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Magnetic noise spectroscopy as a probe of local electronic correlations in two-dimensional systems
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We develop the theoretical framework for calculating magnetic noise from conducting two-dimensional (2D)
materials. We describe how local measurements of this noise can directly probe the wave-vector dependent
transport properties of the material over a broad range of length scales, thus providing new insight into a
range of correlated phenomena in 2D electronic systems. As an example, we demonstrate how transport in the
hydrodynamic regime in an electronic system exhibits a unique signature in the magnetic noise profile that
distinguishes it from diffusive and ballistic transport and how it can be used to measure the viscosity of the
electronic fluid. We employ a Boltzmann approach in a two-time relaxation-time approximation to compute the
conductivity of graphene and quantitatively illustrate these transport regimes and the experimental feasibility of
observing them. Next, we discuss signatures of isolated impurities lodged inside the conducting 2D material.
The noise near an impurity is found to be suppressed compared to the background by an amount that is directly
proportional to the cross-section of electrons/holes scattering off of the impurity. We use these results to outline an
experimental proposal to measure the temperature dependent level shift and linewidth of the resonance associated
with an Anderson impurity.
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I. INTRODUCTION

Nitrogen vacancy (NV) centers are atomlike defects in
diamond that can be operated as quantum bits [1–3] with
extremely long coherence times. The transition frequency
between NV-spin states is highly sensitive to magnetic fields,
which allows accurate measurements of local, static fields.
In turn, the relaxation rate of the NV center is sensitive to
magnetic fluctuations at its site and can be used to probe the
magnetic noise at its transition frequency. Recent experiments
have used these characteristics to demonstrate that NV centers
can be used as highly spatially resolved probes of novel
physical phenomena across a range of materials. For instance,
NV centers have been employed to image local magnetic
textures [4] and to probe spin-wave excitations [5] at the
nanometer scale in ferromagnetic materials, and magnetic
noise spectroscopy was used to detect the difference in trans-
port properties between single- and polycrystalline metallic
slabs [6]. Magnetic resonance imaging at the single proton
level [7,8] has also been performed using these devices.

In this work, we focus on NV centers as probes of magnetic
noise from many-body systems, and we discuss how various
nonlocal transport phenomena can be inferred from such
measurements. This analysis, in part, is motivated by the
effectiveness of traditional NMR spectroscopy in the study of
strongly correlated electronic systems. In NMR studies, elec-
tronic spin fluctuations are probed by studying the relaxation
of nuclear spins inside the material. These fluctuations are
often tied to electronic correlations [9–13]. For instance, the
discovery of the Hebel-Slichter peak—a massive enhancement
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in relaxation rates of nuclei at temperatures immediately below
the superconducting transition temperature [14–16]—was a
defining success of the BCS theory. However, bulk NMR
measurements probe a certain average (which depends on the
crystal structure of the material) of spin fluctuations at all wave
vectors [17,18]. On the other hand, spatially resolved NMR
measurements [19] have been limited to micrometer-scale
resolutions [20]. NV centers, being point defects, can pick
up the magnetic noise from spin and current fluctuations
in materials in a highly spatially resolved way. Moreover,
unlike traditional linear-response measurements which can
often drive a system into the nonlinear regime [21,22], or
NMR measurements that require external polarizing fields, NV
centers can be used in a minimally invasive way to measure
transport phenomena in materials [6].

The present theory for magnetic noise near materials
is formulated in terms of momentum-dependent reflec-
tion/transmission coefficients for s- and p-polarized elec-
tromagnetic waves [23–25]. In this work, we first use this
formalism to calculate magnetic noise from a conducting
two-dimensional (2D) material—which may be a 2D electron
gas, graphene, or the gapless surface of a three-dimensional
topological insulator [26]—and we discuss how measurements
of this noise directly allow one to probe the wave-vector
dependent transverse conductivity of the system at all length
scales. To elaborate further, in the conducting materials we
consider, the magnetic noise is found to be primarily due to
current fluctuations (as opposed to spin fluctuations) inside
the material, which in turn are related to the conductivity;
it is primarily the transverse current fluctuations (related
to the transverse conductivity) that give rise to the noise,
because longitudinal fluctuations are damped by efficient
screening since they necessarily generate charge fluctuations.
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FIG. 1. Experimental protocol for probing various transport
regimes in conducting materials. An array of NV centers (blue
dots with arrows) can be placed at varying distance zNV from the
2D material and their relaxation rates can be used to infer the
magnetic noise at their location. The curves show, schematically,
the magnetic noise as a function of distance from the material in
various transport regimes; here lm and lee are the mean-free paths
due to scattering of electrons due to extrinsic (phonons/impurities)
and intrinsic (interparticle) scattering. The blue curve describes the
situation when lee > lm and the hydrodynamic regime is absent. For
a quantitative discussion of observing this behavior in graphene, see
Sec. IV and Fig. 4.

Specifically, we find that the noise Nz measured by an NV
center placed at a distance zNV from the material scales
as Nz(zNV) ∼ σT (q = 1/2zNV)kBT /z2

NV, where σT (q) is
the system’s wave-vector dependent transverse conductivity,
T is the temperature, and kB the Boltzmann constant. Thus
varying the position of the NV center allows one to mea-
sure the complete wave-vector dependent conductivity σT (q)
of the system. These results are discussed in Sec. II. [Note
that the transverse conductivity should not be confused with
the Hall conductivity; it is the response associated with a
transverse electric field ET (q) ⊥ q that, for a translationally
invariant system produces a current JT (q) = σT (q)ET (q) ‖
ET (q). Importantly, JT (q) · q = 0; thus transverse currents
do not create charge imbalances unlike longitudinal currents.]

As an application of these ideas, we show how various
transport regimes in electronic systems, namely, ballistic,
diffusive and hydrodynamic [27–33] regimes have their own
unique signatures that can be identified in the scaling of
the magnetic noise as a function of the distance from the
system [see Fig. 1(a)]. In Sec. III, we motivate, using general
considerations, why the transverse conductivity, σT (q) ∼
const.,1/q,1/q2 in the diffusive, ballistic and hydrodynamic
regimes, respectively. The different q-dependent scaling in
these regimes gives rise to different scaling of the magnetic
noise as a function of the distance from the 2D system. In the
hydrodynamic regime, in particular, σT (q) ≈ ρ2

0/(ηq2), where
ρ0 is the charge density of the system and η is the viscosity of
the (electronic) fluid. Thus noise measurements can be used
to directly infer the viscosity of strongly interacting electronic
systems which is of interest due to theoretical predictions of
universal bounds [34,35].

In Sec. IV, we specialize the discussion to graphene;
we present a calculation of the transverse q-dependent con-
ductivity of graphene using a Boltzmann kinetic-theory ap-
proach incorporating relaxation times describing interparticle

scattering and extrinsic phonon/impurity scattering. This ap-
proach yields an analytical result for the dc transverse conduc-
tivity of graphene at finite chemical potential and temperature
that displays all three transport regimes at various length
scales. We use these results to make quantitative predictions
of the magnetic noise from a layer of graphene at varying
distances and comment on the feasibility of measuring the vis-
cosity of the electron fluid in graphene via noise spectroscopy.
See Figs. 1 and 4 for a discussion of some of these results.

Next, in Sec. V, we extend the existing framework for
calculating magnetic noise near materials to allow for calculat-
ing the noise near spatial inhomogeneities in a material. Due
to loss of translational invariance, the reflection/transmission
coefficients become dependent on two momentum variables.
We calculate perturbative (linear-response) corrections to the
noise due to small spatial inhomogeneities which manifest
themselves as corrections to the usual conductivity of the
system. As an application, we calculate the two-momentum
current-current correlations near an elastic scatterer (lodged
inside the two-dimensional conducting material) in Sec. VI
and use these correlations to evaluate the noise profile near
the impurity in Sec. VII. Naively one expects an interplay
between an enhancement in the local density of states which
can enhance the current (and hence, the magnetic noise),
and the enhanced scattering which reduces the current, near
the impurity. Curiously enough, we find that the noise near
an isolated impurity is always suppressed compared to the
background. Importantly, this suppression provides a direct
measure of the scattering properties of the impurity.

Finally, in Sec. VIII, we discuss how magnetic noise
measurements near a Kondo impurity, or more generally, a
large-U Anderson impurity can be used to infer the energy
and linewidth of the Kondo resonance within a mean-field
slave-boson treatment of the impurity-conduction electron
system. In short, the noise suppression measured near the
Kondo impurity is found to be proportional to the scattering
cross-section of electrons/holes scattering off of the impurity,
which in turn yields the spectral weight of the Kondo impurity
near the Fermi surface. An illustration of these ideas is shown
in Fig. 2; for details, see, in particular, Eq. (18), and Figs. 7
and 8; for a quantitative discussion of experimental feasibility
of these ideas in metals and graphene, see the discussion in
Sec. VIII A and Fig. 9. Recent experiments [36] on creating
isolated, local magnetic moments in graphene using chemical
adsorption suggest a possible route to observing the physics we
describe. We outline a number of promising future directions
where we expect these novel probes to have a useful impact,
and we conclude in Sec. IX.

II. NOISE FROM HOMOGENEOUS 2D SYSTEMS

In this section, we provide the formalism for computing
magnetic fluctuations above a 2D system and show how these
are related to its conductivity (and, alternatively, its dielectric
properties). The basic reason for the connection between these
two quantities can be explained as follows. The magnetic fields
generated above the system are related, through a propagation
kernel, to the currents in the underlying system. (This kernel is
related to the Bio-Savart law, see discussion in Appendix A 3.)
Therefore the fluctuations in the magnetic field are tied to the
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FIG. 2. Experimental protocol for probing an Anderson impurity
(red dot) in a conducting material. An array of NV centers (blue dots
with arrows) can be placed at varying lateral separation ρNV from the
impurity, and fixed perpendicular distance zNV to the material. The
curves show, schematically, the current fluctuation induced noise as
a function of the lateral distance ρNV (and fixed zNV) measured by
the NV center. The magnetic noise near the material is suppressed
(relative to the background) close to an Anderson impurity below the
Kondo temperature TK ; the suppression increases as the temperature
is lowered (curves from top to bottom), and is related to the occupation
of the impurity at T = 0. The temperature dependence of the noise
can be used infer the level shift and linewidth associated with the
resonance of the Anderson impurity within a slave-boson mean-field
treatment; see Secs. VII and VIII for a detailed discussion and Fig. 9
for quantitative predictions for this behavior in graphene.

fluctuations in the currents inside the material; the latter are in
turn related to the conductivity of the system via fluctuation-
dissipation relations. Moreover, the magnetic fluctuations at a
distance zNV are most sensitive to currents at wave vectors of
the order of q ∼ 1/zNV; currents at larger wave vectors nullify
themselves, while those at smaller wave vectors have smaller
phase space. Thus, by tuning the distance of the NV center, the
complete finite wave-vector dependence of the conductivity
can be found.

The relaxation rate of the NV center is proportional to the
local magnetic noise [24], which can be defined [37] as a tensor
Nαβ(ω) = F[〈[Bα(rNV,t),Bβ(rNV,t ′)]+〉]/2; here Bα(rNV) is
the α component of the magnetic field at the site of the NV
center, the operation F[.] implies a Fourier transformation,
and the notation [.,.]+ denotes an anticommutator of two
operators. Note that the NV center’s orientation determines
the precise contribution of various components of this noise
tensor to its relaxation rate [6]. In thermal equilibrium, the
fluctuation spectrum NAB(ω), defined by two operators A and
B (above, e.g., Bα and Bβ) is related to the corresponding
Kubo response function χAB(ω) via the fluctuation-dissipation
relation: NAB(ω) = h̄ coth(h̄ω/2kBT )Im[χAB(ω)]. Thus the
computation of the fluctuations of the magnetic field can
be performed by first calculating the response function [38]
χαβ(ω) = ∂B tot

α (rNV)/∂Mβ(rNV), where Mβ(rNV) is an ex-
ternal magnetic dipole set up at the site of the NV center,
pointing in direction β, and B tot

α (rNV) is the total magnetic field
(in the direction α̂) generated both by the oscillating external
magnetic dipole and the reflections from the 2D system. This
is the general method that will be used to evaluate the magnetic
noise in both the homogeneous and inhomogeneous situations.

z = 0

z
rNV

Insulator

Insulator

( 0, µ0)

( 0, µ0)

z
rNV

Insulator ( 0, µ0) zzzzz

Insulator ( 0, µ0)

z = 0

FIG. 3. Geometry under consideration. The insulator in which
the NV center is embedded is characterized by a constant dielectric
function ε; the layer below the 2D sample is characterized by a
constant ε ′. The 2D sample has some wave-vector and frequency-
dependent conductivity σαβ (Q,ω), which can be decomposed into
a transverse and longitudinal part. Current fluctuations are seen to
generate magnetic noise that causes relaxation of the NV center.

Below, we first consider an application of this approach to the
homogeneous case.

An external oscillating magnetic dipole moment generates
electromagnetic radiation that can be separated into two
orthogonal solutions described by an in-plane wave vector Q
and a perpendicular-to-plane wave vector qε

z which together
satisfy (qε

z )2 + Q2 = εω2/c2 (assuming the NV center is
buried inside a lossless dielectric with nondispersive dielectric
constants ε; see Fig. 3). The two orthogonal solutions are
the following: s-polarized, if the electric field is parallel
to the plane, that is, E ∼ (ẑ × Q̂)ei Q·ρ−iqε

z z; or p-polarized,
if the magnetic field is parallel to the plane, that is, B ∼
(ẑ × Q̂)ei Q·ρ−iqε

z z. These waves are partly reflected when they
impinge on the 2D material, but keep their form [39] if the
system is homogeneous: thus, it is sufficient to describe the
reflection, and calculate the total magnetic field by specifying
the reflection coefficients rs( Q) and rp( Q) of the s- and
p-polarized waves in this case.

In terms of these coefficients, the noise (excluding the
vacuum, electromagnetic noise) at a distance zNV can be
expressed as (see Appendix A)

Nz(ω) = h̄ coth
βh̄ω

2
Im

[ ∫ ∞

0

dQ

2π
Q3 iμ0

2qε
z

rs(Q)e2iqε
z zNV

]
,

Nx(ω) = h̄ coth
βh̄ω

2
Im

[∫ ∞

0

dQ

2π
Qqε

z

iμ0

4

×
(

εω2(
qε

z

)2
c2

rp(Q) − rs(Q)

)
e2iqε

z zNV

]
;

qε
z = i

√
Q2 − εω2/c2 for Q >

√
εω/c,

qε
z =

√
εω2/c2 − Q2 for Q <

√
εω/c, (1)

where β = 1/kBT , c is the speed of light, μ0 is the vacuum
permeability, z is the perpendicular-to-plane direction, and x is
an in-plane direction, and we have defined Nα ≡ Nαα because
the noise tensor is diagonal in this basis for the homogeneous
system.
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Let us note that Eqs. (1) are, in principle, generally ap-
plicable to calculating noise from any homogeneous material
limited to a half-space [25]. For the three-dimensional case,
the precise connection between these reflection coefficients
and the transport properties of the material is complicated by
the presence of a boundary [23] and assumptions regarding the
properties of the boundary are required. For the 2D materials
we consider, the reflection coefficients can be computed and
directly related to the conductivity of the material. Due to this
simplification, and the fact that there is a vast variety of 2D
materials with physically interesting phenomena, we refine our
study to that of 2D materials sandwiched between two lossless
dielectrics, as shown in Fig. 3.

We note that, for c → ∞ and ω/(2π ) = ωNV/(2π ) ≈
3 GHz being a small frequency corresponding to the NV-center
transition, the phase space of magnetic noise due to traveling
waves (qε

z > 0) is limited and most of the noise is due
to decaying electromagnetic modes. Consequently, we can
neglect corrections to the noise of the order ω/qε

z c. From
Eq. (1), it is evident that the noise due to p-polarized modes is
negligible due to extra factor of ω2/(qε

z )2
c2. As a consequence,

magnetic noise measurements are fairly insensitive to the
longitudinal conductivity of the system, which only comes
into the noise calculation through rp. One can understand
why rp is connected to the longitudinal conductivity via
the following argument (see Appendix A for more details):
when the magnetic field is parallel to the surface, as in
the p-polarized case, the in-plane component of the electric
field has to be parallel to the in-plane wave vector Q of
the electromagnetic wave; thus, such a field only excites
longitudinal currents ( JL( Q) ‖ Q). Similarly, if the electric
field is s-polarized, it only generates transverse currents (that
are perpendicular to Q); see Fig. 10 for a graphical illustration.
These transverse currents are fundamentally different from
longitudinal currents because they do not couple to charge
fluctuations in the material.

The reflection coefficients must depend on the trans-
verse/longitudinal conductivity σT/L(Q,ω) of the material
because the currents are set up proportionally to σT/L(Q,ω),
and modify the electromagnetic boundary conditions. In
fact, the noise due to p-polarized waves is proportional
to σL(Q)/εRPA(Q). Thus the longitudinal currents, which
generate charge-density fluctuations, are suppressed due to
efficient screening in the conducting material (this suppression
is, in fact, related to the suppression ω2(qε

z )2
/c2 mentioned

above; see Appendix A). The noise due to s-polarized waves is
approximately proportional to σT (Q), and is not suppressed.
Detailed calculations are provided in Appendix A; here we
present only results essential for the further analysis:

rs(Q,ω,ε =ε′) = −1

1 + 2qε
z

μ0ωσT

≈ −ωσT (Q,ω)μ0

2qε
z

,

Nz(ω) ≈ kBT μ2
0

16πz2
NV

∫ ∞

0
dx xe−xRe

[
σT

(
x

2zNV
,ω

)]
,

Nx(ω) = Ny(ω) = Nz(ω)

2
+ O

[
ωzNV

c

]
, (2)

where, as before, Nz is the magnetic noise in a direction
perpendicular to the plane, and Nx = Ny is the in-plane noise.

The noise results are correct to order O[ωzNV/c], and have
been presented for ε = ε′. Note that the measure xe−x picks
out the wave vector q ∼ 1/2zNV as previously advertised. In
principle, since the above can be interpreted as a Laplace
transformation, a complete set of measurements obtained by
varying zNV can be used to deduce the conductivity of the
material at any wave vector. We also note that, since the NV-
center frequency ωNV is small, the measurement essentially
picks out the DC conductivity.

These results can be understood as follows. The noise is
a single volume integral (assuming correlations at one length
scale are dominant) over two kernels relating the currents in
the plane to the magnetic fields at the site of the NV center.
Thus N (ω) ∼ z2

NV(1/z2
NV)

2|J |2, where |J |2 is the amplitude of
current fluctuations at the scale q ∼ 1/zNV and frequency ω =
ωNV. Noting that |J |2 = ωσ coth βω/2, we directly arrive at
the result (besides constant factors). It is also important to note
that, in the above analysis, we excluded magnetic noise from
spin fluctuations. One can show that this assumption holds as
long as the system is not extremely localized (kF lm � 1, where
lm is the mean-free path of the electrons in the system and the
NV center is not brought closer than the interparticle distance
∼1/kF to the material). A detailed justification is presented in
Appendix B.

III. NOISE SCALING AS A FUNCTION OF DISTANCE IN
THE BALLISTIC, HYDRODYNAMIC, AND DIFFUSIVE

REGIMES

The transverse conductivity σT (Q,ω) of metallic systems
is typically momentum independent, as denoted by σ0, at
long length scales, that is, in the diffusive regime for which
Q 
 1/lm, where lm is the mean-free path for electrons
determined by scattering off of impurities or phonons. By
contrast, in the ballistic regime, Q � 1/lm, the transverse
conductivity scales as ∼σ0/(Qlm). A simple way to understand
this scaling is that the conductivity (and current fluctuations) is
proportional to the scattering time of electrons. In the ballistic
limit, Q � 1/lm, the current-current correlations do not have
access to the time scale associated with scattering of electrons
off of impurities. Instead, “scattering” is determined by the
time electrons take to whiz past regions of size 1/Q over which
the applied electric field oscillates. Thus one can replace the
scattering time by 1/QvF , yielding the required scaling.

A novel scaling regime of the conductivity appears when
the electron-electron scattering length lee is shorter than
lm, the scattering length due to impurities, phonons and
other extrinsic sources of relaxation. In this situation, a
hydrodynamic description of the electron fluid holds at length
scales l � lee. Such a regime is hard to achieve in normal metals
where impurity and phonon scattering is practically always
dominant, but can be achieved in graphene when operated
near the charge neutrality point [29–31] where it has been
observed by measurements of nonlocal resistances [29,32],
and a breakdown of the Wiedemann-Franz law [30,40]. One
motivation for observing such hydrodynamic flow is the
measurement of viscosity η, among other novel properties of
quantum critical fluids, which are predicted to have universal
limits [34,35].
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In the hydrodynamic regime, one can describe the
momentum relaxation (of the system) by the Navier-Stokes
equation for incompressible (∇.u = 0; as in transverse flow)
fluid motion:

ρm

(
∂t + 1

τ

)
u − η∇2u = −eρ0 E, (3)

where u(x), ρm, ρ0, τ, and E are the local fluid velocity, mass
density, net charge density, momentum relaxation time (due to
impurities, phonons, etc.), and the externally applied electric
field, respectively. The equation can be straightforwardly
solved for a transverse solution u · q = E · q = 0 at wave vec-
tor q. Then, computing the charge current J = ρ0u = σT (q)E
leads to the result for the conductivity σT (q) ≈ ρ2

0/(ηq2). Thus
the wave-vector dependence of the transverse conductivity in
the hydrodynamic regime is different from both the usual bal-
listic and diffusive limits. This results in an unusual distance-
independent scaling of the noise originating from the electronic
system in this regime. Moreover, we note that the noise is only
dependent on viscosity and the charge density ρ0, and the
latter can be measured independently. This allows a direct
measurement of the viscosity of the system without requiring
additional fitting parameters for thermodynamic entities.

The consequence of these scaling limits is that the distance
dependence of the noise measured by the NV center exhibits
three different scaling regimes: Nz(zNV) ∼ 1/z2

NV for zNV � lm,
Nz(zNV) ∼ const. for lee 
 zNV 
 lm and Nz(zNV) ∼ 1/zNV

for zNV 
 lm,lee. Note that, if lm is less than lee then the
intermediate, hydrodynamic regime, is not observed. See Fig. 1
for a qualitative illustration of these ideas, and Fig. 4 for a
quantitative illustration of these regimes in graphene.

IV. TRANSPORT REGIMES IN GRAPHENE

We now specialize the discussion of the above ideas
to graphene. In this section, we derive the conductivity of
graphene in a phenomenological Boltzmann approach that
incorporates two relaxation times: τee, which sets the time
scale for interparticle collisions, and τ , which sets the time
scale for momentum relaxation due to an external bath (which
may due to phonons or impurities). As we will see, these two
time scales set the length scales lee = vF τee and lm = vF τ that
determine the various transport regimes, namely, diffusive,
hydrodynamic, and ballistic regimes in graphene. We leave
the discussion of determining these time scales and other
numerical estimates to Appendix C.

Our analysis is largely motivated by the Boltzmann ap-
proach of Refs. [35,41]. We will be interested in the regime
where chemical potential and temperature are large and
of similar magnitude; a large temperature allows one to
decrease the interparticle scattering time, thus sending the
system into the hydrodynamic regime, while a large chemical
potential helps increase the charge density and makes current
fluctuations easier to measure experimentally. In this case,
we can assume a local distribution fk,λ(r) = 〈ξ †

k,λξk,λ〉(r) of
Dirac electrons of each of the N = 4 species (consisting of
two valley and two spin states) in graphene in the bands
λ = +1 (electron-like) and λ = −1 (holelike) with dispersion
εk,λ = λvF |k|. (Here we have denoted the creation operator of
the Dirac electron at momentum k and band λ by ξ

†
k,λ.) Further,
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FIG. 4. (a) The wave-vector dependent conductivity of graphene
at a chemical potential μ equal to the electronic temperature kBT =
1000 K, for samples with different mean free paths lm (set by
phonons, or disorder). The long-dashed vertical lines correspond
to lm = 1000 μm and serve as a guide between the diffusive,
hydrodynamic, and ballistic regimes (left to right) for this case.
(b) The corresponding relaxation rates of an NV center susceptible
to noise only in the z direction, as a function of the distance from the
graphene layer. The short-dashed lines are different power-law fits in
q and zNV in the different transport regimes, as per the discussion in
the main text.

we can neglect off-diagonal single-particle expectation values
of the form 〈ξ †

k,∓ξk,±〉 since these terms are only important
in the high-frequency (see, for example, Ref. [41]) regime
ω ∼ 2vF kF ,kBT , which will not be of interest to us here.

Then, the semiclassical Boltzmann equation reads

(∂t + vk,λ · ∇x − eE · ∇k)fk,λ = −Icoll,k,λ[f ] − Iimp,k,λ[f ],

(4)

where E is the applied electric field, e is the electron charge, ∇x

and ∇k are gradients in the real and wave-vector space, vk,λ =
λk̂ is the group velocity of the Dirac fermions at momenta
k and band index λ, and Icoll,k,λ[f ] is the collision integral
associated with the scattering of the electrons and holes off of
one another, while Iimp,k,λ[f ] describes scattering of electrons
off of an external bath.

To solve the Boltzmann equation, we consider a solution of
the following form:

fk,λ(r) = f 0
k,λ(u,μ,r) + f 1

k,λ(r);

f 0
k,λ(u,μ,r) = 1

eβ(εk,λ−μ−u·k) + 1
, (5)
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where, u and μ are the position-dependent local velocity
and chemical potential of the system. Further, we demand
1
V
∑

λ,k f 1
k,λ = 0 and 1

V
∑

λ,k kf 1
k,λ = 0, with V being the

system’s area. This implies that the deviation of the distribution
from f 0 is not associated with excess charge or momentum.
This imposition does not constrain the solution since an appro-
priate choice of local velocity u(x) and chemical potential μ(x)
can describe the total momentum and charge of the system.

To make further progress, we assume the following form
for the collision integrals Icoll,k,λ[f ] and Iimp,k,λ[f ]:

Icoll,k,λ[f ] = −f 1
k,λ

τee

,

Iimp,k,λ[f ] = −fk,λ − f 0
k,λ(u = 0)

τ
. (6)

The above choices are motivated as follows. Interparticle
collisions conserve total momentum and total charge; thus
we require

∑
λ,k kIcoll,k,λ[f ] = 0 and

∑
λ,k Icoll,k,λ[f ] = 0.

These conditions are clearly satisfied by the collision integral
under the assumptions on f 1

k,λ. Moreover, we expect these
interparticle collisions to relax the system to a state of “fluid
motion,” as captured by f 0

k,λ; thus the relaxation rate should be
proportional to the deviation f 1

k,λ as we have considered. Next,
unlike interparticle collisions, interactions with an external
bath of phonons and impurities alter the total momentum of
the system, while (typically) conserving total charge. These
interactions attempt to relax the system’s state of motion to
that of stationarity captured by the distribution f 0

k,λ(u = 0).
Our choice of Iimp,k,λ[f ] captures both these facets; namely,
the relaxation rate is proportional to the deviation of the
distribution of electrons from the stationary distribution, and
it conserves the total charge (to order O[(u/vF )2]) while
allowing for relaxation of the total momentum of the system.
In what follows, we will show that the above Boltzmann
equation yields a conductivity that is of the Drude form1 (and
independent of q) for qvF τ 
 1, ballistic form (scaling as
1/q) for qvF τee � 1, and of the hydrodynamic form (scaling
as 1/q2) at intermediate length scales.

One can now obtain an equation on the conservation of
charge density and momentum flux density by integrating the
Boltzmann equation with the measure N

V
∑

k,λ and N
V
∑

k,λ k
on both sides. (N = 4 captures the two spin and two valley

1A note on terminology. Beyond the interparticle scattering length,
the particles are already “diffusing”, that is, local density relaxes
as a power-law in time; this is because interparticle collisions also
conserve charge. One can observe this by considering the situation
where no electric field is applied, thus u = E = 0; then substituting
the current from Eq. (10) in the continuity equation, Eq. (7), readily
yields Ficks’ law with a diffusion constant D = v2

F τee/2. In the case
that τee � τ , and consequently, interparticle collisions are irrelevant,
the above calculation can be repeated to yield a Ficks’ law with
the diffusion constant D = v2

F τ/2. The hydrodynamic regime is thus
delineated from the diffusive regime by the presence of a current
relaxation rate that is wave-vector dependent (which arises due to
viscous damping). We deem the transport as diffusive when this
viscous damping is unimportant and the conductivity is given by
the usual q-independent Drude form, as is traditional.

species of Dirac fermions in graphene.) This yields (to first
order in u) for charge conservation,

∂tρ0 + ∇ · J = 0, where

ρ0 = N

V
∑
k,λ

f 0
k,λ(u = 0) − N

V
∑

k

1

= N (kBT )2

2πh̄2v2
F

(Li2(−e−βμ) − Li2(−eβμ)),

J = ρ0u + N

V
∑
k,λ

vk,λf
1
k,λ, (7)

and for momentum conservation,

(ε + P )(∂t + 1/τ )u + u∂t (ε + P ) + ∇P + Fη = −eEρ0;

ε = N

V
∑
k,λ

εk,λf
0
k,λ(u = 0) − N

V
∑

k

εk,−1,

P = N

2V
∑
k,λ

k.vk,λf
0
k,λ(u = 0) − N

2V
∑

k

εk,−1 = ε

2
,

ε + P = −6N (kBT )3

πh̄2v2
F

(Li3(−e−βμ) + Li3(−eβμ)),

Fη = N

V
∑
k,λ

kvk,λ · ∇xf
1
k,λ. (8)

In the above equations, the quantities ρ0, J,ε, and P can
be interpreted as the charge density, charge-current density,
energy density, and pressure, respectively. Lin refers to the nth

polylogarithm function. Note that we have defined ρ0 and J

without the factor of electron charge, −e.
We see that the current J is composed of a term correspond-

ing to the usual flow of a net charge ρ0 with velocity u and a
term directly proportional to E, which can be nonzero even if
the total charge is zero: this corresponds to the finite current
carried by thermally excited electrons and holes as identified
in Ref. [40]. This current carries information about the relax-
ation time τee since it is proportional to the nonequilibrium
distribution f 1

k,λ. The term Fη in the momentum-conservation
equation describes the viscous forces acting on the system; this
interpretation will become clearer below. Note that the term
reflecting momentum convection ∝(ε + P )u · ∇u appears at
a higher order in u and has been neglected.

We now evaluate the extra contributions to the current J and
the viscous force Fη using the relaxation time approximation
as described in Eq. (6). We work under the following condition:
ω and E are to be understood as parametrically small quantities
so that we may neglect any terms of the kind uE ∼ E2 or
u × ω ∼ ωE or ω2 or E2. Then, we may solve for f 1 using
the re-arrangement of Eq. (4):

f 1
k,λ = − τ ′

ee

1 + τ ′
eevk,λ · ∇x

× [
(∂t + 1/τ + vk,λ · ∇x − eE · ∇k)f 0

k,λ

]
, (9)

where 1/τ ′
ee ≡ 1/τee + 1/τ .

Before we proceed further and derive the full wave-vector
dependence of the conductivity, we derive the equations of
motion of the Dirac fluid in graphene in the hydrodynamic
regime: qvF τee 
 1 and qvF τ � 1. In this regime, τ ′

ee ≈ τee
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and τ ′
eevk,λ · ∇x in the denominator of Eq. (9) can be neglected.

We then find

−e J = −eρ0(1 + ωτee)u + σ0(E − ∇xμ/e),

Fη = −(η∇2u + ζ∇(∇ · u)), (10)

where

σ0 = e2

h̄

Nτee

h̄

(h̄vF )2

2V
∑
k,λ

∂εk,λ
f 0

k,λ(u = 0)

= e2

h

Nτee

h̄
(kBT ln(1 + eβμ) − μ/2),

η = (ε + P )τee

4

= −3Nτee(kBT )3

2πh̄2v2
F

(Li3(−e−βμ) + Li3(−eβμ)),

ζ = 2η. (11)

We can readily interpret η and ζ as the shear and bulk
viscosity, respectively, owing to the form of the hydrodynamic
equations. σ0 is an extra, intrinsic conductance of graphene in
the hydrodynamic regime that exists even when the chemical
potential is tuned to zero. One can Fourier transform the mo-
mentum conservation equation and find a transverse solution
at wave vector q satisfying u · q = E · q = 0 to arrive at the
wave-vector dependent transverse conductivity of the system:

σT (q) = σ0 + e2ρ2
0/(ε + P )

−iω + 1
τ

+ η

ε+P
(qvF )2

≈ σ0 + ρ2
0

ηq2
. (12)

Here we note that the hydrodynamic regime persists at
length scales q−1 = l in the range (lmlee)1/2 � l � lee. For
l �

√
lmlee, we note that the momentum relaxation rate 1/τ

dominates over the viscous relaxation rate in the pole of
Eq. (12). For q−1 = l � lee, we expect the viscosity to depend
strongly on the momentum q [due to our omission of the term
qvF τee in the denominator of Eq. (9)].

We now discuss the solution of the full wave-vector
dependent transverse conductivity by solving for the viscous
force Fη and the current J with the complete result for f 1

k,λ in
Eq. (9). We find

σT
q = Y (q)σ0 + e2ρ2

0v2
F τ ′

ee

ε + P

× (1 − X(q))(1 + X(q) + (iω − 1/τ )τ ′
eeY (q))

X(q) + (1 + X(q))(−iω + 1/τ )τ ′
ee

,

u = −eEτ ′
eev

2
F

ρ0

ε + P

1 − X(q)

(1+X(q))(−iω+1/τ )τ ′
ee+X(q)

,

X(q) = (qvF τ ′
ee)2

(qvF τ ′
ee)2 + 2 + 2

√
1 + (qvF τ ′

ee)2
,

Y (q) = 2

1 +√
1 + (qvF τ ′

ee)2
. (13)

The various transport regimes can be quickly surmised from
the behavior of σT

q in Eq.(13) in the limiting cases. In the
diffusive regime, qvF 
 1/τ,1/τee and ω → 0, we can set
X(q) = 0. Then, u(q) = −eEτv2

F
ρ0

ε+P
and conductivity σT

q ≈

e2ρ2
0τv2

F /(ε + P ) is independent of q. (There is a small addi-
tional part to the conductivity proportional to τ ′

ee, and also in-
dependent of q that we neglect.) In the hydrodynamic regime,
1/τ 
 qvF 
 1/τee, we have X(q) = (qvF τ ′

ee)2/4, Y (q) ≈ 1,

which yields σT
q = e2ρ2

0
ηq2 + σ0 as in Eq. (12). In the ballistic

regime, qvF � 1/τee and we have 1 − X(q) ≈ 2
τ ′
eeqvF

; we find
that the velocity u vanishes as 1/qvF and the conductivity

becomes σT
q = e2ρ2

0
ε+P

2v2
F

qvF
+ σ0/(qvF τ ′

ee). Importantly, the time
scale τee vanishes from the results and the conductivity scales
as 1/(qvF ). These results confirm our expectations for the q

dependence of the conductivity in various transport regimes.
In Fig. 4, we use the results in Eq. (13) along with values

of τee as discussed in Appendix C to compute the complete
q-dependent conductivity of graphene and numerically vali-
date our expectations. We also calculate the relaxation rate of
the NV center measuring only noise Nz in the z direction from
Eq. (2). We expect that a relatively clean sample of graphene
in which the electrons are heated to large temperatures [42] of
the order of ∼500 K may be used to experimentally investigate
these effects. At this temperature, we note that lee ∼ 100 nm,
while lm ∼ 10 μm (if limited by acoustic phonons, as is likely
in graphene on hBN substrates). This provides an order of
magnitude in length (NV-center distance) q−1 ∈ [

√
leelm,lm]

to observe hydrodynamic behavior.

V. NOISE FROM INHOMOGENEOUS SYSTEMS

In the previous sections, we considered all forms of
irregularities in the material to be “disorder-averaged.” This
assumption becomes less acceptable in the near-field regime
where the distance of the NV center is comparable to the
mean-free path (or smaller) and an individual impurity may
significantly alter the noise profile from the background. In
particular, if the impurity has interesting physical properties
(such as a temperature-dependent level shift, linewidth or other
scattering properties), as in the case of Kondo impurities, this
extra contribution can be used to study the physics of an
isolated impurity in detail. To address such situations, Eqs. (1)
and (2) need to be modified to allow for calculation of noise
when the conductivity has two-momentum corrections (due to
the breaking of the translational symmetry).

We address this question in a perturbative framework or
linear-response framework in which we treat the system as
having small two-momentum corrections to the conductiv-
ity on top of the background single-momentum-dependent
(translationally invariant) conductivity. We follow the previous
sections and perform first the linear-response calculation in
which we determine the total magnetic field at the site of the
NV center in the presence of a magnetic dipole at the same site.

This magnetic dipole generates an electromagnetic field,
say E0( Q,qz), with an in-plane momentum Q and
perpendicular-to-plane momentum qz; for the ease of pre-
sentation, we consider a single wave vector at a time,
although the dipole generates fields at all wave vectors which
impinges on the 2D material. Now, besides generating a current
J( Q) at wave vector Q, the electric field generates weaker
source currents with different in-plane wave vectors Q′, that
is, J s( Q′) = ∑

αβ α̂σαβ( Q′, Q)E0,β( Q). These source cur-
rents will then generate additional outgoing electromagnetic

155107-7



KARTIEK AGARWAL et al. PHYSICAL REVIEW B 95, 155107 (2017)

waves E1( Q′,q ′
z) whose amplitude must be determined self-

consistently to first order in perturbation theory (in particular,
in the presence of the additional induced current J1( Q′) =
σ0( Q′)E1( Q′), which is of the same order as J s( Q′)). These
reflected fields will modify the noise at the NV center and their
amplitude must be evaluated.

In order to perform these calculations, we first solve the
problem of outgoing electromagnetic radiation (since there
are no incoming waves associated with the two-momentum
corrections) due to a source current J s( Q), in the 2D material,
which may be transverse or longitudinal. The two cases, as
before, generate different polarizations of outgoing radiation:
the transverse (longitudinal) source current produces only s-
(p-)polarized fields. The detailed solution of this boundary-
value problem are presented in Appendix D.

We again note that, since the (decaying solutions of the)
electromagnetic field emanating from the magnetic dipole
are primarily s-polarized, the generating electric field and
current inside the 2D material will predominantly be transverse
polarized. However, the currents that are generated at different
momenta Q′ will have both transverse and longitudinal
components. We again assume that the longitudinal part of
these currents is suppressed due to screening and will generate
even smaller noise corrections than the transverse part; thus,
we neglect these contributions. (Note that this last assumption
is not required to evaluate the noise in the perpendicular direc-
tion.) Thus the two-momentum corrections to the conductivity
of interest are effectively correlations of transverse currents
at different momenta q1 and q2. In particular, we require
Re[σT,T (q1,q2)] where

Re[σT/L,T /L(q1,q2)] = Im[�T/L,T /L(q1,−q2,ω + i0+)]

ω
,

�T/L,T /L(q1,−q2,τ − τ ′) = 〈Tτ [JT/L(q1,τ )JT/L(−q2,τ
′)]〉,

JT (q1) =
∑

α

(ẑ × q̂1)αJα, JL(q1) =
∑

α

(q̂1)αJα. (14)

(Thus �T/L,T /L are the retarded two-momentum transverse and longitudinal current-current response functions, defined with
an additional negative sign; see Appendix D.) The details of the calculation of the correction to the reflection coefficients and
the complete calculation of the noise due to these corrections is carried out in detail in Appendix D. Here we simply quote the
important final results of these calculations:

Nz(rNV) = μ2
0kBT

2

∫ ∞

0

q1dq1dθ1

(2π )2

∫ ∞

0

q2dq2dθ2

(2π )2
eiρNV(q1 cos θ1−q2 cos θ2)−(q1+q2)zNV Re[σT,T (q1,q2)],

Nn̂1n̂2 (rNV) = μ2
0kBT

2

∫ ∞

0

q1dq1dθ1

(2π )2

∫ ∞

0

q2dq2dθ2

(2π )2
eiρNV(q1 cos θ1−q2 cos θ2)−(q1+q2)zNV (q̂1.n̂1)(q̂2.n̂2)Re[σT,T (q1,q2)], (15)

where n̂1 and n̂2 are in-plane directions; we have assumed
that the NV center sits at a distance zNV away from the 2D
surface, and a distance ρNV in the radial direction away from
the “origin” on the 2D surface. (In the next section, an impurity
is assumed to reside at this origin.) The azimuthal angles θ1

and θ2 of q1 and q2 are measured with respect to a fixed
(but arbitrarily chosen) axis on the 2D surface. Off-diagonal
correlations of the form Nzn̂1 are negligible, and we again
adopt the notation Nz ≡ Nzz. Note that the above results are
correct to order O[ωzNV/c], and under the assumption that
|εRPA(q 
 kF )| � 1. Thus we assume that the NV center is
at a distance much greater than 1/kF from the 2D material
which allows us to neglect complications coming from charge
fluctuations that become visible at distances smaller than the
screening length in the material. Under these approximations,
the results of Eq. (15) are fairly straightforward extensions
of the translationally invariant result: we see that inserting
Re[σT,T (q1,q2)] = Re[σT,T (q)]δ(q1 − q2) reproduces the re-
sults of the homogeneous system.

VI. CURRENT-CURRENT CORRELATIONS NEAR
AN ISOLATED IMPURITY

We now calculate the two-momentum corrections to the
conductivity due to an isolated impurity; for a sense of the

experimental setup, see Fig. 2. We will focus on situations
where we can treat the impurity in a noninteracting framework
(and can hence, neglect vertex corrections) so that it only
serves as a elastic point scatterer with momentum-independent
scattering matrix elements (which may depend on energy).
These matrix elements may themselves be computed from
a more complicated interacting model such as the Anderson
model (for a discussion on computing these properties of the
Kondo model at temperatures below the Kondo temperature
TK , see Ref. [43]). We further assume that the impurity
is located in a background that can be accounted for by
assuming a linewidth 1/(2τ ) (for instance, due to phonons)
to the electron Green’s functions; for simplicity, we assume
this linewidth is due to isotropic scattering in the background
so that (ladder-type) vertex corrections associated with it are
absent. Note that τ can be experimentally determined by bulk
conductivity measurements. Alternatively, experiments can
be performed in the near-field regime wherein the NV center
is placed much closer to the impurity as compared to the
mean-free path lm = vF τ . In this limit, the “excess” noise near
the impurity does not depend on τ and our approximations
pertaining to the background should not matter significantly.

Then, in the presence of the extra impurity at position rf ,
and frequency-dependent scattering matrix element Tf (iωn),
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+

+

FIG. 5. The corrections to the current-current correlation func-
tion. Note that the diagram with impurity-scattering for both the
particle and the hole evaluates to zero for transverse current
correlations; see Appendix E.

the electron Green’s functions can be written as

G0(q,iωn) = 1

iωn − εq + i
2τ

sgn(ωn)
,

G(q1,q2,iωn) = G0(q1,q2,iωn) + G1(q1,q2,iωn),

G1(q1,q2,iωn) = ei(q1−q2).rf G0(q1,iωn)Tf (iωn)G0(q2,iωn).

(16)

From here on, we set rf = 0, without loss of generality. The
two-momentum corrections to the conductivity are described
by the diagrams in Fig 5. (Note that the diagram involving
impurity-scattering of both the particle and the hole vanishes
for transverse correlations.) These represent instances where
either the particle or hole in the particle-hole pair carrying
the current scatters off of the impurity and yields novel two-
momentum correlations.

The imaginary part of the transverse current-current cor-
relations, Im[�T (q1,q2,ω + i0+)] and consequently the real
part of the two-momentum corrections to the conductivity can
be evaluated (from the diagrams in Fig. 5) to yield

Re[σT,T (q1,q2,ωNV)] ≈ 4σ0τF1[x1,x2,θ1 − θ2]F2[T ],

F2[T ] = −1

π

∫
dω[−n′

F (ω)]Im[Tf (ω)],

(17)

where σ0 = e2v2
F ν(0)τ/2 is equal to the DCdc, uniform-field

conductivity of the 2D system, n′
F is the derivative of the Fermi

function, x1,2 = vF q1,2τ , θ1 and θ2 are azimuthal angles of the
in-plane momenta q1 and q2, F1 is an analytically determined
dimensionless function (explicit form in Appendix E), which
contains geometric information (besides an amplitude) about
the current-current correlations near the impurity, and F2[T ]
is proportional to the scattering cross-section of the process in
which a particle (or hole) scatters off of the isolated impurity
(since it depends on the imaginary part of the T matrix Tf ).
The above results hold under the assumption that ω = ωNV ≈
3 GHz is the smallest scale in the problem; in this case, the

two diagrams yield the same result leading to an extra factor
of 2 in Eq. (17). Details of this calculation are provided in
Appendix E.

Now we physically motivate this result. First, we note that
the diagrams that we have considered calculate the generation
of two-momentum current-current correlations due to the pro-
cess in which a constituent particle or hole of the particle-hole
pair (carrying the current) is scattered off of the isolated Kondo
impurity. Thus we can estimate the current-current fluctuations
by counting the number of scattering events Ns , in time τ (the
characteristic scale at which these fluctuations will decay), and
the amplitude As of current-current fluctuations that these con-
tribute to. Then, Im[�T (q1,−q2,ω)] = ωRe[σT,T (q1,q2,ω)]
∼ NsAsτ .

First, we compute the number Ns of scattering events
that generate these current-current correlations. Keeping in
mind the notation of Eq. (E6), we note that particle-hole
pairs are created with a certain density of states ν(0) and
weight nF (ω′) − nF (ω + ω′) ≈ −ωn′

F (ω′). Thus ν(0)ω is
the effective particle-hole density at energy difference ω,
and approximate energy ω′. A “tube” of these particle-hole
pairs of length vF τ and thickness of the scattering cross-
section scatter off of the Kondo impurity in time τ . The
scattering cross-section (of particles/hole at frequency ∼ω′)
is given by (using the optical theorem in two-dimensions [44])
∼ImTf (ω′)/vF . With these details, the total number of
scattering events, in the time τ can be estimated to be
Ns ∼ ων(0)vF τ F2[T ]

vF
.

Next, we determine As . Heuristically, computing the full
angular and momentum dependence of As is difficult. We
note that for Eq. (17) to hold, we require As = v2

F F1[θ ]. Here
we rationalize this result in some limits. Since particle-hole
pairs are created with momenta k ∼ kF , they have velocities
∼vF . This explains the factors of v2

F . F1[θ ] can then be
interpreted as a complicated interference amplitude between
particle/hole plane-wave states with momenta q + q1, q + q2,
and q (q ∼ kF but otherwise arbitrary) and decaying due to
the linewidth 1/τ . The angular dependence of this function is
complicated by the fact that we calculate transverse current
correlations and will be discussed later, but the amplitude
can be estimated. At small momenta, vF q1τ,vF q2τ 
 1,
the decay of the wave function dominates the interference
amplitude; consequently, F1[θ ] ∼ 1. At large momenta, the
oscillations cause a decay in the amplitude, of the order of
1/x2, where x is some combination of vF q1,2τ . Reassuringly,
in this limit, the current-current correlations do not depend on
the background scattering time τ . We note that our qualitative
expectations for F1[x1,x2,θ ] agree with the behavior of this
function in the small and large momenta limits, respectively
[see Eq. (E8)].

In Fig. 6, we produce the geometric form of the transverse
current correlations (by plotting F1[x1 = x2,θ ] for small
and large momenta). At small momenta, x1,x2 
 1, the
correlations are proportional to − cos(θ1 − θ2). This can be
understood by the fact that, at small momenta, electron Green’s
functions do not retain geometric information since this is
suppressed by the large, isotropic relaxation rate 1/τ . The
geometrical dependence of correlations comes from the fact
that the transverse part of the current carried by the electron-
hole pair comes with amplitudes sin(θq − θ1) sin(θq − θ2)
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FIG. 6. F1 (F1,L), which characterize the angular dependence
of transverse (longitudinal) two-momentum current-current corre-
lations, are plotted as a function of the relative angle θ between the
two momenta of equal magnitude. The main figure shows the angular
dependence for small momenta q, characterized by x = vF qτ = 0.1,
while the inset is for large momenta, with x = 10. At small momenta,
the transverse and longitudinal correlations coincide; they are both
suppressed for forward scattering and enhanced for back scattering.
At large momenta, x � 1, as seen in the inset, transverse and
longitudinal current correlations differ significantly: longitudinal
correlations are uniformly enhanced, while transverse correlations
appear to be uniformly suppressed except for back scattering where
they are enhanced.

which, averaged over θq , yields the desired result. Note that
the negative result at θ1 = θ2 is due to the fact that the impurity
effectively reduces current-current correlations in the forward
direction because of it’s role in scattering the particles in
all directions. At large momenta, the angular dependence is
mostly negated because the electron Green’s functions are
sharp, and the integral over θq picks out special angles for the
average momentum q of the particle-hole pair that makes the
particle-hole pair as on-shell as possible. This breaks down for
back-scattering, that is, when θ1 = θ2 ± π , since, in order to
enforce the on-shell condition, q ⊥ q1,q2 and the electron’s
Green’s functions are again dominated by their imaginary part.
Next, we focus on the function F2[T ], which is solely related
to the impurity’s properties and which, in particular, will show
interesting temperature dependence for the case of a Kondo
impurity.

VII. NOISE PROFILE NEAR AN ISOLATED IMPURITY

We now calculate the noise (due to current fluctuations)
near a single impurity using Eqs. (15) and (17). (See also
Fig. 2 for an illustration of the experimental setup.) In the
far-field limit where zNV � lm, the form of F1[x1 
 1,x2 

1,θ ] ≈ −(π/2) cos(θ ) allows us to analytically calculate the
noise in all directions (see Appendix E for the results). In the
near-field limit, zNV 
 lm, which is of greatest experimental
interest, we rely on a numerical computation. The noise in the

0 1 2 3 4 5
20

15

10

5

0

FIG. 7. The dimensionless curve C(ρNV,zNV,lm) is plotted as
function of ρNV (in units of zNV) for zNV = lm, 0.1lm, and, lastly,
0.01lm, for which the curve attains its universal form associated with
the limit zNV 
 lm.

perpendicular-to-plane direction is given by

Nz = Nz,back. − μ2
0kBT e2ν(0)

16h̄ π4z2
NV

F2[T ] C(ρNV,zNV,lm), (18)

where Nz,back. is the background noise contribution due to the
conductivity of the system in the absence of the impurity, and C

is a dimensionless function whose form is known analytically
for zNV � lm, and it attains a universal (lm independent) form
in the limit zNV 
 lm which can be determined numerically
(see Fig. 7). Thus, as expected, the noise due to the impurity
is independent of the mean-free path at distances zNV 
 lm.

We note (from the results of Fig. 7 and analytical results
in the far-field regime) that the noise is unchanged (from
the background) precisely above the impurity; this is be-
cause we only consider s-wave scattering (by considering a
momentum-direction independent T matrix) and by symmetry,
these waves do not generate magnetic noise on top of the
impurity.

More surprisingly, the noise near the impurity is suppressed
compared to the background. A simple-minded explanation
is that in the far-field regime, where noise depends only
on low-momentum conductivity, we can expect the Kondo
impurity to act as any other impurity in that it simply reduces
the effective scattering time, which reduces the conductivity,
and consequently the magnetic noise. However, it is not
immediately obvious that the “excess” noise must be negative
in the near-field regime. In particular, in Fig. 6, we see that
unlike transverse current fluctuations, longitudinal fluctuations
are enhanced at large momenta (or near-field) due to the
presence of the Kondo impurity. These fluctuations, however,
do not contribute to the noise because they are quickly screened
at length scales of the inverse Fermi wave vector. (For a
discussion on the calculation of the longitudinal current-
current fluctuations, see Appendix E).
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We can recast the noise calculation in a way, which separates positive and negative contributions to the noise:

Nz(ω → 0) ∼
∫

d2q
(2π )2

∫
dω(−n′

F (ω))Af (ω)A0(q,ω)

{∣∣∣∣
∫

d2q1

(2π )2
e−|q1|zNV+iq1·ρNV Re[G0(q + q1)]

(
q − q · q1

q2
1

q1

)∣∣∣∣
2

−
∣∣∣∣
∫

d2q1

(2π )2
e−|q1|zNV+iq1·ρNV Im[G0(q + q1)]

(
q − q · q1

q2
1

q1

)∣∣∣∣
2}

. (19)

This representation makes it obvious that in the far-field
regime, where the important momenta satisfy vF q1τ 
 1,
the “excess” noise is negative because the imaginary part
of the Green’s function has a larger amplitude. In the
opposite limit, the fact that the net result is still negative
relies intricately on the factors |q − q · q̂1q1|2; evidence for
this comes from the fact that, unlike transverse fluctuations,
longitudinal fluctuations are enhanced in the large momentum
limit.

VIII. NOISE FROM A KONDO OR LARGE-U
ANDERSON IMPURITY

In this section, we specialize the previous discussion to a
Kondo or more generally, a large-U Anderson impurity. Such
an impurity can exhibit strong scattering at low temperatures
T � TK , which can separate it from other weak or small-angle
scatterers in the near-field regime. Moreover, the scattering
properties are temperature dependent (unlike a simple potential
scatterer), and as we discuss below, can be studied in the
experiment we propose.

Before we discuss in detail the noise profile due to current
fluctuations near a Kondo impurity, we remark that at short
distances, the noise from spin flips at the site of the impurity
can become significant. This noise scales as ∼1/z6

NV (due to
the fact that the magnetic field from the spins themselves decay
as 1/z3

NV) as opposed to the 1/z2
NV [see Eq. (18)] scaling of

noise from modified current fluctuations near the impurity. At
most experimentally accessible distances, and for impurities
with a Kondo temperature in the few Kelvin range, this noise
turns out to be numerically smaller than the current noise.
An estimate for the crossover scale zc below which this noise
becomes dominant is provided in Appendix B. Thus we will
focus on current noise in what follows.

The results of Secs. VI and VII can generally be used
to calculate the two-momentum current-current correlations
when impurity scattering is primarily elastic; these can
therefore be applied to an Anderson impurity in the regime
T � TK [45]. In what follows, we calculate the quantity F2[T ]
in Eq. (17) for a large-U Anderson impurity in a mean-field
slave boson approach. Together with the results of Sec. VII,
this determines the complete noise profile near an Anderson
impurity. We also comment on the experimental feasibility of
our results.

At low temperatures, T 
 TK , a mean-field slave-boson
(equivalently, a large-N expansion) approach (as discussed
in section (7.5) in Ref. [43]) can be used to arrive at a
single pole approximation for the impurity Green’s function.
In this approximation, the impurity orbitals are replaced by
independent fermionic operators along with the introduction

of a slave boson operator mediating the exchange interaction.
In the mean-field approximation, the slave boson condenses
below the Kondo transition temperature, and an effective
quadratic model is found describing the scattering of conduc-
tion electrons off of the local impurity states. The scattering
matrix element is found to be proportional to the condensed
fraction of the slave boson, and thus, it also controls the
linewidth of the impurity orbitals �. The T matrix for electron-
impurity scattering is given by T (ω) = �

πν(0)Gf (ω), where
Gf (ω) = 1/(ω − εf + i�) is the retarded impurity Green’s
function. Assuming a flat conduction band of width 2D, the
renormalized hybridization parameter �(T ) and resonance
energy εf (T ) satisfy the self-consistent equations (found by
minimizing the free energy of the system)

nf (T ) =
∫ D

−D

dωnF (ω)
−1

π
Im[Gf (ω)],

×
∫ D

−D

dωnF (ω)Re[Gf (ω)]

≈ −log

(√
εf (0)2 + �(0)2

D

)
, (20)

where nf [T ] is the occupation of the impurity orbital at
temperature T (not to be confused with nF (ω), the Fermi
function). These equations can be solved given two input
parameters, which we can choose to be, nf (T = 0) = 1

2 −
1
π

tan−1 ( εf (0)
�(0) ), and the Kondo temperature TK , which we

define as kBTK =√
ε2
f (0)+�2(0).

The function F2[T ] is determined in terms of the
temperature-dependent linewidth and resonance energy as

F2[T ] = β�

2π3ν(0)
Re

[
ψ3

(
1

2
+ β�

2π
+ i

βεf

2π

)]
, (21)

where ψ3 is the Trigamma function (double derivative of the
logarithm of the Gamma function).

In the limit T → 0, the result of Eq. (21) agrees
with the Friedel sum-rule [43] result: F2[T → 0] =

1
π2ν(0) sin2 (πnf (T = 0)). From Eq. (18), we see that, in this
limit, and for zNV 
 lm, so that C is universal and independent
of lm, the modified (due to the impurity) noise amplitude
depends solely on the single input parameter nf (T = 0), the
occupation of the impurity at zero temperature. Therefore
noise measurements at T 
 TK , may in principle be used to
infer nf (T = 0) for magnetic impurities with a simple internal
structure. Note that in the Kondo regime nf (T ) = 1/2 always,
however, for more complex magnetic impurities like Fe or
Mn, typically several angular momentum channels cooperate
to screen the impurity spin. The other input parameter, TK , can
be more easily determined experimentally by comparing the

155107-11



KARTIEK AGARWAL et al. PHYSICAL REVIEW B 95, 155107 (2017)

0.0 0.2 0.4 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.6

FIG. 8. The function F2[T ] (in units of 1/π 2ν(0)), calculated in
the slave-boson mean-field approximation using Eqs. (20), is plotted
as a function of the temperature (in units of the Kondo temperature
TK ) for various values of the zero-temperature occupation of the
Anderson impurity, nf (T = 0), as discussed in the main text. At
T = 0, the occupation of the impurity nf (0) determines the phase
shift (2πnf (0)) acquired by electrons during scattering and is related
to the scattering amplitude F2[T ] = (π 2ν(0))−1 sin2 (πnf (T = 0)).
Noise suppression sensed near the Anderson impurity is directly
proportional to this function which describes the effectiveness of
the impurity in scattering electrons near the Fermi surface.

temperature dependence of the noise near the impurity to the
curves of Fig. 8. Using these parameters the complete form of
the Kondo resonance can be accessed experimentally through
noise measurements.

For T � TK , the resonance model does not provide an
accurate description of the system. The full evaluation of the
conductivity in this case is beyond the scope of this work but
we point the reader to Refs. [46,47] where the conductance
of quantum dots modeled as Anderson impurities (which is
directly proportional to F2[T ]) is discussed and evaluated for
all temperature ranges.

A. Experimental protocol and feasibility

We now comment on a possible experimental protocol that
could be used to measure the properties of a single Anderson
or Kondo resonance. First, we note that the experiment is best
carried out at distances zNV 
 lm since the noise amplitude is
larger, but also because the noise does not depend on extrinsic
factors such as the mean-free path. Next, from Fig. 7, we
see that the noise contribution of the impurity is maximal at a
distance ρNV ≈ zNV. Thus a possible experiment could involve
setting up a range of NV centers at a fixed distance zNV 
 lm
and examining where the noise is most different from the
background, as illustrated in Fig. 2. Once this point is found,
the temperature can be varied and the temperature variation of
the noise can be recorded.

As discussed below Eq. (21), the amplitude and the
temperature dependence of the measured noise can be used
to infer the Kondo temperature TK and the occupation of the
d or f level of the magnetic impurity, as described within
the slave boson mean-field approximation. Alternatively, one
can use the noise measurements to directly infer F2[T ], as

0 1 2 3 4

4.4

4.6

4.8

5.0

5

FIG. 9. The relaxation rate of an NV center measuring noise in
the z direction near an Anderson impurity in doped graphene, at a
fixed distance zNV = 10 nm ≈ 1/kF for different zero-temperature
impurity occupation nf (0) and temperatures T relative to the Kondo
temperature TK . We assume an electronic temperature of 100 K for
graphene, and a chemical potential bias of 1000 K; for details of
conversion of noise into a relaxation rate for the NV center, see
Appendix C.

per Eq. (18) (which the mean-field model only approximates)
which describes the scattering properties of the impurity,
and is itself a quantity of theoretical interest [46]. This puts
our noise measurement protocol in contrast with tunneling
probes which attempt to measure the spectral function of the
Kondo resonance (although results are complicated by Fano
resonances and the interaction between the impurity and the
tunneling electrons [48]).

Finally, we estimate the amplitude of the noise due to the
scattering off the impurity in comparison to the background
noise at distances zNV 
 lm. We note that the noise due
to the impurity scales as 1/z2

NV as opposed to the noise
from the material background which scales as 1/zNV in
this regime. Thus the modification of the noise due to
the impurity is stronger for smaller zNV. If we estimate
Nz,back. ≈ μ2

0kBT e2vF ν(0)/(16πzNV) [using Eq. (A15), and
the conductivity in the ballistic regime, σ0/qvF τ ], then
using Eq. (18), and noting the value of maximum value
of C ≈ 20 and F2[T ] ≈ 1/(π2ν(0)h̄), we find that the ratio
r = 1 − Nz/Nz,back. has the value

r = 40

π4zNVvF ν(0)h
= 10

π4

h̄

zNVvF me

for a metal

= 10

π4

1

zNVkF

for doped graphene. (22)

For graphene, the noise suppression due to the impurity
can reach (when zNV = 1/kF ) ∼10.3% of the background
noise contribution (below zNV ∼ 1/kF longitudinal current
fluctuations become important which we have neglected in
our analysis); this contribution can be measured at low
temperatures against the relaxation due to noise from the
background which is at the hertz (Hz) level, see Fig. 9.
For a metal with nearly free electrons and vF = 106 m/s,
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the suppression is about ∼1.2% of the background noise at
zNV = 1 nm.

IX. SUMMARY AND OUTLOOK

To summarize, we studied how the magnetic noise profile
above two-dimensional materials can be measured to directly
infer the transport properties of the underlying system. We first
discussed the theoretical framework for this in the context of
spatially homogeneous (upon disorder averaging) materials,
and later extended it to nonhomogeneous systems. In the
first part, we described in detailed how various transport
regimes in electronic systems can be observed by measuring
the magnetic noise-scaling as a function of the distance from
the system; we made the discussion quantitative for the case
of graphene. The aim of the latter part was to show that the
noise profile near an impurity can be used to directly infer
its scattering properties. One of the most striking examples
of an impurity with interesting temperature-dependence of its
scattering properties is an Anderson impurity. We provided
details of how the temperature-dependent spectral properties
of the resonance associated with an Anderson impurity can
be directly observed in the magnetic noise measurements.
We expect that these experiments can be carried out using
appropriately placed NV centers whose relaxation rates can be
individually read out to measure the magnetic noise at their
position, as illustrated in Figs. 1 and 2.

We further anticipate that NV-center based magnetic noise
probes may find many interesting and novel applications in
observing unique physical phenomena in two-dimensional ma-
terials that have never been established experimentally before.
Possible directions include: (1) the observation of localization
in two-dimensional electron gases, where one expects the
conductivity to scale exponentially to zero at increasing length
scales [49]; (2) the observation of Chalker scaling in graphene
(with e.g., vector-pseudospin disorder [50]), or in half-filled
Landau Level systems [51], where we expect multifractal
eigenstates [52] to result in an anomalous power-law scaling
of the conductivity with wave vector q; and (3) observation of
spin-spin correlations of spinon Fermi surfaces [53] in gapless
spin-liquid states, to name a few.
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APPENDIX A: TRANSLATIONALLY INVARIANT CASE

In this Appendix, we solve the problem of calculating the
noise profile above a homogeneous 2D material. In order to
achieve this goal, we need to first discuss the bases of solutions:
that of s- and p-polarized waves (see Fig. 10). These solutions
will then be used to solve the problem of calculating the
total magnetic field in the presence of a magnetic dipole at
the position of the NV center. The response function, whose
imaginary part is related to the magnetic noise, is then given
by ∂Btotal/∂Mext, where Btotal is the total magnetic field in the
presence of an external magnetic dipole Mext. These parts will
be carried out successively in the following subsections.

1. Bases: magnetic field profile for s- and p-polarized waves

We assume the following convention: Bin,Br ,Bt corre-
spond to incident (from NV on to the surface), reflected (back
to the NV center from the surface) and transmitted waves
(through the surface). Similar conventions hold for the electric
fields Ein, Er , and Et .

a. p-polarized waves

The p-polarized form of these waves is given by

Bin = B0(ẑ × Q̂)ei Q·ρ−iqε
z z,

Br = rp(qz,Q,ω)B0(ẑ × Q̂)ei Q·ρ+iqε
z z,

Bt = tp(qz,Q,ω)B0(ẑ × Q̂)ei Q·ρ−iqε′
z z. (A1)

FIG. 10. Reflection and transmission of s- and p-polarized
waves. The s-polarized waves are seen to generate only transverse
currents, while p-polarized waves generate only longitudinal cur-
rents. The reflection coefficients have the behavior rs(Q) ∼ σT (Q),
while rp(Q) ∼ σL(Q)/εRPA(Q).
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In the above, qε
z =

√
ω2ε/c2 − Q2 and qε′

z =
√

ω2ε′/c2 − Q2.
We will be primarily be interested in the relaxation due to
evanescent waves for which qz will be imaginary: the reason
for this is that the phase space of these waves is much greater
and so they always dominate the noise at the site of the NV. For
these waves, we will follow the convention that the imaginary
part of qz is positive.

One can now calculate the electric field from the magnetic
field using the equation E = ∇×Bc2

−iωε(′) where ε or ε′ is used
according to where the electric field is being calculated. This
yields

Ein = 1

ε

c2

−iω
B0
(
iqε

z Q̂ + iQẑ
)
ei Q·ρ−iqε

z z,

Er = rp

ε

c2

−iω
B0
(−iqε

z Q̂ + iQẑ
)
ei Q·ρ+iqε

z z,

Et = tp

ε′
c2

−iω
B0
(
iqε′

z Q̂ + iQẑ
)
ei Q·ρ−iqε′

z z. (A2)

Now we solve for the boundary conditions. The electric
field’s parallel component and magnetic field’s perpendicular
component must be continuous across the surface. The electric
field perpendicular to the plane will depend on the charge
accumulated on the 2D system sample; the magnetic field’s
parallel component will depend on the current in the 2D system
sample. These are summarized as

E‖(z = 0+) = E‖(z = 0−),

Bz(z = 0+) = Bz(z = 0−),
ρ

ε0
= εEz(z = 0+) − ε′Ez(z = 0−),

μ0 J = ẑ × (H1 − H2),

H = B/μ0,

∇ · J = −∂ρ

∂t
,

J μ = σμνEν(z = 0), (A3)

where ρ and J are the charge and current induced on the 2D
system. In this case, the current turns out to be entirely in
the direction of the in-plane wave vector of the electric field,
Q. Thus the current is given by the longitudinal conductivity
σL(Q,ω) of the 2D system. We get two conditions which
determine rp and tp uniquely. These are

1 − rp

ε
= t

ε′
qε′

z

qε
z

,
1 + rp − tp

tp
=
(

σL(Q,ω)qε′
z

ε′ε0ω

)
, (A4)

which can be solved to find

rp(qz,Q,ω) =
( σL(Q,ω)qε

z

εε0ω

)+ ε′
ε

qε
z

qε′
z

− 1( σL(Q,ω)qε
z

εε0ω

)+ ε′
ε

qε
z

qε′
z

+ 1
,

rp|ε=ε′ = 1

1 + 2εε0ω

σLqε
z

≈ 1 − 2εε0ω

σLqε
z

(
ω → 0; qε

z → ∞)
. (A5)

b. s-polarized waves

We now solve for the s-polarized case; that is, when the
electric field is parallel to the surface. We have

Ein = E0(ẑ × Q̂)ei Q·ρ−iqε
z z,

Er = rs(qz,Q,ω)E0(ẑ × Q̂)ei Q·ρ+iqε
z z,

Et = ts(qz,Q,ω)E0(ẑ × Q̂)ei Q·ρ−iqε′
z z. (A6)

We can get the corresponding magnetic fields using Faraday’s
Law; B = ∇ × E/(iω).

Bin = 1

iω
E0
(
iqε

z Q̂ + iQẑ
)
ei Q·ρ−iqε

z z,

Br = rs

1

iω
E0
(−iqε

z Q̂ + iQẑ
)
ei Q·ρ+iqε

z z,

Bt = ts
1

iω
E0
(
iqε′

z Q̂ + iQẑ
)
ei Q·ρ−iqε′

z z. (A7)

In this case, Ez is continuous by default, and there is no
charge build up on the 2D system. This implies that all the
current is in the transverse direction, so that J = σT E(z = 0).
The continuity of the parallel component of the electric field
and perpendicular component of the magnetic field gives the
same condition 1 + rs = ts . The discontinuity of the parallel
component of the magnetic field depends on the current on the
2D sample [as mentioned in Eq. (A3)], solving which we get
the conditions

1 + rs = ts ,

1 − rs − tsq
ε′
z /qε

z

1 + rs

= μ0σ
T ω

qε
z

, (A8)

which yield

rs(qz,Q,ω) =
1 − qε′

z

qε
z

− μ0σ
T (Q,ω)ω
qε

z

1 + qε′
z

qε
z

+ μ0σT (Q,ω)ω
qε

z

,

rs |ε=ε′ = −1

1 + 2qε
z

μ0ωσT

, (A9)

≈ −ωσT μ0

2qε
z

(
ω → 0; qε

z → ∞)
.

2. Calculation of the magnetic response function

As discussed above, our aim is to solve for the problem
of the electromagnetic field set up by a local magnetic
dipole in the presence of a surface. This will allow us to
calculate the magnetic response function via the relation
χα(rNV) = B total

α (rNV)/Mα(rNV). Note that here we use the
symbols χα ≡ χαα since the noise tensor is diagonal if
we work in the basis of directions α̂ that are perpendicular to
plane (ẑ) and parallel to plane (x̂,ŷ). We will discuss the cases
of the magnetic dipole facing perpendicular and parallel to the
2D system separately. In addition, the symmetry of the problem
will make it simpler to first calculate the magnetic field profile
due to a sheet of magnetization. The resultant magnetic field
profile can be appropriately Fourier-transformed to get the
magnetic field profile in the presence of a point dipole.
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a. Dipole points perpendicular to the surface

We first start with the case that the magnetic dipole faces in
the z direction (see Fig. 3), but instead of working with a point
dipole, we choose M = m0ẑδ(z − zNV)ei Q·ρ ; that is, we work
with a sheet of magnetization. Once we have the magnetic-field
profile due to such a sheet of magnetization, the magnetic-field
profile in the presence of a point dipole can be obtained by
integrating the result over the measure d Q

(2π)2 e
−i Q·ρNV .

Such magnetization generates only s-polarized waves. The
solution of the Maxwell equations are given by

−∇ × ∇ × E + εω2

c2
E = μ0(−iω)∇ × M,

E = E0(ẑ × Q̂)ei Q·ρ+iqε
z |z−zNV|,

E0 = iμ0ωm0
Q

2qε
z

,

qε
z =

√
εω2/c2 − Q2. (A10)

The magnetic field at the site of the NV center (due to the
magnetization sheet) can now be found quickly using the
solution of the s-polarized case we just considered:

Bsheet of M
tot,z (ρ,z = zNV) = E0

Q

ω
ei Q·ρ(1 + rse

2iqε
z zNV ). (A11)

Consequently, the total magnetic field in the z direction due
to a single magetic dipole at the NV site pointing in the z

direction will be given by

Btot,z(r = rNV) =
∫

d Q
(2π )2

e−i Q·ρNVBsheet of M
tot,z . (A12)

Thus the response function (corresponding to the magnetic
field, magnetic field commutator) which is given by Btot,z(r =
rNV)/m0 is simply

χz(ω) =
∫ ∞

0

dQ

2π
Q3 iμ0

2qε
z

[vacuum]

+
∫ ∞

0

dQ

2π
Q3 iμ0

2qε
z

rs(qz,Q,ω)e2iqε
z zNV ;

qε
z = i

√
Q2 − εω2/c2 for Q >

√
εω/c,

qε
z =

√
εω2/c2 − Q2 for Q <

√
εω/c, (A13)

from which the magnetic noise spectrum (in the z direction)
can be computed via the fluctuation-dissipation relation:
Nz(ω) = h̄coth(βh̄ω/2)Im[χz(ω)] ≈ 2kBT

ω
Im[χz(ω)].

Note that χz(ω) includes vacuum fluctuations (that are
independent of rs) which also contribute to the noise. However,
these contributions come only from undamped waves Q <

εω2/c2. These have a limited phase space, and typically have
a much smaller contribution to that total magnetic noise. The
nonvacuum contributions are shown in Eq. (1).

If we assume that the 2D system is sandwiched by the same
dielectric material (ε ≈ ε′), then the noise (neglecting vacuum
noise associated with rs = 0) is given by [as also shown in

Eq. (2) of the main text]

Nz(ω) ≈ kBT μ2
0

16πz2
NV

∫ ∞

0
dx xe−xRe

[
σT

(
x

2zNV
,ω

)]

+ O
[
ωzNV

c

]
. (A14)

Note that, in the above result, we have neglected waves with a
real wave vector qz, which in the limit of low-frequency, have
negligible contribution of order O[(ωzNV

c
)2]. Thus the noise

is primarily due to evanescent electromagnetic fluctuations
above the 2D system.

If we assume a constant q-independent conductivity of the
2D sample, which is valid for a diffusive system at lengths
scales greater than the mean free-path, we find the noise to be
given by

Nz(ω)|ε=ε′, ωzNV
c


1 ≈ kBT μ2
0σ

T

16πz2
NV

. (A15)

b. Dipole points parallel to the surface

Next, we consider a magnetic dipole moment at the NV
site facing an in-plane direction, say x (The noise is the same
in any in-plane direction). To find the total magnetic field,
we solve two simpler problems. We calculate the magnetic
field in the presence of a sheet of magnetization with M =
m0(ẑ × Q̂)δ(z − zNV)ei Q·ρ and, separately, in the presence of
a sheet of magnetization with M = m0Q̂δ(z − zNV)ei Q·ρ . We
note that the total magnetic field due to the point dipole moment
can then be found by integrating the magnetic field found (in
the x direction, to calculate Nx ≡ Nxx) in these two separate
calculations with the Fourier factor e−i Q·ρNV and additionally
projection factors x̂ · (ẑ × Q̂) and x̂ · Q̂, respectively. The
decomposition into moments parallel to (ẑ × Q̂) and Q̂ is
performed because magnetization sheets in these directions
yield exclusively p- and s-polarized waves, respectively. First,
we deal with the part that is in the direction (ẑ × Q̂).

a. M ∝ (ẑ × Q̂). We work with the free field H which
does not have any implicit dependence on M. The relevant
Maxwell equations and their solutions are given by

−∇2 H − εω2

c2
H = εω2

c2
M,

H = H0(ẑ × Q̂)ei Q·ρ+iqε
z |z−zNV|,

H0 = im0
εω2/c2

2qε
z

,

qε
z =

√
εω2/c2 − Q2. (A16)

Away from the magnetization strip, B = μ0 H . We can
easily find the reflected fields because they are in a p-polarized
form. Following the methods of the previous section, we find
a contribution to the susceptibility which we call χẑ×Q̂

x ,

χẑ×Q̂
x =

∫ ∞

0

dQ

2π
Q

εω2

c2

iμ0

4qε
z

(1 + rp(qz,Q,ω)e2iqε
z zNV ).

(A17)

b. M ∝ Q̂. In this case, the generated waves are
s-polarized. The solution to the electric field in this case can
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be found solving

−∇ × ∇ × E + εω2

c2
E = μ0(−iω)∇ × M,

E = E0(ẑ × Q̂)
∂

∂z
ei Q·ρ+iqε

z |z−zNV|,

E0 = μ0ωm0
1

2qε
z

,

qε
z =

√
εω2/c2 − Q2. (A18)

Here we find, after calculating the magnetic field (by
comparing with the solution we have for the s-polarized case):

χQ̂
x =

∫ ∞

0

dQ

2π
Qqε

z

iμ0

4
(1 − rs(qz,Q,ω)e2iqε

z zNV ). (A19)

In total, we find, for the in-plane susceptibility, and the noise
spectrum:

χx =
∫ ∞

0

dQ

2π

iμ0Qqε
z

4

(
1 + εω2(

qε
z

)2
c2

)
[vacuum]

+
∫ ∞

0

dQ

2π
Qqε

z

iμ0

4

(
εω2(
qε

z

)2
c2

rp − rs

)
e2iqε

z zNV ,

= χy ;

qε
z = i

√
Q2 − εω2/c2 for Q >

√
εω/c,

qε
z =

√
εω2/c2 − Q2 for Q <

√
εω/c,

Nx(ω) = h̄ coth (βh̄ω/2)Im[χx(ω)] ≈ 2kBT

ω
Im[χx(ω)].

(A20)

The nonvacuum part is shown in the main text in Eqs. (1). As
before, the main contribution to the noise is from evanescent
waves (Im[qε

z ] �= 0) owing to their larger phase space; this
approximation is correct to order O[(ωzNV/c)2] (vacuum
fluctuations are of a lower order because evanescent vacuum
fluctuations do not contribute to the noise).

The contribution to the noise in the x direction has a
component (proportional to rs) that is exactly Nz/2. We define
Ñ⊥ = Nx − Nz/2 to separately discuss the features of this part
of the noise.

Assuming that ε ≈ ε′, we find

Ñ⊥ω = Nx(ω) − Nz(ω)

2
,

Ñ⊥(ω) = kBT μ2
0

32πz2
NV

∫ ∞

0
dx xe−xRe

[
σL
(

x
2zNV

,ω
)

εL
RPA

(
x

2zNV
,ω
)
]

+ O
[(

ωzNV

c

)4]
, (A21)

where we used the result εRPA(q,ω) = 1 + i
qσL

ωε0(ε+ε′) .
The above expression is somewhat misleading because for

metals (and semi-metals like graphene), screening plays an
important role and the imaginary part of εRPA is large for most

q = x/2zNV. Thus a more appropriate expression is

Ñ⊥(ω) ≈ kBT

ε2ω2
4πc2

∫ ∞

0
dx

e−x

x

1

Re[σL]
(A22)

and consequently,

Nx ≈ kBT μ2
0σ

T

32πz2
NV

(
1+ε2 z2

NVω2

c2

ε0/μ0

σT
(
q = 1

2zNV

)
σL
(
q = 1

2zNV

)
)

≈ Nzz

2
. (A23)

The second term, to a very good approximation is always much
smaller than 1 and can be ignored.

3. Calculation of noise from Biot-Savart law

In this section, we outline the calculation of the magnetic
noise as performed using the Biot-Savart law. The magnetic
field Bα(rNV,t) due to a current Jβ(r,t) in the material can
be derived from the Biot-Savart law (assuming speed of light
c → ∞):

Bα(rNV,t) = − μ0

4π

∫
d2rJβ(r,t)
|r − rNV|3 ((r − rNV) × β̂) · α̂.

(A24)

We can calculate the noise Nα(ω) = h̄ coth(βh̄ω/2)F
[〈[Bα(rNV,t),Bα(rNV,t ′)]+〉]/2 from Eq. (A24) and express
the result in terms of the imaginary part of the current-current
response functions χJ

ββ ′ (q,ω). Using the decomposition of
these correlations into the transverse and longitudinal parts,
that is, χJ

ββ ′ (q,ω) = χJ
T (q,ω)(δββ ′ − qβqβ′

q2 ) + χJ
L (q,ω)

qβqβ′
q2 ,

we can express the noise in the in-plane direction as

Nx(ω) = kBT μ2
0

32πz2
NVω

×
∫

dx xe−xIm

[
χJ

T

(
x

2zNV

)
+ χJ

L

(
x

2zNV

)]
.

(A25)

In order to arrive at the results of Eq. (A14)
and (A21), we can substitute Im[χJ

T ] = ωRe[σT ] and
Im[χJ

L ] = ωRe[σL/εRPA]. The reason for the extra factor of
εRPA in the longitudinal case is because the conductivity is
defined with respect to the total electric field unlike the
current-current correlations, which measure response due to
an external electric field. Note that the main advantage of the
method of using reflection coefficients is the adaptability to
cases when the material environment is more complicated. In
this case, the reflection coefficients can have a more compli-
cated expression that cannot be captured by a straightforward
application of the Biot-Savart law. There are also certain subtle
points: the expression for noise Eq. (A21) contains εRPA(q,ω)
only when Q � ω/c, since we can then substitute qz ≈ iQ.

4. Summary

The main results of this appendix are given in Eqs. (A14)
and (A21). In principle, these results can be used to measure the
entire q-dependent transverse and longitudinal conductivities
of the system. To extract the transverse part, we can measure
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the magnetic noise perpendicular to the 2D surface, as a
function of the distance from it. To extract the longitudinal
part, we observe that we need to measure the noise spectrum
in an in-plane direction, and subtract from it half the result
obtained from the measurements of noise perpendicular to the
surface: this contribution, however, is rather small for most
metals as long as the NV center is placed at a distance larger
than the inverse of the Fermi wave vector, and we ignore it.

APPENDIX B: MAGNETIC NOISE FROM SPIN
AND CURRENT FLUCTUATIONS

In this section, we first show that the magnetic noise from
spin fluctuations in a metal becomes significant only in the
case of a deeply localized system with kF lm ∼ 1, or when
the NV center is close enough (to the material) to be able to
resolve interparticle distances (∼1/kF ). Later, we show that
noise from spin fluctuations near the Kondo impurity is small
compared to the noise from current fluctuations near it.

Magnetic fluctuations of free spins in a metal. We first
note that the magnetic noise scales as |B(rNV)|2, where
B(rNV) is the magnetic field at the site of the NV center
generated by current or spin fluctuations inside the material.
The amplitude of the magnetic field |B| can be related
to currents via the kernels KJ (z) ∼ 1/z2 for currents and
Ks(z) ∼ 1/z3 for spins; this follows from the Biot-Savart
law. While both the magnetic field terms (in the correlation
function) are evaluated at the same location (at the position
of the NV center), the currents (or spins) producing these
fields can themselves originate from different locations. Thus
the magnetic noise scales as ∼∫∫ d r1d r2J (r1)J (r2). Using
the fact that small-momentum current fluctuations have low
phase space, and high-momenta current fluctuations cancel
each other [as reflected in Eq. (2)], we can argue that the most
significant current-current correlations (for noise evaluation)
are those at the length scale ∼zNV. This reduces one of the
spatial integrals in the above calculation, and the remaining
spatial integral gives a factor of the volume, V (z) ∼ z2

NV from
which current fluctuations generate significant magnetic fields
at the site of the NV center.

Putting the above details together, the magnetic noise from
current fluctuations, NJ (zNV) ∼ K2

J V |J |2 while that from
spin fluctuations, Ns(zNV) ∼ μ2

B.K2
s V |M|2; here, |J |2 and

|M|2 are the amplitudes of current and spin fluctuations,
respectively. We note that |J |2 ∼ σT (q)kBT as discussed
in the main text, while, in a single-mode approximation,
we can find |M|2 ∼ χ0

M/�M , where χ0
M is the static spin

susceptibility at wave vector q ∼ 1/zNV and �M is a q −
dependent relaxation rate of magnetic fluctuations. This
“relaxation” may be due to diffusion, with �M ∼ Dq2. The
result for |M|2 can be arrived at as follows. We assume
magnetization dynamics follow from a single pole, that is,
M(q,ω) ∼ θ (q)/(−iω + �M ), where θ (q) is a function whose
amplitude will be determined using a sum-rule. The magne-
tization fluctuations, |M(q,ω)|2, are related to the magnetic
susceptibility χM (q,ω) by the fluctuation-dissipation relation:
|M(q,ω)|2 = h̄Im[χM (q,ω)] coth(h̄ω/2kBT ). We can then use
the sum-rule

∫∞
∞ Im[χM (q,ω)]/ωdω = πχ0

M (q) to show that
|θ (q)|2 = kBT χ0

M (q)�M . Simple manipulations yield |M|2 ∼
kBT χ0

M/�M for low frequencies ω = ωNV 
 �M .

We now note that, away from any magnetic transition,
χM ∼ ν(0), or the density of states near the Fermi surface
in a conducting system. The conductivity, on the other hand
can be estimated as σ ∼ e2(ν(0)εF )/(�J me), where �J is the
current relaxation rate, and ν(0)εF is an approximation of
the charge density. Putting these details together, we find the
ratio Ns/NJ = 1/(kF zNV)2 × (�J /�M ). Here already we note
that the factor 1/(kF zNV)2 suggests that the magnetic noise
from current fluctuations will typically dominate noise from
magnetic fluctuations for zNV � 1/kF .

To complete the evaluation of Ns/NJ , we now discuss the
behavior of �J and �M as a function of q. For zNV � lm or
q 
 1/lm (lm being the mean-free path of scattering from
impurities), �J (q) ∼ const. = vF /lm, while, magnetization
typically diffuses (if the impurities are nonmagnetic), so
that �M (q) ∼ Dq2, with D = vF lm. In this limit, Ns/NJ ≈
1/(kF lm)2; thus, magnetization fluctuations are only important
if the system is strongly localized, that is, kF lm � 1. Note
that the addition of magnetic impurities or spin-orbit coupling
which can relax spin fluctuations only increases �M , which
reduces the ratio Ns/NJ further. Now, for z 
 lm or q � 1/lm,
both �J and �M scale as vF q; this is because the time scale
for both magnetic and current fluctuations sensed by the NV
center is the time taken by electrons to pass through the zone of
influence (a region of size zNV in the material closest to the NV
center). In this limit, �J /�M = 1 and Ns/NJ = 1/(kF zNV)2.
Thus the magnetic noise from spin fluctuations becomes
comparable to that from current fluctuations only when the
NV center is closer than the interparticle distance ∼1/kF in
the system, or when the material is highly localized, kF lm � 1.

Magnetic fluctuations of the Kondo resonance. Here we
investigate the noise from spin fluctuations near the Kondo
impurity and compare it to the noise from modified current
fluctuations [second term in Eq. (18)].

We first note that the magnetic noise due to the flipping
of the spin of conduction electrons that screen the impurity
is much weaker than the noise due to the flipping of the
impurity spin. This is because the screening (of the single
impurity moment) occurs over a large length scale [54] ξK

and a nearby NV center will pick up only a tiny fraction of
this magnetic fluctuation. To estimate the noise due to spin
flips at the impurity site, we estimate the amplitude of the
magnetic field at the site of the NV center, as produced by
dipole fluctuations of the almost perfectly screened magnetic
impurity. If we concern ourselves with magnetic noise in the z

direction and focus on the most relevant direction, ρNV = zNV,
the result for the noise is related to the local spin susceptibility
χ (ω) as

Nz,imp. = 5μ2
0

256π2z6
NV

coth

(
h̄ω

2kBT

)
Im[χ (ω)]. (B1)

To estimate the susceptibility of the impurity spin, we
use the spin-boson approach. The impurity moment in the
z direction is given by Mz = gμB

∑
σ

σ
2 f †

σ fσ , where g is a
Lande factor, and the operators fσ ,f †

σ correspond to effective
fermion operators whose Green’s function Gf (ω) = 1/(ω −
εf + i�) was introduced in the main text. For the purposes
of this estimate, we will assume εf = 0, and as per our defi-
nition of TK , this implies TK = �(T = 0). The time-ordered
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Green’s function Gz(τ ) = −〈Tτ {Mz(τ )Mz(0)}〉 is then given
by Gz(τ ) = (gμB )2

2 Gf (τ )Gf (−τ ), and the impurity spin sus-
ceptibility can be evaluated from it using χ (ω) = −Gz(ω +
i0+). The calculation yields Im[χ (ω)] = (gμB)2 h̄ω

2π(kBTK )2 and

Re[χ (0)] = (gμB)2 1
2πkBTK

, at zero temperature. Note that a
different definition of the Kondo temperature [43], which
we introduce here as T̃K is through the static, real spin
susceptibility Re[χ (0)] ≈ (gμB)2 1

4πkB T̃K
. Thus we see T̃K ≈

TK/2 = �(0)/2.
We can now compare this to the noise from modified current

fluctuations near the Kondo impurity. Using C ∼ 20 as appro-
priate for zNV 
 lm (see Fig. 7), and F2[T ] ∼ 1/(π2ν(0)),
we find that the noise from spin fluctuations at temperatures
T � TK , is smaller than the noise from current fluctuations
by a factor ≈π3

64 (εz/kBT̃K )2, where εz = h̄2/(z2
NV2me). This

defines a crossover scale, zc = 0.58h̄/
√

kBT̃Kme, such that
for zNV < zc, the noise due to spin fluctuations dominates
over noise due to current fluctuations. Assuming a Kondo
temperature in the range of T̃K = 1 to 10 K (in metals and
graphene [55] is typically around 10 K, or greater), we estimate
a cross-over scale between zc = 5–16 nm. While such small
distances are hard to achieve experimentally, it may be possible
to study this regime experimentally in systems with much
smaller Kondo temperatures.

APPENDIX C: NUMERICAL COMPUTATION
OF CONDUCTIVITY IN GRAPHENE

To obtain the relaxation time due to interparticle collisions,
τee, we consider the collision integral in the Born approx-
imation (as in Ref. [41]). The complete evaluation of this
integral is beyond the scope of this text. Here we provide a
simple order-of magnitude estimate for the value of τee. In
the Born approximation, the collision rate τ−1

ee of an elec-
tron with momentum k is ∝∑k′,q δ(|k′| + |k| − |k′ + q/2| −
|k − q/2|)|V (kF )|2F , where |V (q)|2 ≈ α2v2

F /(q + αkF )2 is
the square of the screened interaction potential between the
electrons at wave vector q, α is the effective fine-structure
constant in graphene, and F refers to a factor of Fermi
functions which essentially limit the integrals to energies kBT

around the Fermi surface. The integrals can be simplified to
yield the scaling ν(kF )T 2|V (kF )|2 (ignoring factors of vF and
h̄) where ν(kF ) is the density of states of electrons at the
Fermi surface. When kBT � μ, we can set kF ∼ kBT /vF

to find τ−1
ee ∼ α2kBT /h̄. Alternatively, when μ � kBT , we

find τ−1
ee ∼ α2(kBT )2/μ. The precise numerical factors require

a more detailed calculation. For our numerical results, we
will use the result from Ref. [56] (which was calculated
for kBT � μ), τ−1

ee ≈ (0.27)−1α2kBT /h̄ with α2 following
the renormalization-group flow as discussed in Ref. [41] and
extrapolate the result to general chemical potentials μ as

τee = 0.27
h̄

kBT

1 + (μ/kBT )2

2
. (C1)

Next, we consider the relaxation time τ due to an external
bath. It can be calculated under various approximations
depending on whether phonons or charged impurities play
a more significant role in the system. Assuming one can
engineer extremely clean graphene samples, the mean-free

path will be dominated by phonons. Following Ref. [57], one
can estimate the instrinsic (due to vibrations in graphene)
acoustic phonon contribution at kBT = μ to lead to a scattering
length lm ≈ 12 μm × ( D

19 eV )
2
( T

300 K )
2
, where D = 19 eV

is a typical deformation potential constant. (Note that the
phonons that cause momentum relaxation have momentum
∼2kF , and due to the low sound velocity, correspond to
an energy much smaller than the chemical potential or the
temperature.) There is another contribution to momentum
relaxation due to scattering by surface phonons [58] residing
in the substrate. For a SiO2 substrate, this channel is, in
fact, dominant above T ≈ 200 K, which corresponds to the
frequency of these surface phonons. Since this contribution
is Arrhenius activated, it is strongly temperature dependent.
The surface phonons play less of a role in hBN substrates
which have higher optical phonon frequencies (∼0.1 eV);
Ref. [59] estimates the relaxation time due to surface polar
phonons in hBN substrates to both be around ∼10 ps, at
T = 300 K and μ ≈ 1000 K (or smaller), which translates
to a scattering length lm ∼ 10 μm. Thus, on hBN substrates,
the phonon scattering should be limited by acoustic phonons;
thus lm ≈ 12 μm × ( D

19 eV )
2
( T

300 K )
2
.

In order to measure the viscosity in the NV-center ex-
periments, we would like σT to be dominated by the term
inversely proportional to the viscosity. Setting μ = kBT , we
find σT

σ0
≈ 1 + 11.05/(qlee)2 [from Eq. (12)]. Thus, for q > lee,

we expect the conductivity to be dominated by the viscous flow
of the net charge ρ0.

Finally, we estimate the relaxation rate of the NV center
due to these hydrodynamic currents. We first note that, in the
hydrodynamic regime, the NV center should detect magnetic
noise that is largely independent of its distance from the
graphene surface. This is because the 1/q2 dependent conduc-
tivity in this regime precisely compensates for the distance
dependence of the strength of electromagnetic fluctuations
from a material surface. This behavior is distinct from both
ballistic and diffusive behavior, as illustrated in Fig. 1 of the
main text. The relaxation rate in this regime can be estimated as
�NV ≈ √

S(S + 1)g2μ2
BNz/2h̄2, where Nz = μ2

0kBT σT (q =
1/2zNV)/(16πz2

NV) and g = 2 is the Lande factor of the NV

center and S = 1 is the spin size. We find T1 ≈ 0.5s( 300 K
T

)
3
,

which can be easily be detected since NV centers can be
operated with a lifetime of many seconds.

APPENDIX D: TRANSLATIONAL-SYMMETRY
BREAKING CASE

In this section, we examine the situation when a single
impurity, associated for instance with a Kondo resonance,
can significantly enhance the magnetic noise when the NV
center is brought close to it. These single impurities can have
interesting physics by themselves (temperature dependent
resonance energy and line width, scattering properties, etc.)
that can be probed by the NV center as a novel spectroscopic
probe.

To deal with such a situation, we must modify our existing
formalism to allow for conductivity and dielectric response
functions that are, in principle, objects depending on two
momenta. Our solution is to deal with these translationally
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variant response functions perturbatively. We assume that the
conductivity comprises of a background single-momentum
part, σ0( Q) besides a smaller, two-momentum part σ ( Q, Q′).

In the reflection/transmission problem discussed in Ap-
pendix A, the magnetic dipole generates an electric field (at
all wave vectors, but we first consider a single wave vector
Q), say E0( Q,qz), which impinges on the 2D material, and
will now generate weaker “source” currents with a different
in-plane wave vector: J s( Q′) = ∑

αβ α̂σαβ( Q′, Q)E0,β ( Q).
These source currents will then generate additional outgoing
electromagnetic waves E1( Q′,q ′

z) that will modify the elec-
tromagnetic noise coming from the material. The amplitude
of this additional field E1 must be determined consistently to
first order in perturbation theory, in particular, in the presence
of the additional “induced” current J1( Q′) = σ0( Q′)E1( Q′).
Note that, in our reflection/transmission problem, both the
“induced” current J1( Q′) and “source” current J s( Q′) are of
the same, higher order in the corrections to the conductivity,
and must be treated together. At the same time, it is important
to note that these higher order corrections can be treated as an
independent electrodynamics problem on top of the solution
that was found in previous sections when the conductivity was
assumed to be given by σ0. Thus, to find the corrections to the
noise due to the two-momentum correction to the conductivity,
we examine the electromagnetic problem of radiation in the
presence of a “source” current J s( Q) (note that we have
now dropped the prime superscript for ease of notation) in
the material (and without any external incoming radiation).
This current may be transverse or longitudinal. The two cases
will be seen to decouple from one other with the transverse
(longitudinal) source current producing only s-(p-)polarized
radiation. We consider them next.

1. Transverse source current/s-wave polarized outgoing waves

The ‘outgoing’ solutions comprise only of “reflected”
and transmitted waves (using earlier nomenclature). For
s-polarized waves, we have

Er = r (o)
s (ẑ × Q̂)ei Q·ρ−iqε

z z,

Et = t (o)
s (ẑ × Q̂)ei Q·ρ−iqε′

z z,

Br = r (o)
s

iω

(−iqε
z Q̂ + iQẑ

)
ei Q·ρ+iqε

z z,

Bt = t (o)
s

iω

(
iqε′

z Q̂ + iQẑ
)
ei Q·ρ−iqε′

z z, (D1)

where the o superscript is used to indicate that these are
all outgoing waves. There is also a source current which
we can quickly surmise to be transverse. The electric field
Er (z = 0) [or, by continuity, Et (z = 0)] generates an in-
duced current within the 2D material which is transverse:
J1( Q) = σT

0 ( Q)E(z = 0) ∝ (ẑ × Q̂). Moreover, since the
perpendicular electric field is continuous across the surface
(by construction), no charge is induced which, owing to
the transverse nature of the induced current, implies that

the source current must also be transverse. Thus we assume
J s( Q) = J T

s (ẑ × Q̂)ei Q.ρ .
Applying the usual boundary conditions, one can find

r (o)
s ( Q) = −J T

s

σ T
0 ( Q) + qε+qε′

μ0ω

≈ − μ0ω

qε + qε′ J
T
s . (D2)

2. Longitudinal source current/ p-wave
polarized outgoing waves

Here we will consider a longitudinal source current.
(A transverse current will generate s-polarized radiation as
described above.) The solutions will be of a p-polarized form:

Br = r (o)
p (ẑ × Q̂)ei Q·ρ−iqε

z z,

Bt = t (o)
p (ẑ × Q̂)ei Q·ρ−iqε′

z z,

Er = r (o)
p

ε

c2

−iω

(−iqε
z Q̂ + iQẑ

)
ei Q·ρ+iqε

z z,

Et = t (o)
p

ε′
c2

−iω

(
iqε′

z Q̂ + iQẑ
)
ei Q·ρ−iqε′

z z. (D3)

As before, the electric fields generate an induced current
J1 = σL

0 ( Q) rp

ε
c2

−iω
(−iqε

z )Q̂ei Q·ρ . The currents generate a
surface charge density ρ = Q.( J1 + J s)/ω by the continuity
relation. If we assume J s = JL

s Q̂ei Q·ρ , solving the electro-
magnetic boundary conditions yields the result

r (o)
p ( Q) = −μ0J

L
s

1 + ε′
ε

qε
z

qε′
z

+ σL
0 (Q)
εε0

qε
z

ω

. (D4)

3. Two-momentum conductivity

The two-momentum conductivity σαβ( Q1, Q2) is better
represented in the basis where the left (right) subindex
corresponds to a direction either perpendicular (T ) or parallel
(L) to Q1 ( Q2):

σ{ T

L
},{ T

L
}( Q1, Q2)

=
∑
αβ

{
ẑ × Q̂1

Q̂1

}
α

σαβ( Q1, Q2)

{
ẑ × Q̂2

Q̂2

}
β

, (D5)

from which follows

Jα( Q1) =
∑

β

σαβ( Q1, Q2)Eβ( Q2),

Re[σα,β ( Q1, Q2)] = Im[�αβ( Q1,− Q2,ω)]

ω
,

J{ T

L
}( Q1) =

∑
α

{
ẑ × Q̂1

Q̂1

}
α

Jα,

J{ T

L
}( Q1) = σ{ T

L
},{ T

L
}( Q1, Q2)E{ T

L
}( Q2),

σT/L,T /L( Q1, Q2) = Im[�T/LT/L( Q1,− Q2,ω)]

ω
, (D6)
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where �αβ ( Q1,− Q2) is the retarded response function defined
as a commutator of the currents Jα( Q1,ω) and Jβ(− Q2,−ω).
The correlator �T/LT/L corresponds to taking the transverse
and longitudinal parts of these currents, and is defined with an
additional negative sign, which follows from our definition of
σT/L,T /L.

Transverse and longitudinal currents are fundamentally
different: transverse currents are not mitigated due to strong
Coulomb forces, which greatly modify the dielectric constant
and suppress longitudinal fluctuations. The conductivity is
written in this basis to make this distinction obvious. As
we will see in the results below, longitudinal conductivity
corrections are always accompanied by a suppression due to a
large dielectric constant. Thus, for the purposes of calculating
noise corrections, the fully transverse part of the conductivity
σT,T will be most relevant.

4. Corrections to magnetic noise in the z direction

The electromagnetic field generated by a sheet of magnetic
moment M = m0ẑδ(z − zNV)ei Q0·ρ pointing in the z direction
is s-polarized. Neglecting two-momentum corrections to the
conductivity, the form of the electric and magnetic fields for
z � zNV is

E = E0e
iqε

z,0zNV (ẑ × Q̂0)ei Q0·ρ(e−iqε
z,0z + rs(Q0)eiqε

z,0z),

B = E0e
iqε

z,0zNV
qε

z,0Q̂0

ω
ei Q0·ρ(e−iqε

z,0z − rs(Q0)eiqε
z,0z),

E0 = iμ0ωm0
Q0

2qε
z,0

, (D7)

where qε
z,0 =

√
εω2/c2 − Q2

0. Now we consider the corrections
to the electromagnetic field due to the corrections to the
conductivity. First, the electric field at the surface (which is
transverse, and at wave vector Q0) will generate two “source”
transverse and longitudinal currents at wave vector Q1 with
amplitude

J T/L
s ( Q1, Q0) = σT/L,T ( Q1, Q0)E0e

iqε
z zNV (1 + rs(Q0)).

(D8)

Noting [from Eqs. (D3)] that longitudinal currents do not
generate magnetic fields in the z direction (and hence, do
not affect magnetic noise in the z direction), we ignore such
fluctuations. The transverse source-current amplitude directly
yields the corrections to the magnetic field using Eqs. (D1);
the magnetic field corrections in the case of the magnetization
sheet are given by

Bsheet
z (ρ,zNV) = −

∫
d2 Q1

(2π )2
ei Q1·ρ Q1

ω
E0(Q0)(1 + rs(Q0))

× ei(qε
z,1+qε

z,0)zNV
σT,T ( Q1, Q0)

σT
0 (Q1) + qε

z,1+qε
z,0

μ0ω

, (D9)

where qε
z,1 =

√
εω2/c2 − Q2

1 and we have neglected the con-
tribution from traveling waves with momentum Q1,Q0 <√

εω/c, so that both qε
z,1,q

ε
z,0 are imaginary (with pos-

itive imaginary parts). The magnetic field in the case
of a single magnetic moment can now be found by in-
tegration: Bz(ρNV,zNV) = ∫

d2 Q0

(2π)2 B
sheet
z ((ρNV,zNV)e−i Q0·ρNV ).

Finally, the response function χzz(ω) = Bz(ρNV,zNV)/m0

from which we can calculate the noise using the fluctuation-
dissipation relation.

The result above can be simplified greatly by realizing that
σT

0 (Q1) 
 i(q1 + q2)/(μ0ω) for momenta (∼1 μm−1) and
frequencies (∼1 GHz) of interest. This yields

Nz(rNV) = μ2
0kBT

2

∫ ∞

0

q1dq1dθ1

(2π )2

∫ ∞

0

q2dq2dθ2

(2π )2

× eiρNV(q1 cos θ1−q2 cos θ2)−(q1+q2)zNV Re[σT,T (q1,q2)].

(D10)

Let us note that this result (which holds under previously
justified approximations) is a straightforward generalization of
the result in Eq. (A14). In particular, setting Re[σT,T (q1,q2)] =
Re[σT,T (q1)]δ(q1 − q2) immediately reproduces the transla-
tionally invariant result. Thus one may think of Eq. (15)
as the more general result for noise due to a material with
translationally noninvariant conductivity.

5. Corrections to in-plane magnetic noise

As before, we consider this case by first finding the form of
the electromagnetic fields in the presence of a sheet of magne-
tization which fluctuates at a frequency ω and fixed in-plane
wave vector Q0. In line with our previous calculations, it helps
to consider the two cases where the magnetization direction
is either Q̂0 or ẑ × Q̂0. When M ‖ ẑ × Q̂0, we know that
the amplitude of the magnetic field is suppressed by a factor
ω2/c2q2, which largely suppresses the contribution to the noise
from such radiation. Therefore we do not consider it further
here.

We now analyze the case M = m0Q̂0δ(z − zNV)ei Q0·ρ .
The in-plane components of the electromagnetic fields for
z < zNV, before accounting for two-momentum corrections
to the conductivity, are

E = E0e
iqε

z,0zNV (ẑ × Q̂0)ei Q0·ρ(e−iqε
z,0z + rs(Q0)eiqε

z,0z),

B = E0e
iqε

z,0zNV
qε

z,0Q̂0

ω
ei Q0·ρ(e−iqε

z,0z + rs(Q0)eiqε
z,0z),

E0 = −iμ0ωm0

2
. (D11)

This produces both transverse and longitudinal currents in the
2D system:

J T/L
s ( Q1, Q0) = σT/L,T ( Q1, Q0)E0e

iqε
z zNV (1 + rs(Q0)).

(D12)

The transverse and longitudinal source-current amplitudes
directly yield the corrections to the in-plane magnetic field
using Eqs. (D1) and (D3) given by

Bsheet
(T ) (ρ,zNV) =

∫
d2 Q1

(2π )2
ei Q1·ρ Q̂1q

ε
z,1

ω
E0(Q0)

× ei(qε
z,1+iqε

z,0)zNV
(1 + rs(Q0))σT,T ( Q1, Q0)

σT
0 (Q1) + qε

z,1+qε
z,0

μ0ω

,
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Bsheet
(L) (ρ,zNV) = −

∫
d2 Q1

(2π )2
ei Q1·ρ(ẑ × Q̂1)E0(Q0)

× ei(qε
z,1+qε

z,0)zNV
σL,T ( Q1, Q0)(1 + rs(Q0))

1 + ε′
ε

qεz,1

qε′
z,1

+ σL
0 (Q1)
εε0

qε
z,1

ω

.

(D13)

Note that the out-of-plane magnetic field from J
T/L
s ( Q1, Q0)

comes with an extra factor of i; this implies that the noise
correlations Nxz and Nyz are negligible as they are proportional
to the imaginary part of the conductivity which comes with
an additional factor of ωτ . Also note that, for a clean
conducting sample, the conductivity is typically large enough
that the contribution from the longitudinal current Bsheet

(L) can
be neglected. Thus the total magnetic field correction Bsheet ∼
Bsheet

(T ) . If we again make the approximation of neglecting
σT

0 (Q1) in the denominator, we arrive at the result for the
in-plane magnetic noise Nn̂1n̂2 provided in the main text in
Eq. (15).

Note that we have assumed that the single impurity that gen-
erates two-momentum corrections to the conductivity resides
at the origin. This ensures that the conductivity σ (q1,q2) does
not pick up phase factors ei(q1−q2).rf where rf is the impurity
position. This allows the conductivity to be symmetric in the
two momenta, and simplifies the final form of the result.

We have also assumed, without loss of generality that ρNV ‖
x̂; this implies that Nx �= Ny in contrast to the previous,
translationally invariant case. Finally, we note that above result
reduces to the translationally invariant case [as in Eq. (A21)]
by setting Re[σT,T (q1,q2)] = Re[σT,T (q1)]δ(q1 − q2).

APPENDIX E: TWO-MOMENTUM CONDUCTIVITY
IN THE PRESENCE OF A KONDO IMPURITY

We would like to evaluate the corrections to the current-
current correlator) given by

�αβ(q1,−q2; τ − τ ′) = − 1

Vβ
〈Tτ [Jα(q1,τ )Jβ(−q2,τ

′)]〉

Jα(q1,τ ) = − e

mV
∑

q1

(
q + q1

2

)
α

× c†q(τ + 0+)cq+q1 (τ ). (E1)

Note that for graphene operated away from the charge
neutrality point, we can make the replacement q/m → vF q̂.
The results discussed below will apply to graphene operated
in this regime as well.

In particular, the corrections to the current-current correla-
tor comes from the diagrams in Fig. 5. These diagrams can be
expanded as

�
(1)
αβ(q1,−q2,ikn) = e2

βm2V
∑
q iqn

(
q + q1

2

)
α

(
q + q2

2

)
β

G0(q,q,iqn)G1(q + q1,q + q2,iqn + ikn),

�
(2)
αβ(q1,−q2,ikn) = e2

βm2V
∑
q iqn

(
q + q1

2

)
α

(
q + q2

2

)
β

G0(q,q,iqn + ikn)G1(q + q1,q + q2,iqn),

�
(3)
αβ(q1,−q2,ikn) = e2

βm2V2

∑
q,q ′ iqn

(
q + q1

2

)
α

(
q ′ + q2

2

)
β

G1(q ′,q,iqn + ikn)G1(q + q1,q ′ + q2,iqn),

�
(2)
αβ(q1,−q2,ikn) = �

(1)
αβ(q1,−q2,−ikn), (E2)

where G0 and G1 are the bare electron Green’s function and
the correction to it due to the scattering off of an impurity,
respectively, and as described in Eq. (16). The sum over indices
such as spin for a metal, or spin and valley for graphene are
implied and will be absorbed in the density of states ν(0). Note
that �(3) evaluates to zero for the transverse current-current
correlations we are interested in. An argument for this will be
provided below.

Before we proceed with the calculation, we make a
small note on the presence of exponential factors inside
Re[. . . ] and Im[. . . ] operations that may concern the attentive
reader. We note that the noise is always proportional to
the imaginary part of the response functions given in real
space. That is, to evaluate the noise, we have to compute
Im[ 1

V2

∑
q1 q2

�(1/2)(q1,−q2,ω + i0+)eiq1·r1−iq2·r2 ]. It is typi-
cally possible to bring the exponential factors outside of the
operation Im[. . . ] because of the symmetry q1 ↔ q2. How-
ever, if the position of the impurity rf �= 0, then the Green’s
function G1(q1,q2) will contain an explicit factor of ei(q1−q2).rf

that will destroy this symmetry. To deal with this, we can de-
fine �

(1/2)′
αβ (q1,−q2,ikn) = eiq1·rf −iq2·rf �

(1/2)
αβ (q1,−q2,ikn),

which does have the aforementioned symmetry. In

FIG. 11. The contour C(1)(z) for evaluating the Matsubara sum
in �(1).
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this case,

1

V2

∑
q1 q2

Im
[
�

(1/2)
αβ (q1,−q2,ω + i0+)eiq1·r1−iq2·r2

] = 1

V2

∑
q1 q2

eiq1·(r1−rf )e−iq2·(r2−rf )Im
[
�

(1/2)′
αβ (q1,−q2,ω + i0+)

]
. (E3)

One can think of �
(1/2)′
αβ (q1,−q2,ikn) as simply the result for current-current fluctuations when rf = 0. Note that these extra

exponential factors are precisely the same as those in Eq. (15) (due to rNV − rf ) but there we set rf = 0 for convenience; we
will assume rf = 0 in what follows.

We first evaluate the Matsubara sum by an integration over the contour shown in Fig. 11. For the bare bubble (without the
impurity line), integration quite straightforwardly yields

Im
[
�

(0)
αβ(q1,−q2,ω + i0+)

] = πe2
∑

q

∫ ∞

−∞
dω′ (q + q1/2)α

m2
(q + q2/2)β[nF (ω′)−nF (ω+ω′)]A0(q,ω′)A0(q,ω+ω′),

A0(q,ω) = 1

π

1
2τ

(ω − εq)2 + (
1

2τ

)2 ,

Im
[
�

(0)
αβ(q1 =0,q2 =0,ω=0)

]∣∣
T →0 = δαβ Vδq1q2 ωσ0, σ0 = ν(0)e2v2

F τ

2
, (E4)

where we checked that current-current noise due to just the metal agrees with the Drude result. Next, we perform the calculation
for the impurity-related diagrams in Fig. 5. This yields

Im
[
�

(1)
αβ(q1,−q2,ω + i0+)

] = πe2

V
∑

q

∫ ∞

−∞
dω′ (q + q1/2)α

m2
(q + q2/2)β[nF (ω′) − nF (ω + ω′)]A0(q,ω′)

×A1(q + q1,q + q2,ω + ω′),

Im
[
�

(2)
αβ(q1,−q2,ω + i0+)

] = πe2

V
∑

q

∫ ∞

−∞
dω′ (q + q1/2)α

m2
(q + q2/2)β[nF (ω′) − nF (ω + ω′)]A0(q,ω + ω′)

×A1(q + q1,q + q2,ω
′),

A1(q + q1,q + q2,ω) = −1

π
Im[G1(q + q1,q + q2,ω + i0+)]. (E5)

Note that, in the limit of interest, ω → 0 (that is, ω = ωNV is the smallest scale in our problem), �(1) and �(2) are identical.
Another simplification is that we only require the transverse parts �

(1/2)
T ,T (q1,−q2,ω). Thus the vertex terms (q + q1/2)α = qα ,

(q + q2/2)β = qβ . We can also safely replace nF (ω′) − nF (ω + ω′) ≈ −n′
F (ω′)ω. Finally, as long as q1,q2 
 kF , we can replace

the integral 1
V
∑

q ≈ ∫∞
−∞ dξ ν(0)

∫ 2π

0
dθ
2π

, and set εq+q1 ≈ ξ + vF q1 cos θ1, εq+q2 ≈ ξ + vF q2 cos θ2, and qαqβ ≈ k2
F sin(θ1 −

θ ) sin(θ2 − θ ). Here, θ , θ1, and θ2 are the azimuthal angles of wave vectors q, q1, and q2, respectively. Finally, with these
assumptions, and setting ω → 0 in the Green’s functions, we find

Im[�T (q1, − q2,ω
+)] = ων(0)e2v2

F

2

∫
dω′

∫
dξ

∫
dθ sin(θ − θ1) sin(θ − θ2)(−n′

F (ω′))
1

π

1
2τ

(ω′ − ξ )2 + (
1

2τ

)2

−1

π

× Im

[
1(

ω′ − ξ − vF q1 cos(θ − θ1) + i
2τ

) 1(
ω′ − ξ − vF q2 cos(θ − θ2) + i

2τ

)Tf (ω′)

]
,

where performing ξ → ξ + ω′ and integrating out ξ yields

Im[�T (q1, − q2,ω
+)] = ων(0)e2v2

F

2

∫
dω′

∫
dθ sin(θ − θ1) sin(θ − θ2)(−n′

F (ω′))
−1

π

× Im

[
1(

vF q1 cos(θ − θ1) + i
τ

)(
vF q2 cos(θ − θ1) + i

τ

)Tf (ω′)

]
.
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One may now integrate over θ analytically to find

Im[�T (q1,−q2,ω
+)] = ων(0)e2v2

F τ 2F1[x1 = vF q1τ,x2 = vF q2τ,θ1 − θ2]F2[T ],

F1[x1,x2,θ ] = 2π
x2

2

(
1 −

√
1 + x2

1

)+ x2
1

(
1 −

√
1 + x2

2

)+ x2
1x2

2 sin2 θ + x1x2 cos θ
(√

1 + x2
1 +

√
1 + x2

2 − 2
)

4x2
1x2

2 cos θ − 2x1x2
(
x2

1 + x2
2

)− x3
1x3

2 (1 − cos 2θ )
,

F2[T ] = −1

π

∫
dω(−n′

F (ω))Im[Tf (ω)],

Re[σT (q1,q2,ω)] = 2ων(0)e2v2
F τ 2F1[x1,x2,θ1 − θ2]F2[T ] = 4σ0τF1[x1,x2,θ1 − θ2]F2[T ]. (E6)

For the purposes of completeness, we also mention the result for the longitudinal current fluctuations (which are calculated
analogously):

Im[�L(q1,−q2,ω
+)] = ων(0)e2v2

F

2

∫
dω′

∫
dξ

∫
dθ cos(θ − θ1) cos(θ − θ2)(−n′

F (ω′))
1

π

1
2τ

(ω′ − ξ )2 + (
1

2τ

)2

−1

π

× Im

[
1

ω′ − ξ − vF q1 cos(θ − θ1) + i
τ

1

ω′ − ξ − vF q2 cos(θ − θ2) + i
τ

Tf (ω′)

]
,

Re[σL(q1,q2,ω)] = 2ν(0)e2v2
F τ 2F1,L[x1,x2,θ1 − θ2]F2[T ] = 4σ0τF1,L[x1,x2,θ ]F2[T ],

F1,L[q1(x1),q2(x2),θ ] = 2π

−4x2
1x2

2 cos θ + 2x1x2
(
x2

1 + x2
2

)+ x3
1x3

2 (1 − cos 2θ )

×
⎡
⎣x2

1 + x2
2 − x2

1√
1 + x2

2

− x2
2√

1 + x2
1

+ x1x2 cos θ

⎛
⎝ 1√

1 + x2
2

+ 1√
1 + x2

1

− 2

⎞
⎠

+ x2
1x2

2 sin2 θ

⎛
⎝1 − 1√

1 + x2
2

− 1√
1 + x2

1

⎞
⎠
⎤
⎦. (E7)

Let us briefly note why �(3) ∝ G1(q,q ′)G1(q + q1,q ′ + q2), represented by the diagram corresponding to scattering of both
the particle and the hole, vanishes. The introduction of an additional momentum q ′ due to another scattering event makes the
whole term factorizable in terms of parts G0(q)G0(q + q1) and G0(q)G0(q + q2). For the transverse current-current correlations,
integration over the angle θ of q now proceeds as

∫
dθ sin(θ − θ1)/(ω′ − vF k1 cos(θ − θ1) + i

2τ
), which vanishes identically.

Thus this diagram does not contribute to the transverse current-current correlations. We also note that this diagram does contribute
to longitudinal correlations [the sin(θ − θ1) above is replaced by cos(θ − θ1) and the integral is finite] but we do not evaluate it
since the noise does not depend on longitudinal correlations.

Noise from a Kondo impurity in the far field

The limiting forms of the function F1[x,x ′,θ ] are

F1[x1 
 1,x2 
 1,θ ] ≈ −π/2 cos θ,

F1[x1 � 1,x2 � 1,θ ] ≈
{ − 2π

x1x2
; θ /∈ [π − 2√

x1x2
,π + 2√

x1x2

]
+ 2π

4

(
1
x1

+ 1
x2

)
; θ ∈ [π − 2√

x1x2
,π + 2√

x1x2

]
}

. (E8)

The noise spectrum can now, in principle, be calculated using the results in Eqs. (15) and using the two-momentum conductivity
in Eq. (17). In general, the integrals must be evaluated numerically, but they are analytically tractable in the far-field regime
(the impurity distance is much greater than the mean-free path of the electrons in the sample: zNV � lm). Here we present these
analytical results for this case. For momenta q ∼ 1/zNV 
 1/lm, the two momenta conductivity reduces to (by taking the limit
x1 → 0, x2 → 0 in F1[x1,x2,θ ]) σ (q1,q2,ωNV) ≈ −2π cos(θ )σ0F2[T ]τ , where θ now is the angle between q1 and q2. If we
assume that the x axis corresponds to the line joining the impurity (at rf = 0) to the NV center (projected on to the plane), then
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Nxy = 0 in this limit. The diagonal components of the noise tensor are

Nz(zNV � lm) = μ2
0kBT σ0

16πz2
NV

− μ2
0kBT σ0τ

4π
F2[T ]

ρ2
NV(

ρ2
NV + z2

NV

)3 ,

Nx(zNV � lm) = μ2
0kBT σ0

32πz2
NV

− μ2
0kBT σ0τ

4π
F2[T ]

(
2ρ2

NVzNV + z3
NV − (

ρ2
NV + z2

NV

)3/2)2

ρ4
NV

(
ρ2

NV + z2
NV

)3 ,

Ny(zNV � lm) = μ2
0kBT σ0

32πz2
NV

− μ2
0kBT σ0τ

4π
F2[T ]

(√
ρ2

NV + z2
NV − zNV

)2

ρ4
NV

(
ρ2

NV + z2
NV

) . (E9)
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