Furthermore, we will provide both the explicit expressions of
the symmetry operators and the relevant aspects of their struc-
ture. We focus on the fundamental marks and consequences
that are related to the presence of nonsymmorphic glide
transformations and in general to nonsymmorphic symmetries
arising from the antiferromagnetic spin pattern.

A. Internal symmetries

Concerning the internal symmetries, the model exhibits
time reversal invariance. Indeed, the electrons are coupled to a
magnetic background with a collinear order, thus the localized
spins can be treated as classical variables and, consequently,
there is no mixing between the spin up and down sectors for
the itinerant electrons, with their spin orientation being a good
quantum number. Then, the time-reversal operation can be
constructed by combining complex conjugation and a unitary
transformation T that satisfies the ordinary relation

T †H�kT = HT

−�k. (9)

The transposition on the right-hand side is equivalent to
complex conjugation, so that the whole transformation is
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antiunitary. Within a given block of H�k for the z2 and z3
zigzag patterns, the complex conjugation acts by changing all
the �k to −�k and makes λ to become −λ. We can employ the
correspondence of the two orbital flavors with two independent
effective layers of the square lattice [Fig. 1(c)] to directly
deduce that, in the absence of interorbital hopping, i.e, when
no distortions are present, the change of sign in λ can be
absorbed by a gauge transformation of the form

d
(†)
i,a,σ = −d̃

(†)
i,a,σ ,

d
(†)
i,b,σ = d̃

(†)
i,b,σ , (10)

where d̃ (†) are the transformed fermion operators. Since for the
orbital directional model all the hopping processes are orbital-
conserving, i.e., there is no effective interorbital mixing, the
only effect of this gauge transformation is to change the sign
of λ. Hence, the form of the operator T can be expressed as

T =

⎛⎜⎜⎜⎜⎝
1b

↓ 0 0 0

0 1b
↑ 0 0

0 0 −1a
↓ 0

0 0 0 −1a
↑

⎞⎟⎟⎟⎟⎠, (11)

where 1 denotes a unit matrix of the size N↓ and the indices
indicate the spin/orbital sectors, respectively. Furthermore, the
matrix is purely real and thus we have that T 2 = 1.

B. Spatial symmetries

For the clarity of the presentation and for the discussion
of the resulting electronic spectra, concerning the spatial
symmetries it is useful to distinguish between the operations
that are symmorphic (i.e., related to the point group) from those
that are nonsymmorphic because they involve a translation of
half of the primitive lattice vector. Indeed, as already pointed
out in the introduction, the system upon examination deals with
itinerant electrons in a square lattice coupled to an underlying
magnetic background of localized spins with a zigzag pattern.
Specific of the zigzag magnetic patterns is the invariance
under a nonsymmorphic (NS) glide transformation Rt which
is constructed by the product of a mirror transformation
with respect to the m2 line and a translation �t ≡ �a2/2 in
the â2 direction along the zigzag chain as demonstrated in
the Figs. 1(a) and 1(b). Such relation is consistent with the
expectation in two dimensions of other relevant symmetry
operations than those of the crystal point group, belonging
to the nonsymmorphic groups which may include screw axis,
glide mirror lines, and glide mirror planes in conjunction with
the translation [36].

1. Mirror reflection

Concerning the symmorphic symmetries, we observe that
the system is invariant under a mirror transformation with
respect to the reflection line m1. The reflection line for a
zigzag pattern with size Lz = 2 and 3 is explicitly shown in
Figs. 1(a) and 1(b) and can be easily generalized for any Lz.
Its direction is diagonal with respect to the symmetry axes,
thus it acts by interchanging the hoppings along the a and b

directions. Such transformation, then, requires an exchange of

the orbitals a and b to preserve the connectivity of the system
before performing the reflection. Furthermore, since the sign
of λ is also modified by the orbital exchange, one can employ
again a gauge transformation, as given by Eq. (10), to build
up the symmetry conserving transformation. An alternative
way to visualize the action of the mirror is to employ the
correspondence of the two-dimensional (2D) system with
two orbital flavors with an effective single-band bilayer, as
schematically depicted in Fig. 1(c). In this framework, the
reflection can be understood as a π -rotation with respect to
the axis parallel to the reflection line m1. Such operation
naturally interchanges the layers and thus the orbital flavors.
Since the selected elementary cell of the zigzag system shown
in Figs. 1(a) and 1(b) is not invariant upon the application of
the mirror transformation, the reflection operator depends on
the momentum k2 and has the form

Rk2 =

⎛⎜⎜⎜⎝
0 0 Rk2 0

0 0 0 Rk2

−Rk2 0 0 0

0 −Rk2 0 0

⎞⎟⎟⎟⎠, (12)

with blocks of size N↓ × N↓ given by

Rk2 =

⎛⎜⎜⎜⎜⎜⎜⎝

i 0 0 · · · 0 0

0 0 0 · · · 0 ieik2

0 0 0 · · · ieik2 0

0 0 ieik2 · · · 0 0

0 ieik2 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎠. (13)

The Rk2 is a unitary operator satisfying the following relation
with the Hamiltonian

R†
k2
Hk1,k2Rk2 = Hk1,−k2 . (14)

Despite the dependence on k2 the eigenvectors of Rk2 can be
constructed as not depending on k2 and its diagonal form is
given by the equation,

U†Rk2U =

⎛⎜⎜⎜⎝
12 0 0 0

0 eik2 12N↓−2 0 0

0 0 −12 0

0 0 0 −eik2 12N↓−2

⎞⎟⎟⎟⎠, (15)

where U is the eigenbasis and the blocks are unity matrices
of size 2 or 2N↓ − 2. We note that for any zigzag segment
length there are two eigenvalues of amplitude 2, and other two
with value −2 while the remaining part of the spectrum is
given by ±eik2 . The spectrum is chiral in the sense that for any
eigenvalue there is a partner with opposite sign. Furthermore,
in the reflection planes at k2 = 0,π the reflection operator
becomes a symmetry for the Hamiltonian, i.e.,[

Hk1,0(π),R0(π)
] = 0 (16)

and there is no k dependence in the spectrum of Rk2 , being
equal to +1 at k2 = 0 and −1 at k2 = π . Consistently with its
symmorphic character, the reflection operator R can be made
completely k-independent by choosing a unit cell that maps
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FIG. 2. Schematic view of the unit cell for zigzag of exemplary
length of Lz = 4 and labeling of the intracell sites for one orbital
flavor. Orange and blue circles indicate the sites with spin up and
down, respectively. The number of sites in the magnetic domain is
N↓ = 2Lz − 2 = 6. Solid lines connect sites belonging to one unit
cell whereas the dashed lines connect sites of neighboring unit cells.
The primitive lattice translation vectors �a1,2 are shown explicitly.

onto itself under the reflection or, equivalently, by a suitable
gauge transformation (see Appendix B for details).

2. Nonsymmorphic chirality

An important aspect related to the intrinsic antiferromag-
netic structure of the zigzag pattern is that the Hamiltonian
in Eq. (1) has a sublattice or chiral symmetry that exhibits
a nonsymmorphic structure. Indeed, one can find a unitary
operator Sk1 that anticommutes with Hamiltonian and is
explicitly momentum dependent as

S†
k1
H�kSk1 = −H�k . (17)

For the problem upon examination, such symmetry occurs
only at half-filling and arises from the two sublattice structure
of the two magnetic domains within a unit cell as indicated
by different colors in Fig. 2. By inspection of the Fig. 2, one
can observe that in order to move from one to another domain,
a translation �a1/2 is needed. For this reason, the operator Sk1

depends on the momentum k1 and has nonzero blocks that
connect opposite spin domains within the same orbital sectors,
i.e.,

Sk1 =

⎛⎜⎜⎜⎜⎝
0 Sk1 0 0

S†
k1

0 0 0

0 0 0 Sk1

0 0 S†
k1

0

⎞⎟⎟⎟⎟⎠, (18)

with

Sk1 = e−i
k1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 · · · 0

0 1 0 · · · 0

0 0 −1 · · · 0

...
...

...
. . . 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (19)

Apart from the change of the spin-domain there is a phase
factor of e−i

k1
2 appearing with alternating sign (−1)i as one

moves along the zigzag segment (i.e., from site i = 1 to i =
8 in Fig. 2). The alternation is related to the change of the
sign for the allowed hoppings along the bonds of the square
lattice. Here, the chiral symmetry arises because the zigzag
sublattice structure of the magnetic domains is compatible
with the natural two-sublattice structure of the square lattice.

In order to better specify the character of the nonsymmor-
phic transformation and to make more direct the connection
with the available tables of topological classifications of
fully gapped states with nonsymmorphic symmetry [56], it
is useful to introduce the notion of flipped coordinates d‖
as done in Ref. [56]. Indeed, d‖ indicates the number of
components of �k that change sign under the action of a
given nonsymmorphic transformation. In this context, Sk1 is
an order-two nonsymmorphic operator with d‖ = 0. Taking
into account the classification of fully gapped electronic
states of Ref. [56], such type of symmetry is expected
to lead to topologically nontrivial insulating states only in
one-dimension for a symmetry class with T 2 = 1. Hence, we
observe that for our 2D system the fully gapped phases are
expected to be topologically trivial.

3. Nonsymmorphic glide mirror reflection

A relevant spatial symmetry of the class of investigated
magnetic configurations is that arising from the nonsymmor-
phic glide transformation. The glide operation is obtained
by the product of a reflection with respect to the line m2,
perpendicular to that one involved in Rk2 , and a translation �t
along a direction parallel to the reflection line. One can show
that for any zigzag segment length, the translation vector is
always given by �t = 1

2 �a2. The action of the glide operation is
explicitly shown in Figs. 1(a) and 1(b). We observe that for
any zigzag with even Lz both the reflection and translation
of the nonprimitive lattice vector do not generally map the
original square lattice into itself, but only their product does it.
Similarly to the mirror reflection R, the glide symmetry can
be represented through a unitary matrix that is mixing the a

and b orbitals with the following block structure:

Rt
�k =

⎛⎜⎜⎜⎜⎝
0 0 −Rt

�k 0

0 0 0 −eikRt
�k

Rt
�k 0 0 0

0 eikRt
�k 0 0

⎞⎟⎟⎟⎟⎠, (20)
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and in turn the given blocks are expressed by matrices of size
Lz − 1 ≡ N↓/2 as

Rt
�k =

(
0 ie−i

k2
2 1Lz−1

iei
k2
2 1Lz−1 0

)
. (21)

It is useful to employ the correspondence with the bilayer
representation to explicitly visualize the effect of the transfor-
mation on the spatial and orbital degrees of freedom. Indeed,
the glide operation acts as a π rotation with a shift parallel
to its axis along the mirror line m2. Rt

�k carries the intrinsic
dependence on both momenta as a direct consequence of its
nonsymmorphic nature. On a general ground, one cannot find
a unit cell that maps onto itself under such an operation. The
relation with the Hamiltonian is the same as that one for a
normal mirror mapping k1 into −k1, i.e.,

Rt†
�k Hk1,k2Rt

�k = H−k1,k2 . (22)

Concerning the spectral aspects of the glide operator, Rt
�k

has eigenvectors that depend only on k2 and eigenvalues that
depend only on k1, thus its diagonal form can be expressed by
the equation

V†
k2
Rt

�kVk2 =

⎛⎜⎜⎜⎝
1N↓ 0 0 0

0 eik1 1N↓ 0 0

0 0 −1N↓ 0

0 0 0 −eik1 1N↓

⎞⎟⎟⎟⎠, (23)

whereVk2 is the eigenbasis and the blocks are the unity matrices
of the size N↓. In the glide planes at k1 = 0,π the glide operator
becomes a symmetry of the Hamiltonian, i.e.,[

H0(π),k2 ,Rt
0(π),k2

] = 0, (24)

and the k-dependent eigenvalues change the sign when going
from one glide plane to the other. On the other hand in
Appendix B, we show that the glide operator Rt

�k depends

intrinsically only on k2 (due to the shift �t) and the dependence
on k1 can be removed by a proper modification of the unit cell
or, equivalently, by a suitable gauge transformation. After this
operation the glide eigenvalues become g = ±1.

At this stage, it is important to mention that the two main
nonsymmorphic symmetries, i.e., glide and chirality, satisfy a
nontrivial commutation relation that depends on the character
of the zigzag patterns. Indeed, Rt

�k anticommutes or commutes
with Sk1 for even or odd Lz, respectively. See Appendix A for
the complete list of commutation relations among the various
symmetries.

Finally, we note that Rt
�k is an order-two nonsymmorphic,

unitary symmetry with number of flipped coordinates d‖ = 1.
Hence, according to the classification in Ref. [56], it cannot
lead to topologically nontrivial insulating state in 2D for time
conserving quantum systems with T 2 = 1.

C. Combined symmetries

In order to complete the structure of the symmetry proper-
ties of the system we need to observe that other nonsymmor-
phic transformations can be obtained by combining the glide
and/or chiral operator with time or particle-hole.

1. Particle-hole symmetry

Starting from the previously introduced chiral and time-
reversal operators, one can construct a nonsymmorphic
particle-hole transformation (PHS) associated to an operator
C that is expressed as Ck1 ≡ Sk1 · T . It satisfies a standard
relation with the Hamiltonian, i.e.,

C†
k1
H�kCk1 = −HT

−�k, (25)

and from the properties of S and T one can also deduce
that C2 = 1, meaning that its twofold application on the
Hamiltonian gives the identity, i.e., Ck1C	

−k1
≡ 1 (where star

is complex conjugation). Furthermore, considering its action,
we can also notice that Ck1 is a nonsymmorphic, antiunitary
chiral symmetry with number of flipped coordinates d‖ = 2.

2. Inversion

Having two mirror transformations, as given by Eqs. (14)
and (22), one can construct an inversion operator I�k satisfying
the relation

I†
�kHk1,k2I�k = H−k1,−k2 . (26)

From the Eqs. (14) and (22), we deduce that the inversion
operator has the form

I�k ≡ −e−i
k2
2 Rk2Rt

k1,−k2
, (27)

with the phase factor being introduced only for convenience
of representation. We note that the operators in the product
are taken at opposite k2 because by inserting I�k into Eq. (26)
one has to consider that the first action is on the Hamiltonian
with Rk2 which yields Hk1,−k2 . Then, in order to connect
Hk1,−k2 with H−k1,−k2 one has to apply the glide operator at
the point (k1,−k2). Unlike the reflection and glide operators,
the inversion does not mix the orbital sectors and its block
structure is

I�k =

⎛⎜⎜⎜⎝
Ik2 0 0 0

0 eikIk2 0 0

0 0 Ik2 0

0 0 0 eikIk2

⎞⎟⎟⎟⎠, (28)

with Ik2 defined by the diagonal sub-blocks of size Lz and
Lz − 2:

Ik2 =
(

PLz
0

0 eik2 PLz−2

)
. (29)

These blocks correspond to the vertical and horizontal sections
of the spin down/up segment in the unit cell, respectively,
namely, the sites i = 1, 2, 3, 4 and i = 5 and 6 for the Lz = 4
unit cell shown in Fig. 2. Finally, Pn acts as a simple reflection
operator for the straight sections of a zigzag pattern and it is
expressed by the following n × n antidiagonal matrix:

Pn =

⎛⎜⎜⎜⎝
0 0 · · · 0 1

0 0 · · · 1 0

0 1 · · · 0 0

1 0 · · · 0 0

⎞⎟⎟⎟⎠. (30)
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We notice that the multiplication of a glide with a reflection
leads to an ordinary inversion, not a “gliding inversion”
or inversion with a shift. Indeed, zigzags with Lz = 2 and
Lz = 3 have inversion centers and they are explicitly shown
in Figs. 1(a) and 1(b). The k dependence in Ik1,k2 arises from
the fact that the unit cell does not map onto itself under the
inversion and one can check by construction that this aspect
holds for any zigzag length Lz. The case of even and odd Lz

are qualitatively different because for even Lz the inversion
center does not coincide with any lattice site whereas for odd
Lz it correspond with a central site in any vertical or horizontal
section of the zigzag pattern. For this reason, the spectrum of
Ik1,k2 for zigzags with even segment length Lz is significantly
different from that of odd Lz. For the case of even Lz we have
a chiral spectrum of the form,

{{1}Lz ,{−1}Lz ,{eik1}Lz ,{−eik1}Lz ,{eik2}Lz,

{−eik2}Lz,{ei(k1+k2)}Lz−2,{−ei(k1+k2)}Lz−2},
where the notation {1}Lz means that, e.g., the eigenvalue 1 is
Lz-fold. For odd Lz the spectrum has an inequivalent number
of positive and negative values, i.e.,

{{1}Lz+1,{−1}Lz−1,{eik1}Lz+1,{−eik1}Lz−1,{eik2}Lz−1,

{−eik2}Lz−3,{ei(k1+k2)}Lz−1,{−ei(k1+k2)}Lz−3}.
Furthermore, for odd Lz, one can always accommodate

the electrons in the inversion centers that coincide with
physical sites of the system. Since there are four inversion
centers in each unit cell and two orbitals per site, one can
obtain eight eigenstates of I�k with positive eigenvalues, i.e.,
{1,eik1 ,eik2 ,ei(k1+k2)}, all of them being double degenerate. This
observation explains why there are more positive than negative
eigenvalues for the case of odd Lz. We note that despite the k

dependence in the eigenvalues, the eigenvectors of I�k turn out
to be k-independent for any Lz. Finally, we observe that I�k
is a nonsymmorphic, unitary symmetry with d‖ = 2 and does
not lead to topologically nontrivial 2D insulating states in the
presence of time reversal invariance having T 2 = 1 [56].

3. Conjugation

The combination of time reversal and inversion can be
employed to build up a transformation K�k that is expressed
as

K�k ≡ I�kT , (31)

and whose action on the Hamiltonian is to make it transposed
or complex conjugated

K†
�kH�kK�k = HT

�k . (32)

Thus we can generally indicate K�k as a conjugation operator.
Due to its structure and on the property of I and T , we find
that the square of K�k gives the identity

K�kK	
�k ≡ 1 . (33)

The above property has important implication on the Hamil-
tonian structure as it allows to find a basis for which H�k is
purely real.

Let us demonstrate such statement. Since K�k is unitary,
we can have that K�k = exp(iK�k), with K�k being Hermitian

matrix. Hence, if K�kK	
�k ≡ 1, then K�k must be also symmetric

and real. On this basis, K�k can be diagonalized by a real unitary
transformation and accordingly for K�k . The eigenvalues of K�k
are ±1, hence it can be put in a diagonal form DK by a suitable
unitary and real transformation U�k:

DK ≡ U†
�kK�kU�k =

(
1 0

0 −1 .

)
. (34)

Furthermore, we can introduce another unitary transformation
V�k as

V�k ≡ U�k
√
DK, (35)

in such a way that the Hamiltonian H can be transformed into
H′

�k

H′
�k = V†

�kH�kV�k. (36)

It is then important to observe that the transformed Hamilto-
nian is purely real. To achieve this result one needs to construct
K′

viaV , recalling thatK transforms as an antiunitary operator.
Indeed, one obtains

K′
�k = VT

�k K�kV�k, (37)

and from the definition of V�k and from the fact that U�k , we get

K′
�k = 1. (38)

On the other hand, K′ satisfies a relation with H′
�k , which is

given by

(K′
�k)†H′

�kK
′
�k = (H′

�k)T . (39)

Hence, we can finally conclude thatH′
�k ≡ (H′

�k)T thus implying
that H′

�k is purely real. The occurrence of such a symmetry
property represents a constraint for the low-energy structure
of the Hamiltonian at any given k point and, as we will discuss
in Sec. IV, it can significantly affect the character of the
semimetal phases.

As a nonsymmorphic transformation, K�k is antiunitary and
it does not lead to any sign change of the coordinates, thus
d‖ = 0. In this respect, it is not expected to yield topologically
nontrivial 2D insulating states in the presence of time reversal
invariance with T 2 = 1 [56].

4. Anticonjugation

Combining the conjugation and the chirality operators we
can obtain an anticonjugation operator A�k that is given by

A ∝ Sk1K�k. (40)

Its action on the Hamiltonian can be deduced by the relations
of the constituent operators, namely

A�k
†H�kA�k = −(H�k)T . (41)

By construction, for zigzag Lz = 2, the operator A turns out
to be imaginary whereas for Lz = 3 (and any other odd Lz)
the anticonjugation operator is purely real. In general, we find
that

A�kA	
�k ≡ (−1)Lz+1 . (42)
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Thus, following the same approach described in the previous
section, one can demonstrate the existence of a transformation
for which the Hamiltonian satisfies the relationH′

�k ≡ −(H′
�k)T .

This means that, for instance, in the case of Lz = 3, we can
find a basis where the Hamiltonian is purely imaginary while
this is not possible for Lz = 2. Such difference follows from
the commutation rule between inversion (or glide) operator
and chirality.

Similarly to K�k , A�k is an antiunitary nonsymmorphic
symmetry with d‖ = 0. However, due to the anticommutation
relation with H�k it represents a chiral symmetry transforma-
tion.

5. Time reversal in the one-dimensional cuts of the Brillouin zone

Due to the presence of the time-reversal operator T
together with two reflection symmetries (one of which is the
glide mirror), one can construct operators which behave like
effective time reversal transformations in the one-dimensional
(1D) cuts of the Brillouin zone (BZ) for any cut at given
k1 and k2. An interesting observation is that, though the 2D
time-reversal operator fulfills the relation T 2 = 1, the lower
dimensional time reversal transformations can have different
properties. Hence, in principle, the electronic spectra can be
in a different Altland-Zirnbauer class in the projected 1D cuts
of the BZ when compared to the whole 2D system.

We start by considering the combination of time and
reflection that yields the symmetry operator T (1)

k2
expressed

as

T (1)
k2

≡ Rk2T . (43)

Tk2 acts in the 1D cuts of BZ, which are parallel to the k1 axis
(k1 cuts) in such a way that

T (1)†
k2

Hk1,k2T
(1)

k2
= HT

−k1,k2
. (44)

In the same way, for the glide symmetry, we can introduce the
operator T (2)

k1,k2
, which is given by

T (2)
k1,k2

≡ Rt
k1,k2

T , (45)

and acts along the cuts parallel to the k2 axis (k2 cuts) such as

T (2)†
k1,k2

Hk1,k2T
(2)

k1,k2
= HT

k1,−k2
. (46)

A close inspection of these two antiunitary symmetries shows
that for the k1 cuts in the BZ the time reversal squares to one,
i.e.,

T (1)
k2

T (1)	
k2

≡ 1, (47)

whereas for the k2 cuts we have a k-dependent result,

T (2)
k1,k2

T (2)	
k1,−k2

≡ e−ik2 . (48)

This means that at the two time-reversal points of a given k2 cut,
i.e., at k2 = 0 and k2 = π , we have (T (2))2 = 1 and (T (2))2 =
−1, respectively. Then, one can conclude that for any k2-cut
the point k2 = π is twofold Kramers degenerate. The direct
consequence on the electronic structure is that for any Lz the
system at k2 = π exhibits a line of double degenerate points
as a function of k1. In Fig. 3, we explicitly demonstrate the
presence of the Kramers degenerate points at k2 = π for both
the case of Lz = 2 and Lz = 3 zigzag configurations.

(a) (b)

FIG. 3. Positive-energy bands of the undistorted tetragonal
zigzag systems: (a) Lz = 2 and (b) 3. The negative-energy bands
can be recovered by reflection with respect to zero energy due to the
chirality Sk1 . We note that the bands appear in (2Lz − 2) pairs and
every pair has a 1D crossing line at k2 = π due to the occurrence of
an effective Kramers degeneracy at any cut along k2 direction. These
pairs are Kramers doublets at k2 = π .

6. Symmetry in the parameter space

Finally, concerning the symmetry aspects of the model
Hamiltonian, we also mention that there occur special trans-
formation that act only in the parameter space. Indeed, one can
identify reflection-like relations in the parameter space of the
Hund and spin-orbit couplings (JH ,λ) which can be expressed
by the effective SU(2) operators X and Y . The explicit form
of the parameters space reflection symmetries is reported in
the Appendix C.

D. Glide symmetry and multiple band touching points

A very distinct feature of the glide symmetry is that
it can lead to multiple band touching points. Due to the
intrinsic dependence on k2/2 in Rt

k1,k2
the diagonal blocks

H±
0(π),k2

of the Hamiltonian in the glide line, for each glide
eigenvalue g = ±1, have the following properties: (i) they are
4π periodic and (ii) related by a 2π shift because the whole
spectrum must be 2π periodic, i.e., H+

0(π),k2
= H−

0(π),k2+2π .
Despite the fact that the eigenvalues of H±

0(π),k2
are 4π

periodic it may occur that the determinant of the glide block
has a shorter period of 2π for a given value of μ, i.e.,
det(H+

0(π),k2
− μ) ≡ det(H+

0(π),k2+2π − μ). The consequence of
such invariance is that if at k2 = k0 one or more than one
band crosses the Fermi level μ then it implies that the Fermi
level will be crossed as well at k2 = k0 + 2π . We observe that
such property is not related to the degeneracy of the second
Fermi point or to the origin of a given band crossing the Fermi
level at k0. Now, if we combine the two glide blocks, we
have that the 2π -shift invariance of the determinant plus the
2π -shift relation between g = +1 and g = −1 glide blocks
make the Fermi points from opposite g sectors to fall on top of
each other. Then, the whole spectrum will exhibit a multiple
band touching both at k0 and k0 + 2π . This mechanism is
schematically depicted in Fig. 4. In the following sections,
we will show that such a situation is not rare and, indeed, it
happens in a broad parameter range for the z3 configuration,
both for zero or a finite value of μ. In Appendix D, we
show that such mechanism can also apply to other zigzag
configurations.
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FIG. 4. Schematic description of the mechanism for the genera-
tion of multiple degenerate band crossings as due to the 2π periodicity
of the determinant in each glide block g = ±1 and 2π shift relation
between the glide block Hamiltonians.

IV. RESULTS

In this section, we present the electronic phase diagram
associated to the z2 and z3 configurations, being those more
relevant for the materials perspective. We select representa-
tive electron filling cases to highlight the most interesting
electronic structures which can be achieved. The aim is
to firstly consider which type of electronic states can be
obtained and how they vary as a consequence of the interplay
between the spin-orbit and Hund coupling. Then, taking as
a guide the discussion on the symmetry properties of the
system, we determine and discuss the most relevant features
of the electronic spectra and the related edge states for given
slab geometries. The analysis hence points to investigate the
possibility of having topological nontrivial configurations with
a special focus on the interplay among the various symmetries
that can play a role in protecting the gapless states.

A. Phase diagram and topological features of
the insulating states

We start by considering the electronic phase diagram due
to the competition of the Hund and spin-orbit couplings as a
guide of the possible configurations that can be obtained in
the model system. A distinct feature that we get from the
determination of the phase diagram in Fig. 5 is that both
spin-orbit coupling and Hund interaction are able to drive a
(semi)metal-to-insulator transition. Indeed, large λ or JH can
lead to insulating configurations that can be generally ascribed
to the formation of almost disconnected orbital molecules
made of locally spin-orbit mixed dxz/yz bands or developing
within the zigzag segments due to the orbital directionality
of the itinerant bands [33]. Hence the relative ratio of the
SOC and Hund coupling can drive a series of (semi)metal-
insulator transitions where different types of gapless phases
occur in between the insulating states as demonstrated for
two representative electron densities in Figs. 5(a) and 5(b).
We observe that the gapless phases can be rather robust to
variation of the microscopic parameters. Another interesting
aspect that we extract from the investigation of the electronic
phase diagram is that the semimetal states can have Dirac
points along the mirror lines, in the glide symmetric lines,
or in a generic position of the BZ (this happens for instance
for the half-filling z2 phase, not shown here), thus indicating

(a)

Metal

Semi-
Metal

Semi-
Metal

(π,0)

(π,0) (k (J ,λ),0)

(π,k (J ,λ))

0 1 2 3 4

1

λ/
t

0

2

3

4

Insulator

Insulator

zig-zag 2

(0,0)

InsulatorSem
i-

Meta
l

Meta
l

(0,0)(0,π)

(0,
k (J

,λ))

0 1 2 3 4
JH/t

zig-zag 3(b)
Insulator

1

λ/
t

0

2

3

4

FIG. 5. Phase diagrams for (a) z2 magnetic state at 3/4 filling
and (b) z3 configuration at half filling. Topological semimetal
phases are marked with color (green area) and the position of
Dirac points in the BZ is reported in parenthesis. Red and blue
lines indicate configurations where the DPs are in high symmetry
positions. Analytical dependence of nontrivial phase boundaries is
also explicitly shown.

that both nonspatial and spatial symmetries play an important
role in determining the character of the electronic structure.
Indeed, in the case of z2, by varying the Hund coupling at a
given λ, one can first get a transition from a semimetal phase
with Dirac points lying in the glide symmetric line at k1 = π

to Dirac points in the mirror line at k2 = 0, and then, above a
critical JH , the merging of the Dirac points at a high symmetry
position leads to a gap opening in the insulating phase. We
observe that for z2 it turns out to be difficult to access the
insulating phase from semimetal state with Dirac points in
the glide plane [Fig. 5(a)]. This is different from the case of
z3 where a direct glide semimetal to insulating state can be
obtained by varying either the spin-orbit or the Hund coupling.
These aspects anticipate a qualitative difference between the
electronic states in the two considered cases that we will
analyze in more details below.

Moreover, we observe that along the diagonal of the phase
diagram a semimetal phase can be achieved with DPs always
lying in one of the glide plane, i.e., at k1 = 0. Such finding
is specific of the model Hamiltonian and is a consequence of
a symmetry in the parameter space that interchanges JH with
λ or JH with −λ in H�k , as also described in more details in
Appendix C.

Concerning the topological properties of the resulting elec-
tronic phases, we firstly deal with some general considerations
on the fully gapped insulating phases. Taking into account
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the symmetry analysis in the Sec. III, we observe that time
reversal T with T 2 = 1 is the internal symmetry of the model
Hamiltonian. Then, for time conserving configurations, the
system is in the AI class of the tenfold Altland-Zirnbauer
(AZ) classification table [82]. According to the AZ topological
classification, in two-dimensions the fully gapped states
cannot have any topological protection due to the nonspatial
symmetries and, indeed, we do not find any edge state
occurring when considering a ribbon geometry with open
boundary along any given direction. On the other hand, for
broken time reversal symmetry one can have insulators with
nontrivial Chern numbers as well as gapless phases (Fermi
lines or points) with nontrivial topological invariants, being
allowed in the A class [83].

The presence of symmetries that act nonlocally in position
space can in principle expand the possibilities of having
nontrivial topological configurations both for the insulating
and the gapless phases. The analysis of the electronic structure
indicates that there are no evidence for non trivial edge states.
Such result is consistent with the expectations for the AI class
that the insulating phase in two-dimension are always trivial
both in the presence of mirror symmetry [83] or nonsym-
morphic transformations compatible with the model system,
as indicated in the Sec. III on the symmetry properties [62].
Hence, on the basis of this result and taking into account the
phase diagram for the z2 and z3 states, the following analysis
is mainly concentrated on the character of the gapless states.

B. Gapless phases of zigzag z2 antiferromagnet

We start by considering the z2 AFM and the semimetal
phases with DPs in the glide plane. There are various distinct
aspects related to the analysis of such electronic configuration.
On one hand, the semimetal phase exhibits a rather strong
stability in the phase diagram. On the other hand, it represents
a good candidate to get a deeper insight on the role of the
nonsymmorphic glide transformation and its interplay with
the other symmetries which are present in the model system.
Indeed, interestingly, we find that not only the glide, but also
the inversion, and combination of inversion with time-reversal
emerge as relevant symmetries for protecting the semimetal
phase.

To set the stage we select a point in the phase diagram of
Fig. 5(a), which is representative of the electronic states at
large spin-orbit coupling. For such case, the energy spectra
in the whole BZ are shown in Fig. 3(a) and we can see that
two Dirac points occur in the glide line at k1 = π . Since
the glide operator Rt

k2
commutes with H�k in the glide line,

the electronic states can be labeled by the g = ±1 glide
eigenvalues. The DPs occur at the crossing of the bands with
opposite g and they are then protected by the glide symmetry
[as shown in Fig. 6(a)]. Hence, we determine the edge states
by considering a ribbon geometry with open edge parallel to
the vector â1. As demonstrated in the Fig. 6(c), we have two
degenerate and dispersive states that are strongly localized on
the left and right boundary of the ribbon, respectively. Since
for such configuration the momentum k1 is conserved, in the
figure the two DPs fall on top of each other at k1 = π .

To better understand the nature of the resulting edge states,
one can employ an alternative configuration with open edge

parallel to â2. In Fig. 6(d), we provide the spectrum of such
ribbon geometry indicating that the two edge states now
connect the two DPs located at k2 = k0 and k2 = 2π − k0

and they are not degenerate any more. We find that in general
the â2 direction is more dispersive than the â1. This is expected
because the electronic propagation, due to Hund’s coupling,
is more favorable along the zigzag path rather than across
them. Another explicit outcome is that all the states depicted in
Fig. 6(d) have a finite probability of being localized on the edge
of the ribbon whereas almost all the states in Fig. 6(c) tend to
avoid the edges, as one can infer from the spectral weight distri-
bution (see the color map in the figure). A closer inspection of
Fig. 6(d) also indicates that apart from having two edges states
between the two DPs there is one extra edge mode connecting
them through the zone boundary. To understand the presence
of this mode it is important to consider a different mechanism
of symmetry protection of the DPs besides the glide symmetry.

Indeed, from the structure of the glide operator Rt
k2

we
deduce that, for a fixed k2, it has the standard form (i.e.,
k-independent) of an inversion operator for a family of
effective one-dimensional (1D) subsystems that are gapped as
long as k2 
= k0,2π − k0. Taking into account the discussion
of Sec. III C, we know that the projected Hamiltonians within
the k2 cuts are time-reversal invariant and belonging to the AI
class. Thus, for each gapped cut, one can define an inversion
topological number Z� [85] which is due to the difference
of the number of occupied states with a given inversion
eigenvalue at the two inversion invariant points, i.e., at k1 = 0
and k1 = π . Hence, from the spectra in the g = +1 glide sector
at k1 = {0,π} shown in Fig. 6(b), one can see that Z� changes
sign at the position of the DPs, i.e., both at k0 and 2π − k0.
Such findings imply that at these points we have a topological
phase transition between trivial and nontrivial 1D cuts which
require a gap closing, that is indeed obtained at the DPs. The
mechanism described above explains the presence of a third
edge state close to the zone boundary in Fig. 6(d) because
for such values of k2 we are in the the nontrivial cuts for the
projected Hamiltonian.

Now, we demonstrate that the gap closing due to the
inversion driven topological transition in the 1D cuts with
fixed k2 can also occur in the absence of glide symmetry.
For this purpose, in Fig. 6(e), it is reported the spectrum of a
system with open edge along â1 with broken glide and mirror
symmetry but preserved inversion. In order to achieve an
electronic state with such symmetry conditions, we introduce
anisotropy by unbalancing the hopping in the â direction with
respect to that in b̂. The outcome is that the DPs do not get
gapped but they move away from the glide plane. In the absence
of glide symmetry, Z� can be defined only in the two high-
symmetry cuts of the BZ, i.e., at k2 = {0,π}, where the global
inversion I�k is equivalent to the 1D inversion symmetry within
the cut. Thus, according to Fig. 6(b) for k2 = 0, we have a
topologically nontrivial state which becomes trivial at k2 = π .
Due to the inequivalent topological character, there must be a
gap closing between these two 1D lines and this is indeed the
reason for which the DPs in Fig. 6(e) are still preserved.

Finally, the investigated z2 state can also exhibit a symmetry
protection arising from the combination of I and T . Their
product yields a conjugation operator K as described in
Sec. III C. Due to the presence of the K symmetry, H
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FIG. 6. Electronic spectra for z2 AF at 3/4 filling. (a) Band structure in the glide plane at k1 = π , with glide eigenvalues g = +1 (red) and
g = −1 (black), and (b) g = +1 glide symmetric bands at k1 = 0 (red) and k1 = π (black) as functions of k2. Dashed line sets the Fermi level.
(c)–(f) one-dimensional spectra and edge states for a slab geometry with open boundary. Spectra for a slab configuration with open boundary in
the (c) â1 and (d) â2 directions, with k1 and k2 being the momentum parallel to the edge, respectively. Electronic spectra with (e) open boundary
along â1, broken glide and reflection symmetries with inversion invariance, and (f) with only broken time-reversal. Color map of the 1D spectra
with high (low) brightness indicates a large (small) probability of the electronic states to be localized on the left (red) or right (blue) boundary.

can be made purely real in the eigenbasis of K�k . Indeed,
close to the DPs, the low-energy Hamiltonian has a form
Hδ�k = δk1A + δk2B with A and B being 2 × 2 real matrices
and δ�k the deviation with respect to the DP. We can then
calculate a Z(1)

2 mod-2 winding number around each DP and
it takes values ±1 at the two DPs.

In order to explicitly compute the invariant, one can use
an approach based on the Green’s function [84]. Indeed, we
define the Green’s operator G as

G(ω,k) = 1

iω − H�k
, (49)

where the Fermi energy is at ω = 0. The Z2 topological
numbers of the first generationZ(1)

2 are defined in a similar way
as those associated to the Z numbers but they usually require
an extension of the Hamiltonian (or the Green’s function).
This extension involves an auxiliary parameter u ∈ [0,1]
which becomes an extra dimension to be integrated over. The
extended Hamiltonian has a form H̃�k = (1 − u)H�k + uH0,
where H0 is a trivial Hamiltonian with energies ±E0. From
the extended Hamiltonian H̃, we deduce the Green’s function
G̃. The Z(1)

2 topological number N (1)
p of the Fermi surface with

codimension p is then given by

N (1)
p = C

′
p

∫
Sp

∫ 1

0
du tr[(G̃dG̃−1)pG̃∂uG̃−1] mod 2, (50)

with a prefactor

C
′
p = − 2(p/2)!

p!(2πi)p/2+1
(51)

and p being the difference of the system’s dimension d

and the dimension dFS of the Fermi surface. Thus the Z(1)
2

number is nonvanishing only for even codimension p. In
our case, this formula is applied to calculate the topological
charges of the Dirac points in two dimensions- p = 2. It
is worth to mention that in this case, since we deal with
a purely real 2 × 2 Hamiltonian, the extension H0 must
be chosen as imaginary to get a nonvanishing N (1)

p , here,

H0 = σy is selected. The computation of Z(1)
2 yields values

±1 at the two DPs. Though the combined time-inversion
operator K is explicitly dependent on the momentum, due to
its nonsymmorphic nature, in the low-energy description the
result is consistent with the general expectation [89] of having
a nontrivialZ2 topological invariant at the DPs by combination
of time and inversion symmetry.

Hence we conclude that the analysis of the electronic
spectra for the z2 phase in Fig. 6 indicates a peculiar character
of the semimetal phase and accordingly of the edge modes
as due to the interplay of the glide with other combined
symmetries, being robust to different types of symmetry
breaking configurations.

Concerning the general expectation out of the application
of lowering symmetry perturbations, due to the presence
of different protections there are various paths to reach a
less symmetric state for which the topological protection
can be preserved or destroyed. For instance, breaking of
the glide symmetry in such a way that inversion is not
preserved will split the DPs, opening a gap, and the system
becomes topologically trivial. Such result is consistent with
the prediction from the AZ classification table for the AI class
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FIG. 7. Electronic spectra around the Fermi level and k1 = 0 in
the glide line for z3 configurations at (a) and (b) half-filling and (c) and
(d) μ = μ0. Bands are plotted as semitransparent in panel (c) and (d),
while the Fermi level is indicated by the red plane. At half-filling, the
system evolves from point node semimetal (a) at δ = 0 to a line-node
semimetal made of semi-Dirac points (b) at δ > 0. At μ = μ0, the
evolution is from a metallic configuration having a triple degenerate
Fermi point (c) at δ = 0, to a multi Fermi pockets metallic state
(d) at δ > 0.

in the presence of a mirror reflection [83]. Otherwise, breaking
of the reflection or time only removes the Z2 protection but
leaves the glide symmetry so that the semimetal phase and
the DPs are still preserved. In Fig. 6(f), a representative case
of time-reversal violation is also considered. Here, we only
highlight the possibility of having, in the presence of time
reversal symmetry breaking, nondegenerate chiral states at
the edge. Due to a termination dependent orbital polarization,
the edge modes can sustain both charge and orbital polarized
currents at the boundary.

C. Gapless phases of zigzag z3 antiferromagnet

Let us consider the z3 antiferromagnetic case. As for the
other zigzag magnetic patterns, the main aim is to focus on
the character of the gapless phases with respect to the glide
symmetry and its interplay with the other symmetries of the
model system. Though, there is a large variety of electronic
states that can be achieved by varying the spin-orbit, the Hund
coupling or the hopping connectivity, the z3 pattern allows
to observe peculiar types of gapless phases, which uniquely
emerge in conjunction with the presence of the glide symmetry.

In Figs. 7(a) and 7(c), we observe that the gapless
phases in the glide plane exhibit quadruple and triple band
touching at half-filling and away from it at a given value of
μ = μ0 =

√
2 + J 2

H + λ2.
At half-filling, we have a semimetal state with two DPs

that are merged while at μ = μ0, the triple point is attached

to a Fermi pocket. Such feature of the electronic spectra
is more explicitly evident if one projects the spectra in the
glide plane at k1 = 0. We can observe that quadruple band
crossings are obtained at different values of k2 at half-filling
[Fig. 8(a)] while triple band crossings occur for the electron
filling corresponding to μ0 [Fig. 8(d)]. The construction
of glide symmetric eigenstates [i.e., red and black lines in
Fig. 8(a) and 8(d)] in the glide line allows to see that there
are independent crossings in each glide block and that, due
to the glide symmetry, a shift of 2π connects inequivalent
eigenstates within each glide sector. In order to better clarify
the nature of such multiple band touchings, it is convenient to
introduce a symmetry conserving term in the Hamiltonian by
modifying the hopping connectivity through the next-nearest
neighbor hopping δ. The application of δ leads to a splitting of
the quadruple and triple band touchings [Figs. 7(b), 7(d), 8(b),
and 8(e)] thus revealing that the multiple degeneracy is not
associated to the symmetry properties discussed in the Sec. III
but rather to another emerging property of the Hamiltonian.
Indeed, a closer inspection of the electronic structure in the
two glide sectors indicates the origin of the multiple band
crossings. The key issue here is that there is a nonunitary
transformation that leaves invariant the determinant of the
glide-block Hamiltonian H+

0,k2
with respect to a 2π shift

in the momentum. Then, taking into account the general
arguments of Sec. III D we can have that the Fermi points
exhibit a multiple degeneracy. It is important noticing that
such property of the determinant is not tied to the chiral
symmetry of the spectrum, because it manifests itself both
at μ = 0 and μ0, respectively. The anomalous periodicity of
the determinant can be constructed explicitly, as demonstrated
in Appendix D, through a nonunitary chiral-like operator
�k2 ≡ h−1

k2
H̄ k2 where H̄ k2 is the 2π periodic part of H+

0,k2

and hk2 is the part with 4π period (hk2+2π ≡ −hk2 ). The
proof relies on the fact that eigenvalues of �k2 are symmetric
around zero and on the Silvester property of determinants, i.e.,
det(1 + AB) ≡ det(1 + BA).

When breaking the conditions for the determinant in-
variance in the glide sectors, the DPs can split into simple
DPs. This indeed happens when we introduce the hopping
δ which does not break any symmetries of the system. The
removal of degeneracy drives different type of transitions. At
half-filling, it is concomitant with a changeover from a point
node semimetal to a gapless phase built by a line of semi-Dirac
points as shown in Fig. 7(b). Otherwise, the metal coexisting
with a triplet band crossing Fermi point is converted into a
metallic configuration whose electronic structure is tied to the
presence of topological nontrivial DPs in the glide plane.

Concerning the issue of the symmetry protection and the
topological character, let us start from the chiral case at
half-filling where δ can induce a transition from a point
node to a line node semimetal (Fig. 7). At μ = 0 and finite
δ, the line of semi-DPs has a topological nature which is
related to the glide symmetry and the nonsymmorphic nature
of the chiral symmetry. Indeed, as shown in the Sec. III,
by combining the chiral and the conjugation symmetries we
find a k-dependent anticonjugation operator A�k , which acts
to give a minus complex conjugate of H�k . We point out
that due to its nonsymmorphic character, such symmetry is
not explicitly included in the topological classification of the
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FIG. 8. Multiple FPs in z3 antiferromagnet. Bands in the glide plane k1 = 0 at δ = 0; (a) with chiral fourfold DPs at half-filling (μ = 0)
and (d) with threefold Fermi points at μ = μ0. Color indicates the glide eigenvalue g = +1 (red) and g = −1 (black), dashed line is the Fermi
level μ. (b) and (e) The same bands in presence of the symmetry conserving long-range hopping δ. (c) and (f) Fermi point node at δ = 0 (blue)
and line nodes at δ > 0 (red dashed). Multiple band crossing points are marked with dots and their degeneracy is indicated in the corresponding
color. The inset of (c) shows a schematic view of the hopping δ. The signs in (f) indicate the band parity, +1 inside the Fermi pockets and −1
outside. The signs in (h) are those due the AI winding numbers of the Fermi lines. The integration contours are indicated by ellipses.

one-dimensional Fermi lines by combination of particle-hole
and inversion [89]. Taking into account the fact that A is real
for odd Lz, as shown in Sec. III, we can put the Hamiltonian in
a purely imaginary and thus antisymmetric form using the
eigenbasis of A�k . For an antisymmetric operator, we can
construct a Z2-type topological invariant as a sign of its
Pfaffian. The main result is that we can identify the nodal
line by the position of the sign change of the Pfaffian of
H�k [Fig. 8(c)] thus indicating that the line of DPs exhibits a
topological protection. Apart from the whole line of semi-DPs,
one can notice that in the glide plane k1 = 0 the A operator
is not k-dependent because the chirality depends only on
k1, and, thus, it also provides a protection for the DPs in
both glide sectors as an ordinary symmorphic product of
inversion an particle-hole symmetry [89]. Then, if the nodal
gapless state can be converted into a point node semimetal by
suitably tuning the microscopic parameters, the transition can
only occur in the glide plane and the semimetal phase will
exhibit multiple degenerate DPs, as it happens for instance
at δ = 0. Such outcome can be generally expected for glide
and chiral symmetric semimetal phases in AI class which
exhibit a topological protection in the full BZ and in one of
the glide lines. Interestingly, breaking of the glide symmetry
opens a gap at the Fermi level everywhere in the BZ except
the glide plane where the DPs can be still protected by the
particle-hole and inversion combination as it is observed for
the investigated electronic phases at half-filling. Therefore the

overall character of the emerging gapless phase is to exhibit
a topological protection and to be marked by two pockets of
semi-DPs that are glued to the line at k1 = 0 due to the glide
symmetry protection.

When moving away from half-filling, e.g., at μ = μ0, each
Fermi pocket of the metallic phase can exhibit a protection due
to a non trivial AI winding numberZ. Indeed, for the nonchiral
case of a Fermi surface with a codimension p the topological
number Np can be expressed as an integral over an oriented
manifold of the dimension p, e.g., a p sphere, in a (ω,�k)-space
enclosing the Fermi surface,

Np = Cp

∫
Sp

tr[(GdG−1)p], (52)

where the prefactor Cp is given by

Cp = − n!

(2n + 1)!(2πi)n+1
, (53)

with p = 2n + 1. Thus the formula is valid only for odd p

and for even ones the Z topological number vanishes. Note
that the power under the trace means an external product of p

copies of (GdG−1). Since the problem is two-dimensional, we
have p = 1 and thus we can get a nonvanishing Np calculating
the integral over a circle around the Fermi line. For simplicity,
the circle can be chosen in the (ω,k1) plane with a center
belonging to the Fermi surface. Alternatively, one can notice
that in such a low-dimensional case the expression (52) will
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count the difference of number of occupied states on either side
of a Fermi point. The computation of the topological number
of the line Fermi surface associated to the pockets in Fig. 8(f)
gives an alternating sign when moving along k2. Hence, in
general, we do not observe a semimetal phase and the triple
band crossing coexists with the Fermi pockets [Fig. 7(d)] at
δ > 0.

V. CONCLUSIONS

We have investigated the nature and the symmetry prop-
erties of the electronic structure of a class of itinerant
antiferromagnets where electrons with two-orbitals flavors are
coupled to a magnetic background of localized spins that order
in a zigzag pattern. The character of the antiferromagnetic
pattern is a crucial ingredient that brings a series of nontrivial
symmetry transformations which include also translation of
fraction of a Bravais lattice vector. We provided a detailed
description of the symmetry features of the model system and
of the main consequences on the electronic states when con-
sidering the most relevant zigzag configurations. A particular
aspect that arises from the analysis refers to the interplay of
the nonsymmorphic glide symmetry and the other symmetries
with spatial and internal character occurring in the model
system.

While the possibility of having topological zigzag antifer-
romagnets and edge states has been mainly focusing on insu-
lating configurations [87,88] and on the symmetry protection
within one-dimensional projected electronic structures [86],
our analysis demonstrates that the breakdown of the fully
gapped phases in 2D multiorbital zigzag AFMs can yield a
variety of nontrivial gapless phases. The character of these
states depends on the characteristic zigzag length as well as
on the intricate interplay of nonsymmorphic and internal or
other spatial symmetries. Our results demonstrate that, for
the considered class of two-dimensional zigzag AFMs with
collinear magnetic order and time reversal invariance (i.e., in
the AI symmetry class), gapless phases are prone to exhibit
different sources of symmetry protection and a topological
behavior. Indeed, we find that the fully gapped phases are in
general topologically trivial and possible topological states can
be achieved only by breaking the time reversal symmetry or
in one-dimensional projections of the electronic spectra. On
the other hand, when dealing for instance with z2 magnetic
pattern, the Dirac points in the semimetal phases can exhibit
robust symmetry protection as due to the glide symmetry and
the combination of inversion with time or particle-hole.

Another distinct feature of our findings is provided by
the invariance of the determinant in the glide sectors that
points to an interesting mechanism, uniquely arising in
nonsymmorphic systems, to generate multiple Dirac points.
In this framework, we demonstrate that the breaking of an
anitunitary nonsymmorphic chiral symmetry allows to have
a unique transition from a semimetal to a line node gapless
phase made of semi-Dirac points. This is a peculiar electronic
feature that can manifest only for odd zigzag antiferromagnet
as explicitly demonstrated according to the property of the
symmetry transformation for the z3 configuration.

Finally, due to the symmetry protection of the Fermi points
in the glide line and the strong nesting of the gapless phase, it

is plausible to expect that the semimetal and metallic phases
can exhibit anomalous magnetotransport response as well as
a tendency to other electronic instabilities. Concerning the
materials perspective, there are many compounds exhibiting
zigzag magnetic patterns that involve t2g orbitals close to
the Fermi level especially when considering transition metal
oxides. For instance, in this framework, our results may
find interesting application both in Mn doped ruthenates and
dichalcogenides.

ACKNOWLEDGMENTS

W.B. acknowledges support by the European Horizon
2020 research and innovation programme under the Marie-
Sklodowska-Curie grant agreement No. 655515.

APPENDIX A: COMMUTATION RELATIONS OF SPATIAL
AND NONSPATIAL SYMMETRIES

For the model system upon examination, it is not direct
to predict if the reflection and the glide operators commute.
In order to calculate their commutator, one has to carefully
consider the relation with the Hamiltonian, so it is crucial to
update the �k points for which we consider the application of
the symmetry operators. For instance, one can show that the
operation of reflection and glide does not depend from their
order with respect to the Hamiltonian which means that

Rk2Rt
k1,−k2

− Rt
k1,k2

Rk2 ≡ 0. (A1)

Thus, along this line, one can demonstrate that the inversion
operator commutes with the above operators. Concerning the
relation with respect to the time reversal operation one finds
that both normal reflection and glide commute with T , that is,

Rk2T − T R	
−k2

≡ 0 (A2)

and

Rt
k1,k2

T − T Rt	
−k1,−k2

≡ 0, (A3)

where the symbol star indicate complex conjugation. Thus
we conclude that the same property holds for the inversion.
Finally, concerning the chirality (sublattice) symmetry, we find
that the reflection commutes with Sk1 ,

Rk2Sk1 − Sk1Rk2 ≡ 0, (A4)

and the glide anticommutes or commutes with Sk1 for even or
odd Lz respectively, i.e.,

Rt
k1,k2

Sk1 + (−1)LzSk1Rt
k1,k2

≡ 0. (A5)

One can also intuitively argue that the chiral symmetry is
related to the two-sublattice structure of the model system.
Since under a reflection transformation a site belonging to
one sublattice goes into another site of the same sublattice
we get a vanishing commutator in (A4). On the other hand,
looking at Fig. 2, we notice that for Lz = 2 the glide does mix
the sites from different sublattices hence one gets a vanishing
anticommutator. It is easy to check that this happens for any
even Lz whereas for the odd ones we always get a vanishing
commutation relation. Finally, we note that since all spacial
symmetries commute with time reversal, their commutation
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relation with particle-hole symmetry is the same as that one
with the chirality.

APPENDIX B: k-DEPENDENT GAUGE
TRANSFORMATIONS

As we noticed in the previous sections, due to the structure
of the unit cell and the presence of the nonsymmorphic glide
symmetry, most of the spatial and nonspatial symmetries are
k-dependent. It is worth and interesting to underline that
these k dependencies can be gauged away simultaneously or
separately by for any zigzag segment length Lz by proper
k-dependent gauge transformations. In the following sections,
we will show how to get rid of k dependence from; all
symmetries in Sec. B 1 and reflection only in Sec. B 2. In
Sec. B 3, we show how to reduce the k dependence in glide
only to the k component related to the shift along the glide
plane.

1. k-independent all symmetries

To make all symmetries simultaneously k-independent, we
define a following gauge transformation G�k:

G�k =

⎛⎜⎜⎜⎝
G↓ 0 0 0

0 G↑ 0 0

0 0 G↓ 0

0 0 0 G↑

⎞⎟⎟⎟⎠, (B1)

with diagonal blocks G↓and G↑ of the size N↓ = N↑ =
2Lz − 2,

G↓ = e−ik1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

0 e
i 1

N↓ k2 0 · · · 0

0 0 e
i 2

N↓ k2 · · · 0

...
...

...
. . . 0

0 0 0 0 e
i

N↓−1

N↓ k2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B2)

and

G↑ = ei
k1
2 G↓, (B3)

corresponding to the domains of spin up/down in the unit
call. Note that these matrices are the same for the orbital a

and orbital b sector. The Hamiltonian transforms as a linear
operator under the basis rotation, i.e.,

H̃�k ≡ G†
�kH�kG�k, (B4)

where tilde indicates the operator in the gauge transformed
basis. Now, if we require that the reflection operator in the
gauge transformed basis, i.e., R̃ acts as a reflection operator
with respect to H̃�k , i.e.,

R̃†H̃k1,k2R̃ = H̃k1,−k2 , (B5)

we easily find that R̃ should have the following form:

R̃ ∝ G†
k1,k2

Rk2Gk1,−k2 , (B6)

where the complex prefactor can be chosen in such a way to
completely remove any k-dependence in R̃. Similarly, we can

proceed for the glide,

R̃t ∝ G†
k1,k2

Rt
k1,k2

G−k1,k2 , (B7)

and for the other nonspatial symmetries. For instance, time
reversal operator,

T̃ ∝ G†
k1,k2

T G	
−k1,−k2

, (B8)

where the gauge matrix on the right is taken with complex
conjugate. While for the chirality we have that

S̃ ∝ G†
k1,k2

Sk2Gk1,k2 , (B9)

and transforms through a simple basis rotation. The rest of the
symmetries can be constructed by taking the product of the
above operators, i.e.,

Ĩ = R̃R̃t = R̃tR̃, (B10)

to get the inversion and

C̃ = T̃ S̃	 = S̃T̃ , (B11)

to get charge conjugation. Note that the spatial symmetries
and the time reversal do not transform as linear operators
under basis rotation. For this reason their spectra are different
in the gauge transformed basis with respect to the initial one
and their commutation relations could be different as well.
Accidentally, we find that the commutation relations remain
the same as shown in previous section.

Finally, we stress that the consequence of the removal of the
k dependencies from the symmetries operators is to alter the
periodicity of the Hamiltonian in the momentum space. One
finds that for a given Lz the period in k1 is always doubled,
i.e., H̃k1+4π,k2 = H̃k1,k2 whereas that one in k2 is increased N↓
times. This effect can be captured by what we call the shift
operator. We find that however the period is elongated the old
period of 2π survives up to a basis rotation described by a
unitary shift operator χ . For k1, we find that

H̃k1+2π,k2 = χ
†
1H̃k1,k2χ1, (B12)

where χ1 can be found as a 2π -basis mismatch of the gauge
matrix, i.e.,

χ1 ∝ G†
k1,k2

Gk1+2π,k2 . (B13)

One finds that

(χ1)2 = 1, (B14)

meaning that after two 2π shifts in k1 we recover the same
Hamiltonian H̃k1,k2 . Similarly, for k2, we observe

H̃k1,k2+2π = χ
†
2H̃k1,k2χ2 (B15)

with χ2 is the unitary shift operator having the form of

χ2 ∝ G†
k1,k2

Gk1,k2+2π (B16)

and becoming unity after N↓ applications:

(χ2)N↓ = 1. (B17)
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2. k-independent reflection

The gauge transformation described in Sec. B 1 makes all
the symmetry operators k-independent but concomitantly one
has to increase the effective BZ of the Hamiltonian. This is
caused by the fact that the unit cell is not left invariant by any
of the symmetries of the whole system. In the case of glide,
inversion, and chirality symmetries it is in indeed impossible
to define a unit cell that would map onto itself under their
action. However, in the case of reflection, this transformation
is possible. Another operating scheme would be to choose a
square unit cell, which is a 4 × 4 cell both for z2 and z3, but in
this way we increase the dimensionality of the operators and
create artificial symmetries coming from the multiple copies
of the elementary cell. The other solution, which is much
more convenient, is to slightly modify the elementary unit cell
shown in Fig. 2. One has to remind that every physical site
in the lattice has two orbital flavors so the resulting system
can be also mapped into an effective bilayer. The reflection
can be seen as a π -rotation of the bilayer with axis along
the �a1 direction. Thus a reflection-invariant unit cell can be
constructed by taking the original cell for orbital b and for
orbital a one has to move the first two sites (i = 1,7 in Fig. 2)
of the vertical segments after the last two sites (i = 6,12 in
Fig. 2) of the horizontal segments. This can be realized by a
gauge transformation of the type

GR
k2

=

⎛⎜⎜⎜⎜⎝
1b

↓ 0 0 0

0 1b
↑ 0 0

0 0 GR
↓ 0

0 0 0 GR
↑

⎞⎟⎟⎟⎟⎠, (B18)

with two identical subblocks for orbital a segment,

GR
↓,↑ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

e−ik2 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . . 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (B19)

carrying the gauge for the first sites of the vertical segment.
After the covariant transformation of the reflection operator,
i.e.,Rk2 → GR†

k2
Rk2GR

−k2
and extracting global phase factor we

find it completely k-independent.

3. k1-independent glide

Another gauge transformation can be found to demonstrate
that the glide operator Rt

�k is dependent only on k2 without
affecting the periodicity of the Hamiltonian. Again, this
solution is equivalent to a modification of the elementary unit
cell shown in Fig. 2. Treating the a and b orbital degrees of
freedom as two layers one can treat the glide as a π rotation of
the bilayer with axis along the �a2 direction followed by a shift
of �a2/2. Thus a way to construct a unit cell, which is mostly
compatible with a glide is to take the original cell for the orbital
a and for the orbital b, and then shift the spin down domain by
�a1 (see Fig. 2). In this way we obtain a gauge transformation

of the form

GRt

k1
=

⎛⎜⎜⎜⎜⎝
GRt

↓ 0 0 0

0 1b
↑ 0 0

0 0 1a
↓ 0

0 0 0 1a
↑

⎞⎟⎟⎟⎟⎠, (B20)

with one nontrivial subblock,

GRt

↓ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

e−ik1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . . 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (B21)

carrying the gauge for the spin down domain of orbitals b.
After the covariant transformation of the glide operator, i.e.,
Rt

�k → GRt †
k1

Rt
�kG

Rt

−k1
and extracting global phase factor we find

it dependent only on k2/2 (due to the �a2/2 shift) in such a
way that it eigenvalues are k-independent taking values g =
±1. The dependence on k2 of the eigenbasis is such that the
eigenvectors with g = +1 eigenvalues at fixed k2 become the
g = −1 eigenvectors at k2 + 2π .

APPENDIX C: HAMILTONIANS AND THEIR SYMMETRY
PROPERTIES IN THE GAUGED BASIS

In what follows, we will represent the zigzag Hamiltonians
and their symmetries for Lz = 2,3 in the basis defined by
the gauge transformation G�k defined in Sec. B 1. In Sec. C 1,
we will show Hamiltonians and their symmetries, including
emerging operations in the enlarged BZ, using a very compact
Pauli-matrix representation. In Sec. C 2, we demonstrate that
in the enlarged BZ, we have to deal with extra reflection and
glide operators and in Sec. C 3 we show that the glide blocks
of the Hamiltonians in the glide planes are related by a 2π

shift. Finally, we will show the special symmetries acting in
the parameter space in Sec. C 4.

1. Pauli-matrix representation for Lz = 2,3

For zigzag segment lengths Lz = 2 and 3, the Hamiltonians
are 8 × 8 and 16 × 16 Hermitian matrices, respectively. Thus,
it is convenient to use the product basis of three and four
Pauli matrices to show the exact form of the Hamiltonians
and their symmetries in these two cases. For Lz = 2, we will
decompose the operators in basis of 64 Hermitian matrices
whose building blocks are pseudospins S = 1/2 defined on
three artificial sites, i.e.,

σα
1 = σα ⊗ 12 ⊗ 12, σ α

2 = 12 ⊗ σα ⊗ 12,

σ α
3 = 12 ⊗ 12 ⊗ σα, (C1)

with α = x,y,z and σα being a Pauli matrix. Hence the
Hamiltonian in the gauge transformed basis (in the sense of
the gauge transformation of Appendix B 1) and for the shortest
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possible zigzag with Lz = 2 can be represented as

H̃�k = sin
k2

2

(
sin

k1

2
σx

3 + cos
k1

2
σ

y

3

)
σ z

1 σx
2

+ cos
k2

2

(
sin

k1

2
σx

3 − cos
k1

2
σx

3

)
σx

2

− cos
k2

2
σx

3 − sin
k2

2
σ z

1 σ
y

3 + JH σ z
2 − λσ

y

1 σ z
2 . (C2)

The spatial symmetries take the form

R̃ = σ
y

1 , R̃t = σ
y

1 σx
3 , Ĩ = σx

3 , (C3)

and the nonspatial symmetries are

T̃ = σ z
1 , S̃ = σx

2 σ z
3 , C̃ = σ z

1 σx
2 σ z

3 . (C4)

The algebra is completed by the shift operators defined in the
previous section as

χ1 = σ z
2 , χ2 = σ z

3 . (C5)

It is instructive to check that all these operators really satisfy
the relevant relations with respect to the Hamiltonian.

Analogically, for Lz = 3, we span a basis of 256 Hermitian
matrices whose building blocks are pseudospins S = 1/2
acting on four artificial sites, i.e.,

σα
1 = σα ⊗ 12 ⊗ 12 ⊗ 12, σ α

2 = 12 ⊗ σα ⊗ 12 ⊗ 12,

σ α
3 = 12 ⊗ 12 ⊗ σα ⊗ 12, σ α

4 = 12 ⊗ 12 ⊗ 12 ⊗ σα.

(C6)

The Hamiltonian in the gauge transformed basis for the zigzag
with Lz = 3 can be represented as

H̃�k = 1

2
sin

k2

4

(
σ

y

4 − σx
3 σ

y

4 − σ z
1 σ

y

3 σx
4 − σ z

1 σ z
3 σ

y

4

) + 1

2
cos

k2

4

( − σx
4 − σx

3 σx
4 + σ z

1 σ
y

3 σ
y

4 + σ z
1 σ z

3 σx
4

)
+ 1

2
sin

k2

4
sin

k1

2
σx

2

(
σ

y

3 σ
y

4 + σ z
3 σx

4 + σ z
1 σx

4 + σ z
1 σx

3 σx
4

) + 1

2
cos

k2

4
sin

k1

2
σx

2

(
σ

y

3 σx
4 + σ z

3 σ
y

4 + σ z
1 σ

y

4 − σ z
1 σx

3 σ
y

4

)
+ 1

2
sin

k2

4
cos

k1

2
σ z

1 σx
2

(
σ

y

3 σx
4 + σ z

3 σ
y

4 + σ z
1 σ

y

4 − σ z
1 σx

3 σ
y

4

) − 1

2
cos

k2

4
cos

k1

2
σ z

1 σx
2

(
σ

y

3 σ
y

4 + σ z
3 σx

4 + σ z
1 σx

4 + σ z
1 σx

3 σx
4

)
+ JH σ z

2 − λσ
y

1 σ z
2 . (C7)

The spatial symmetries take the form

R̃ = 1

2
σ

y

1

((
1 − σx

3

)(
1 − σ z

4

) − 2
)
,

R̃t = σ
y

1 σx
3 , (C8)

Ĩ = 1

2

((
1 − σx

3

)(
1 + σ z

4

) − 2
)
,

and the nonspatial symmetries are

T̃ = σ z
1 , S̃ = σx

2 σ z
4 , C̃ = σ z

1 σx
2 σ z

4 , (C9)

while the shift operators can be expressed as

χ1 = σ z
2 , χ2 = 1√

2
σ z

3

(
i + σ z

4

)
. (C10)

Note that, as expected for Lz = 3, (χ2)4 = 1, whereas the
lower powers are nontrivial, e.g., (χ2)2 = σ z

4 . Finally, the
second- and third-neighbor hopping δ in this basis has a form

h̃(δ) = δσ z
2 σx

3 cos
k2

2
. (C11)

One can easily check that it preserves all the symmetries.

2. Multiple glide and reflection operators

An interesting consequence of gauge transformation de-
scribed in Sec. C 1, related with elongation of Hamiltonian’s
period, is multiplication of reflection and glide operators. Have
a look at the reflection planes, we easily find that for any Lz,

[H̃k1,0,R̃] = 0, (C12)

but due to the period elongation in H̃k1,k2 we also find that

[H̃k1,π ,R̃] 
= 0. (C13)

This means that k2 = 0 is the reflection plane for R̃ but k2 = π

is not. It is not difficult to guess that the second reflection plane
should be placed at k2 equal to half-period of the new BZ,
namely at k2 = N↓π . Indeed, we find

[H̃k1,N↓π ,R̃] = 0, (C14)

but one may ask what about k2 = π,2π, . . . ,(N↓ − 1)π , is
there any reflection operator for whom these are the reflection
planes? The answer is yes, we can define shifted reflection
operators R̃(n)

χ in the following way:

R̃(n)
χ ≡ R̃(χ2)n, (C15)

where n = 1,2, . . . ,(N↓ − 1). Their action on the Hamiltonian
is the following:

R̃(n)†
χ H̃k1,k2R̃(n)

χ = H̃k1,−k2+2πn. (C16)

Now it is easy to notice that[
H̃k1,nπ ,R̃(n)

χ

] = [
H̃k1,nπ+N↓π ,R̃(n)

χ

] = 0, (C17)

meaning that planes k2 = nπ and k2 = nπ + N↓π are the
reflection planes for the shifted reflection operator R̃(n)

χ . Note
that unlike initial reflection R̃ the shifted reflection operators
are not Hermitian and unitary, they are only unitary. Similarly,
we can define a shifted glide oprator R̃t

χ ,

R̃t
χ ≡ R̃tχ1. (C18)

Here we have only one shifted operator because for any zigzag
(χ1)2 = 1. For this operator, the reflection planes are k1 = π
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and k1 = 3π whereas for nonshifted R̃t these are k1 = 0 and
k1 = 2π . Note that the period of gauged Hamiltonian H̃k1,k2

in k1 is 4π for any Lz. By taking products of shifted reflection
and glide operators we can construct different shifted inversion
operators for different inversion points in the enlarged BZ of
H̃k1,k2 . The final conclusion for this section is that, however, the
k-dependence in spatial symmetry operators can be removed
by a proper gauge transformation, this dependence reappears
in the gauged basis as a multiple definition of these operators
for different symmetry-invariant k points.

3. Shift equivalence of the glide blocks of the Hamiltonian

In this section, we will focus on Hamiltonian in its glide
planes. From Sec. C 2, we know that in the gauged basis we
should cosider two glide operators, R̃t and the shifted one R̃t

χ ,
for glide planes k1 = 0 and π . Looking into Sec. C 1, we see
that both for Lz = 2 and Lz = 3 these operators anticommute
with shift operators χ2, i.e.,

{R̃t ,χ2} = 0,
{
R̃t

χ ,χ2
} = 0, (C19)

and the same property holds for any other Lz. Now, take
the eigenbasis V of R̃t or R̃t

χ and write the two glide plane
Hamiltonians as

H̃′
0(π),k2

≡ Ṽ†H̃0(π),k2 Ṽ =
(

H̃+
0(π),k2

0

0 H̃−
0(π),k2

)
, (C20)

where H̃±
0(π),k2

denote the blocks of equal size in the subspaces
of +1 and −1 eigenvalues of R̃t or R̃t

χ operators. In the same
basis, we find χ2 in the antidiagonal form of

χ ′
2 ≡ V†χ2V =

(
0 ξ2

ξ2 0

)
, (C21)

where ξ2 is a unitary matrix. From the relation of shift operator
with respect to the Hamiltonian, namely,

χ ′
2
†H̃′

0(π),k2
χ ′

2 = H̃′
0(π),k2+2π , (C22)

we find that

ξ
†
2 H̃∓

0(π),k2
ξ2 = H̃±

0(π),k2+2π . (C23)

This a major result that shows that the glide plane Hamiltonian
for +1 gliding eigenstates at quasimomentum k2 is related with
the Hamiltonian for −1 gliding eignestates at point k2 + 2π

only by a basis rotation. What more, if we remove the gauging
and come back to original basis we find that these two block
are equal,

H∓
0(π),k2

= H±
0(π),k2+2π . (C24)

Note that 2π shift in k2 is relevant from the point of view
of H∓

0(π),k2
because now we are in the eigenbasis of Rt

k1,k2

which is k-dependent and the period of H∓
0(π),k2

is elongated.
This property, which holds for any zigzag segment length Lz,
implies that the whole spectrum of the glide-plane Hamiltonian
is fully determined in just one eigensubspace of the glide
operator.

4. Symmetries in the parameters space

For any zigzag segment length Lz, it is possible to find
additional symmetries that can be associated to two reflections
operators X̃ and Ỹ and an inversion Z̃ = X̃ Ỹ that act uniquely
in the parameters space (JH ,λ). The reflections are active only
in the glide plane k1 = 0 and satisfy the relations,

X̃ †H̃0,k2 (JH ,λ)X̃ = H̃0,k2 (λ,JH ),

Ỹ†H̃0,k2 (JH ,λ)Ỹ = H̃0,k2 (−λ, − JH ). (C25)

Thus we see that the reflection planes in the parameters plane
(JH ,λ) are in the direction JH = λ and JH = −λ. The action
of the inversion Z̃ on the Hamiltonian is obviously

Z̃†H̃0,k2 (JH ,λ)Z̃ = H̃0,k2 (−JH , − λ). (C26)

The general matrix form of the two reflections in the gauged
basis is

X̃ = 1

2

⎛⎜⎜⎜⎝
1N↓ −1N↓ i1N↓ i1N↓

−1N↓ 1N↓ i1N↓ i1N↓

−i1N↓ −i1N↓ 1N↓ −1N↓

−i1N↓ −i1N↓ −1N↓ 1N↓

⎞⎟⎟⎟⎠ (C27)

and

Ỹ = −1

2

⎛⎜⎜⎜⎝
−1N↓ 1N↓ i1N↓ i1N↓

1N↓ −1N↓ i1N↓ i1N↓

−i1N↓ −i1N↓ −1N↓ 1N↓

−i1N↓ −i1N↓ 1N↓ −1N↓

⎞⎟⎟⎟⎠. (C28)

Note that the spectra of X̃ and Ỹ are the same and consist of N↓
eigenvalues −1 and 3N↓eigenvalues 1, which coincides with
the spectrum of the SU(2) spin interchange operator X12 =
1
2 (1 + �σ1 �σ2) taken N↓ times. The spectrum of Z̃ consist of
equal number of +1 and −1 eigenvalues.

For Lz = 2 and 3 operators, X̃ , Ỹ and Z̃ can be written in
terms Pauli matrices (C1) or (C6) as

X̃ = 1

2

(
1 − σ

y

1 − σ
y

1 σx
2 − σx

2

)
,

Ỹ = −σx
2 X̃ , (C29)

Z̃ = −σx
2 .

For these two shortest zigzags with Lz = 2 and 3, we find that
the inversion operator Z̃ satisfies

Z̃†H̃k1,k2 (JH ,λ)Z̃ = H̃k1,k2 (−JH , − λ), (C30)

for any k point, whereas only for Lz = 2, we get extra relations
for the X̃ and Ỹ operators in the plane k2 = 0,

X̃ †H̃k1,0(JH ,λ)X̃ = H̃k1,0(λ,JH ),

Ỹ†H̃k1,0(JH ,λ)Ỹ = H̃k1,0(−λ, − JH ). (C31)

APPENDIX D: DETERMINANT EQUIVALENCE OF
THE GLIDE BLOCKS

In the following two sections, we will demonstrate a mech-
anism related with the existence of nonunitary symmetries
that lead to the 2π -shift invariance of the determinants of the
glide blocks of the z3 Hamiltonian. In Sec. D 1, we show this
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property at half filling or μ = 0 and in Sec. D 2 at special
μ = μ0 > 0. For μ = 0, we note that the 2π -shift invariance
seems to exist for any Lz.

1. Half-filling case

In the previous section, we showed that the glide blocks of
the Hamiltonian are related by a 2π shift as

H∓
0(π),k2

= H±
0(π),k2+2π . (D1)

Now we will show that at the same k2 the spectra of H∓
0(π),k2

are
related in a very special way. Namely, for any Lz and k1 = 0,
we find that

det H+
0,k2

≡ det H−
0,k2

≡ det H+
0,k2+2π , (D2)

and for any odd Lz and k1 = π , we have

det H+
π,k2

≡ det H−
π,k2

≡ det H+
π,k2+2π . (D3)

This means that in each block the product of all eigenvalues
is 2π periodic although these eigenvalues by themselves have
longer period.

Let us show why such property of determinant holds by
considering zigzag patterns with Lz = 3 and k1 = 0. We find
the determinant of a glide block to be

det H+
0,k2

= ( − 2 + (
J 2

H − λ2)2 + 2 cos k2
)2

, (D4)

although the periodicity of H+
0,k2

is 4π .
Such relation is related to a sort of hidden symmetry. Indeed,

the block can be written in the following way:

H+
0,k2

= hk2 + H̄ k2 , (D5)

where H̄ k2 is the 2π periodic part of H+
0,k2

, i.e., H̄ k2+2π ≡ H̄ k2

and hk2 is the part with 4π period. Since the dependence on k2

is always enclosed in sine and cosine type functions we have

hk2+2π ≡ −hk2 . (D6)

Now, we can write the desired determinant in the following
way,

det H+
0,k2

= det
(
hk2 + H̄ k2

) = det hk2 det
(
1 + �k2

)
, (D7)

where �k2 ≡ h−1
k2

H̄ k2 . This step requires hk2 to be an invertible
function, and it holds because hk2 has eigenvalues ±λ so it is
nonsingular for any k2. The new operator �k2 satisfies the
relation �k2+2π ≡ −�k2 . It is non-Hermitian and in principle
can be nondiagonalizable. our case, we find �k2 to be
diagonalizable and its spectrum to be chiral with the following
eigenvalues:

sk2 = ±1

λ

√
J 2

H ± 2 sin
k2

2
, (D8)

and being double degenerate. This means that there exist a
nonsingular operator βk2 that anticommutes with �k2 namely{

βk2 ,�k2

} ≡ 0. (D9)

Using this property, we can prove that determinant of H+
0,k2

is
2π periodic as

det H+
0,k2+2π = (−1)N↓ det hk2 det(1 − �k2 ). (D10)

Then, we focus on the second term and the anticommutation
of βk2 ,

det
(
1 − β−1

k2
βk2�k2

) = det
(
1 + β−1

k2
�k2βk2

)
,

as well as we take into account the Silvester identity that sets
the relation between the determinants of two generic matrices
A and B:

det(1 + AB) = det(1 + BA). (D11)

Choosing A = β−1
k2

�k2 and B = βk2 we finally have that

det
(
1 + β−1

k2
�k2βk2

) = det(1 + �k2 ), (D12)

and thus

det(1 − �k2 ) = det(1 + �k2 ). (D13)

This implies that

det H+
0,k2+2π = (−1)N↓ det H+

0,k2
. (D14)

Since N↓ is always even in our zigzag patterns we succeed
in demonstrating that the determinant of the glide block is
indeed 2π periodic. We point out that a crucial ingredient for
the proof is given by the existence of an invertible operator
βk2 that anticommutes with �k2 . We found that such chirality
also occurs for k = π glide plane and for other zigzag segment
lengths Lz.

2. Away from half-filling

The property of determinat of a glide block described in
the previous section can be more general in case of some Lz.
Namely, we can find such values of chemical potential μ that
a following relation is satisfied:

det
(
H+

0,k2
− μ

) ≡ det
(
H+

0,k2+2π − μ
)
. (D15)

In case of zigzag Lz = 3, we find that there is one nontrivial
value of μ satisfying this relation

μ0 = ±
√

2 + J 2
H + λ2, (D16)

where the freedom of sign comes from the chirality of H+
0,k2

.
The determinant then becomes

det
(
H+

0,k2
− μ0

) = 4
(
1 − 2J 2

H λ2 + cos k2
)2

. (D17)

So indeed it is 2π periodic. Why it happens, we can prove in
a indirect way. We define a chiral-square block H

+(2)
0,k2

as

H
+(2)
μ,k2

≡ (
H+

0,k2

)2 − μ2. (D18)

For this block, we can prove using the method from the
previous section that

det H+(2)
μ,k2

= det H+(2)
μ,k2+2π . (D19)

Now having this we can relate the determinant of H
+(2)
μ,k2

with
determinant of (H+

0,k2
− μ) (modulo sign) in a following way:

det H+(2)
μ,k2

= det
(
H+

0,k2
+ μ

)
det

(
H+

0,k2
− μ

)
= (−1)N↓ det

(
H+

0,k2
− μ

)2
, (D20)
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where for the second equality we used the chirality operator of
H+

0,k2
and the Silvester identity of Eq. (D11) in the same way

as we did in previous section for �k2 and βk2 .
The prove of property (D19) can be done in way described

in the previous section. First, we decompose H
+(2)
μ,k2

,

H
+(2)
μ,k2

= h
(2)
k2

+ H̄
(2)
μ,k2

, (D21)

into the part which is 2π periodic H̄
(2)
μ,k2

and the rest, h
(2)
k2

satisfying h
(2)
k2+2π ≡ −h

(2)
k2

. Now we define the operator �
(2)
μ,k2

,

which we would like to be chiral, i.e.,

�
(2)
μ,k2

≡ h
(2)−1
k2

H̄
(2)
μ,k2

. (D22)

Indeed, the spectrum of �
(2)
μ,k2

is chiral if only μ = μ0 but there

is one subtlety here �
(2)
μ0,k2

is nondiagonalizable (defective). We
find that it has a nontrivial Jordan form given by

�
(2)′
μ0,k2

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−sk2 1 0 0 0 0 0 0

0 −sk2 0 0 0 0 0 0

0 0 −sk2 1 0 0 0 0

0 0 0 −sk2 0 0 0 0

0 0 0 0 sk2 0 0 0

0 0 0 0 0 sk2 0 0

0 0 0 0 0 0 sk2 0

0 0 0 0 0 0 0 sk2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (D23)

with eigenvalues

±sk2 ≡ ± 1

JH λ
cos

k2

2
, (D24)

and where �
(2)′
μ0,k2

is related with �
(2)
μ0,k2

by a similarity transformation,

�
(2)′
μ0,k2

= γ −1�
(2)
μ0,k2

γ. (D25)

The fact that �
(2)
μ0,k2

is defective means that we cannot find

a nonsingular matrix β
(2)
μ0,k2

that anticommutes with �
(2)
μ0,k2

eventhough its spectrum is chiral. This is, however, not a big
complication because the nondiagonal entries in �

(2)′
μ0,k2

do not

affect the determinant of (1 + �
(2)′
μ0,k2

), which is important for

the proof. Hence we can replace �
(2)
μ0,k2

by a new operator

�̄
(2)
μ0,k2

whose form in the basis given by γ is purely diagonal

and is identical to �
(2)′
μ0,k2

without nondiagonal entries. For
this operator, one can find an anticommuting and nonsingular
partner and thus the proof is complete.
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