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Two-dimensional transition metal dichalcogenides entwine interaction, spin-orbit coupling, and topology.
Hole-doped systems lack spin degeneracy: states are indexed with spin and valley specificity. This unique structure
offers new possibilities for correlated phases and phenomena. We realize an unconventional superconducting
pairing phase which is an equal mixture of a spin singlet and the m = 0 spin triplet. It is stable against large
in-plane magnetic fields, and its topology allows quasiparticle excitations of net nonzero Berry curvature via
pair-breaking circularly polarized light.
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I. INTRODUCTION

The interplay of spin-orbit interaction and electron-electron
interaction is a fertile area of research where new phases of
matter and novel phenomena have been theoretically conjec-
tured and experimentally realized [1–7]. Single-layer transi-
tion metal group-VI dichalcogenides (TMDs), MX2 (M =
Mo,W and X = S,Se, and Te), are direct-band-gap semicon-
ductors that have all the necessary ingredients to explore
these phenomena [8–18]. While sharing the hexagonal crystal
structure of graphene, they differ in three important aspects: (1)
gapped valleys as opposed to Dirac nodes; (2) broken inversion
symmetry and strong spin-orbit coupling yielding a large split-
ting of the valence bands; and (3) the bands near the chemical
potential predominantly have the transition metal d-orbital
character [19–24].

The inversion symmetry breaking and the strong spin-
orbit coupling due to the heavy transition element (Mo
and W) endow the bands with nontrivial Berry curvature.
A remarkable consequence is that spin-preserving optical
transitions between valence and conduction bands are allowed,
even though the atomic orbitals involved all have a d character.
Furthermore, the valley-dependent sign of the Berry curvature
leads to selective photoexcitation: right circular polarization
couples to one valley, and left circular polarization to the
other. This enables a number of valleytronic and spintronic
applications that have attracted a lot of attention over the last
few years [25–27].

We are primarily interested in exploiting the band structure
and valley-contrasting probe afforded by the nontrivial topol-
ogy in order to study and manipulate correlated phenomena
in these systems. In particular, we focus on hole-doped
systems, where an experimentally accessible window in
energy is characterized by two disconnected pieces of spin
nondegenerate Fermi surfaces. One can preferentially excite
electrons from either Fermi surface. Since the spins are locked
to their valley index, these excitations have specific sz (where
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the z axis is perpendicular to the two-dimensional crystal).
We focus on the possible superconducting states and their
properties.

Spin-valley locking and its consequence for superconduc-
tivity, dubbed Ising superconductivity, has been previously
studied for heavily doped p-type and n-type TMDs [28–32],
where Fermi surfaces of each spin are present in each valley.
Our focus is the regime of maximal loss of spin degeneracy
where the effects are most striking [33]. The two valleys
in the energy landscape generically allow two classes of
superconducting phases: intervalley pairing with zero center
of mass momentum, and intravalley pairing with finite Cooper
pair center of mass. Since the center of symmetry is broken
and spin degeneracy is lost, classifications of superconducting
states by parity, i.e., singlet versus triplet, is no longer
possible. In this paper, we study both extrinsic and intrinsic
superconductivity by projecting the interactions and pairing
potential to the topmost valence band. We identify the possible
phases, and analyze the nature of the optoelectronic coupling
and the response to magnetic fields. Our main conclusions are
as follows:

(1) For both proximity to an s-wave superconductor, and
due to local attractive density-density interactions, the leading
instability is due to an intervalley paired state, where the
Cooper pair is an equal mixture of a spin singlet and the m = 0
spin triplet [34].

(2) While the valley selectivity of the optical transi-
tion is suppressed, it remains finite. Consequently, the two
quasiparticles generated by pair-breaking circularly polarized
light are correlated such that one is in the valence band
of one valley and the conduction band of the other. The
valley and bands are determined by the polarity of incident
light.

(3) The quasiparticles generated in (2) both have the same
charge and Berry curvature. Thus an anomalous Hall effect is
anticipated as the two travel in the same direction transverse
to an applied electric field.

(4) An in-plane magnetic field tilts the spin, modifying the
internal structure of the Cooper pair, however, no pair-breaking
is induced in the absence of scalar impurities. The suppression
of the effective interaction leads to a parametric reduction of
the transition temperature. In the presence of scalar impurities,
pair-breaking is enabled, but the associated critical magnetic
field is large.
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FIG. 1. Energy bands for WSe2 as given by Eq. (2) with at =
3.939 eV Å

−1
, Eg = 1.60 eV, and Esoc = 0.23 eV. Each valley is

centered at ±K relative to the center of the Brillouin zone. The
energy for a given band depends only on the distance k measured
from the valley center.

II. MODEL

The TMD system is described by the effective tight-biding,
low-energy, two-valley Hamiltonian [26],

H 0
τ (k) = at(τkxσ̂x + kyσ̂y) + Eg

2
σ̂z − Esocτ

σ̂z − 1

2
ŝz, (1)

where the Pauli matrices ŝi operate in the spin space and
σ̂i operate in the orbital space with the two Bloch orbital
states |vν

τs(k)〉 (indexed by ν = + for the in-plane orbital state
|dx2−y2〉 + iτ |dxy〉 and ν = − for the out-of-plane orbital state
|dz2〉), s = ± is the spin index, and τ = ± is the valley index
corresponding to the ±K point, respectively. The momentum
k = (kx,ky) is measured from the valley center, a is the lattice
constant, t is the hopping parameter, Eg represents the energy
gap between the conduction and valence bands, and 2Esoc is
the spin splitting energy in the valence bands due to spin-orbit
interaction.

The energy spectrum

2En
τs(k) = τsEsoc + n

√
(2atk)2 + (Eg − τsEsoc)2 (2)

with k = |k| and n = 1 (n = −1) indexing the conduction
(valence) band is shown in Fig. 1.

We focus on doped systems such that the chemical potential
μ lies in the upper valence bands. Within each band, the Bloch
basis eigenstates are written in terms of the orbital states as
elements on the Block sphere,

∣∣un
τs(k,φ)

〉 = cos
θn
τs(k)

2
|v+

τs(k,φ)〉

+ e−iτφ sin
θn
τs(k)

2
|v−

τs(k,φ)〉, (3)

where kx + iτky = keiτφ and

tan
θn
τs(k)

2
= atτk

Eg

2 − E−n
τs (k)

= atτk

En
τs(k) − E−

τs(0)
. (4)

The polar angle on the Bloch sphere of the conduction
and valence bands are related by θ−

τs(k) − θ+
τs(k) = τπ . The

mapping of the energy band to the Bloch sphere, parametrized
by (θ,φ), encodes the topological character: as one moves from
the node out to infinity, the states sweep either the northern or
southern hemisphere with a chirality determined by the Berry
curvature.

III. SUPERCONDUCTIVITY

We consider two approaches to realizing a superconducting
state. First, we assume a proximity induced state obtained by
layering a TMD on an s-wave superconductor. Second, we
study an intrinsic correlated phase arising from density-density
interactions. We use dν

τs(k) as the annihilation operator for
tight-binding d-orbital states, and cn

τs(k) for the eigenstates of
the noninteracting Hamiltonian, λk for the energy dispersion
for Bogoliubov quasiparticles, and 	k for the superconducting
gap function.

A. Induced state

A proximity s-wave superconductor will inject Cooper pairs
according to

HV =
∑
k,ν,τ

B∗
ν dν

−τ↓(−k)dν
τ↑(k) + ε

2
+ H.c. (5)

The coupling constants Bν and the overall constant ε depend on
the material interface.1 Using the abbreviated notation ckα =
c−
τs(k), with α = ↑↓ for τ = s = ±, projecting onto the upper

valence bands yields,

P n=−
τ=s (H 0 + HV − μN )

=
∑
k,α

ξkc
†
kαckα −

∑
k

(	∗
kc−k↓ck↑ + 	kc

†
k↑c

†
−k↓) + ε, (6)

where ξk = E−
+↑(|k|) − μ and the effective BCS gap function

is

	k = 1
2 (B+ + B−) + 1

2 (B+ − B−) cos θk, (7)

with θk = θ−
+↑(|k|). This form is identical to the standard

BCS Hamiltonian with an effective spin index α. However,
the spin state of the Cooper pair is an equal superpo-
sition of the singlet and the m = 0 component of spin
triplet. The corresponding quasiparticle eigenstates are γkα =
α cos βkckα + sin βkc

†
−k,−α , with energies λk = ±

√
ξ 2

k + 	2
k,

where cos 2βk = ξk/λk. Note that if B+ = B−, then 	k is
a constant and independent of k. Even when B+ and B−
are different, the constant term dominates. Before exploring
the nature of this state, we analyze the case of intrinsic
superconductivity, and show that the same state is energetically
preferred.

1Note that all sums over k are restricted to |k| less than some cutoff
that restricts the momentum to a single valley.
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B. Intrinsic phase

For a local attractive density-density interaction (e.g.,
one mediated by phonons), the potential is V � 1

2

∑
R,R′vRR′ :

nRnR′ :, with vRR′ = v0δRR′ and nR the total Wannier electron
density at lattice vector R. Projecting onto states near the
chemical potential gives

P n=−
τ=s (HV )=

∑
k,k′

v(k′ − k)

×(
A2

kk′c
†
k′↑c

†
−k′↑c−k↑ck↑ + A2

k′kc
†
k′↓c

†
−k′↓c−k↓ck↓

+2|Akk′ |2c†k′↑c
†
−k′↓c−k↓ck↑

)
, (8)

where

Akk′ = ei(φk′−φk) sin
θk′

2
sin

θk

2
+ cos

θk′

2
cos

θk

2
. (9)

The first two terms in Eq. (8) lead to intravalley pairing, and
the third to intervalley pairing. We analyze the possible states
within mean-field theory. The BCS order parameter is

χ = v0

∑
k

g∗
k〈c−kα′ckα〉, (10)

where the form of gk depends on the particular pairing channel.
The resulting Hamiltonian has the same form as the BCS
Hamiltonian in Eq. (6) but with an effective 	k = gk·χ . The
intravalley pairing has three symmetry channels, with the
couplings given by 2gk = 1 + cos θk,

√
2e−iφkgk = sin θk and

2e−2iφkgk = 1 − cos θk. For these channels, since 〈c−kαckα〉 =
−〈ckαc−kα〉, relabeling k→ − k in the sum gives χ = 0.2 The
intervalley pairing also has three symmetry channels: gk =√

2, gk = √
2 cos θk, and gk = √

2 sin θkk̂. Of the three, the
constant valued channel is dominant.3 This is to be expected,
as the local density-density interaction leads to the largest
pairing for electrons of opposite spins. Since the intravalley
processes have the same spin, they are disfavored as compared
to the intervalley pairing.

The key features of the intrinsic superconducting state are
identical to the proximally induced case when density-density
interactions dominate. We restrict further analysis to that case,
and turn to the question of pair-breaking phenomena induced
either by optical or magnetic fields.

IV. OPTOELECTRONIC COUPLING

The noninteracting system displays valley selective optical
excitations. Light of a particular polarization only couples
to one valley. Since the superconducting state is a coherent
condensate admixing the two valleys, we address whether
pair-breaking displays similar valley selectivity. In particular,
we explore whether or not the two quasiparticles generated
by circularly polarized light, with total energy larger than

2For odd parity interactions, where v(−k) = −v(k), the intravalley
pairing is not excluded by symmetry. Specifically, repeating the
calculation with this assumption, the intervalley terms fully cancel,
and one obtains Eq. (8) without the intervalley term on the third line.

3For example, using the values for WSe2, sin2 θk = 0.44 and
cos2 θk = 0.56 at the chemical potential.

FIG. 2. Optical transition rate matrix elements |P±|2 in the
superconducting phase as a function of the ratio of the quasiparticle
energy λk to the superconducting gap 	k. Material parameters for
MoSe2, WS2, and WSe2 are given in Ref. [26] and a gap of 	k =
7.5 meV is chosen for illustrative purposes. The order-of-magnitude
contrast between |P+|2 and |P−|2 causes the optical-valley selectivity.

Eg + 	k, occupy opposite valleys, with one in the conduction
band and the other in the valence band.

The optical excitations arise from the Berry curvature,
which acts as an effective angular momentum. The elec-
tromagnetic potential A, with polarization vector ε, is in-
troduced using minimal coupling, Hνν ′

τs (k)→Hνν ′
τs (k + eA),

where, in the dipole approximation, A = 2 Re εA0e
−iωt . This

yields a perturbed Hamiltonian H→H + HA, where HA =
H ′e−iωt + H ′†eiωt , with

H ′ =
∑

k,τ,s
H ′

τ d
−
τs

†(k)d+
τs(k)

−
∑

k,τ,s
H ′

−τ d
+
τs

†(k)d−
τs(k), (11)

and H ′
τ = ateA0(τ x̂ + iŷ)·ε. The transition rate is propor-

tional to the modulus-squared of the optical matrix elements,
Pnn′

τs (k), defined by

HA =
∑
k,τ,s

n,n′

eA0

m0
ε·Pnn′

τs (k)cn
τs

†(k)cn′
τs(k). (12)

For circularly polarized light, in the absence of superconduc-
tivity, ε± = (x̂±iŷ)/

√
2 and

ε±·P+−
τs (k) = ∓τ

√
2atm0e

±iφ sin2 θ∓τ
τs (k)

2
. (13)

The transition rate matrix elements for optical excita-
tions from the BCS ground state are given by Eq. (13)
multiplied by a coherence factor sin βk. Since θ−

τs(k) −
θ+
τs(k) = τπ , switching either the valley or polarization

transforms sin → cos in Eq. (13), giving matrix elements
|P±| = |ε±·P+−

++(k) sin βk| corresponding to matching (P+) or
mismatching (P−) polarization-valley indexes. For a given
valley, a chosen polarization of light couples more strongly
than the other, as is evident comparing |P+|2 to |P−|2 and
shown in Fig. 2. For incident light with energy Eg + |λk|,
right circularly polarized light (+) has a higher probability
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FIG. 3. Pair-breaking by right circularly polarized light leads to
an electron in the conduction band of the right valley and a partner
in the valence band of the left valley. The valleys interchange for left
circularly polarized light.

of promoting a quasiparticle to the right conduction band,
as reflected in the larger matrix element |P+|2�|P−|2. As
depicted in Fig. 3, the partner of the Cooper pair is in the
valence band in the opposite valley. The other valley has the
opposite dependence on polarization.

This key new result opens the door for valley control of
excitations from a coherent ground state. For example, the two
quasiparticles have the same charge and Berry curvature (see
below). In the presence of an electric filed, they both acquire
the same transverse anomalous velocity. Thus, in contrast to
the response in the normal state, an anomalous Hall effect is
anticipated with no accompanying spin current.

V. BERRY CURVATURE

The Berry curvature in the noninteracting crystal for left
and right circularly polarized (ε±) optical excitations for a
given k is ±2�+

+↑(k), where

�n
τs(k) = ẑ·�n

τs(k), (14a)

= −nτ

[
1

2k

∂

∂k
θn
τs(k)

]
sin θn

τs(k), (14b)

= −nτ
2(at)2

(
Eg − τsEsoc

)
[(2atk)2 + (Eg − τsEsoc)2]

3/2 . (14c)

The BCS ground state4 is

|�〉 =
∏

k
csc βkγk↑γ−k↓|0〉, (15a)

=
∏

k
(cos βk − sin βkc

†
k↑c

†
−k↓)|0〉. (15b)

4Note that the full ground state also contains the two lower filled
bands, but those contribute zero net Berry curvature and may be
ignored in this section and the next.

This superconducting state is built up from the quasiparti-
cle eigenstates, |k〉 = csc βkγk↑γ−k↓|0〉, of the k-dependent
Hamiltonian λk(γ †

k↑γk↑ + γ
†
−k↓γ−k↓). The z component of the

Berry curvature of the correlated state is zero,

ẑ·i∇k×〈k | ∇k | k〉 = �−
+↑(k) + �−

−↓(−k) = 0. (16)

A single optically excited state in the left valley for a given k is
c+
+↑

†
(k)c−

+↑|k〉, which has a Berry curvature +2 sin6 βk�
+
+↑(k).

The corresponding excitation in the right valley has a Berry
curvature of the same magnitude but opposite sign.

VI. IN-PLANE MAGNETIC FIELD AND
SCALAR DISORDER

In this section, we discuss the effects of in-plane magnetic
fields and nonmagnetic impurities on the superconducting
state. We consider the lightly hole-doped monolayer TMDs
in the regime where the Fermi level crosses the upper valence
bands and is well separated from the lower valence bands.
In this regime, the system is a spin-valley locking system
with the spin-opposite Fermi pocket at each valley. Without
loss of generality, we adopt a simplified model taking into
account the valence bands only. In a quasi-two-dimensional
(2D) system, an in-plane magnetic field couples to quasi-
particles through spin paramagnetism with negligible orbital
interactions. Applying a uniform in-plane magnetic field in
the x direction B = (B,0,0), the system is described by the
Hamiltonian (h̄ = kB = c = 1)

Hτ (k) = − k2

2m
− μ + τEsocŝz + μBBŝx, (17)

which is acting on the valley-spin basis φτ (k) =
(cτ↑(k),cτ↓(k))T , where μ is the chemical potential, τ = ± is
the valley index, ŝi are Pauli matrices operating in spin space,
and μB is the Bohr magneton. The dispersion relations of the
upper and lower valence bands have been approximated by a
quadratic form with an effective mass m = Eg/(2a2t2), where
Eg is the large energy gap between the conduction and valence
bands, Eg�Esoc, a and t are defined under Eq. (1), and the
momentum k = (kx,ky) is measured from the corresponding
valley center with k = |k|. Note that in this section we use
k to represent momentum measured from the corresponding
valley center and p to represent momentum measured from
the Brillouin zone (BZ) center. We use the notation that c

†
τs(k)

(cτs(k)) creates (annihilates) a quasiparticle with momentum k
and spin s in the valley τ , and c

†
s (p) (cs(p)) creates (annihilates)

a quasiparticle with momentum p and spin s.
The Hamiltonian Hτ (k) has the spectrum

Eτ,u/l(k) = − k2

2m
− μ±

√
E2

soc + (μBB)2, (18)

with u for the upper (+) and l for the lower (−) band at each
valley, and the eigenstates ϕτ (k) = (cτu(k),cτ l(k))T , where cτu

and cτl correspond to the quasiparticles in the band basis which
is related to the spin basis through a field and valley-dependent
unitary transformation Uτ (b): ϕτ (k) = Uτ (b)φτ (k), where
b = μBB/Esoc is the dimensionless magnetic field. Applying
a uniform in-plane magnetic field shifts both the upper
(lower) valence bands at the two valleys by the same amount
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(but the opposite amount between the upper and lower
band at each valley), so that the perfect nesting condition
between the Fermi pockets at the two valleys remains.
Meanwhile, the quasiparticle spin acquires a finite in-plane
component, i.e., deviating from ±z direction. Explicitly,
we have 〈τ,u | ŝz | τ,u〉 = −〈τ,l | ŝz | τ,l〉 = (τ/2)/

√
1 + b2,

and 〈τ,u | ŝx | τ,u〉 = −〈τ,l | ŝx | τ,l〉 = (b/2)/
√

1 + b2.
Therefore, at both valleys, the quasiparticle spin tilts towards
the field direction in the upper valence bands and tilts against
the field direction in the lower valence bands. The change of
quasiparticle spin orientation induced by the in-plane field
modifies the internal structure of the Cooper pair and affects
the pairing strength as shown below.

To evaluate the effect of the magnetic field on the su-
perconductivity, we follow the procedure used in Sec. III.
A local attractive density-density interaction with pairing
strength v0 can be written as: Hint = −v0

∫
d2rρ(r)ρ(r) with

the quasiparticle density ρ(r) = ∑
sc

†
s (r)cs(r), where c

†
s (r)

(cs(r)) is the Fourier transform of c
†
s (p) (cs(p)). Transforming

to momentum space and projecting onto the upper valence
bands, the pairing Hamiltonian has the form

Hp = −v′(b)
∑
k,k′

c
†
+(k)c†−(−k)c−(−k′)c+(k′), (19)

where we have ignored the upper-band subscript u in the
operators c

†
τu and cτu. The effective pairing strength in the

presence of in-plane magnetic field is v′(b) = v0/(1 + b2).
The Hamiltonian Hp describes an intervalley pairing with
a pairing strength v′ suppressed by the in-plane field. At
zero field, v′ = v0, c

†
+ = c

†
+↑, and c

†
− = c

†
−↓, so the pairing

occurs between opposite spins. At finite fields, v′ < v0 and the
quasiparticle at valley + (−), represented by c

†
+ (c†−), has its

up (down) spin tilted towards the field direction. As a result,
the intervalley pairing contains equal-spin pairing components
in the presence of in-plane field.

The mean-field Hamiltonian, using the Nambu-valley basis

�k = (c+(k),c−(k),c†−(−k), − c
†
+(−k))

T
, takes the form

HMF(k) = ξkη̂z − 	η̂x, (20)

where η̂i are Pauli matrices acting on Nambu (particle-hole)
space, ξk = −k2/2m − μ +

√
E2

soc + (μBB)2, and the mean
field 	 = v′(b)

∑
k′ 〈c−(−k′)c+(k′)〉 describes an intervalley

pairing field, which we choose to be real for convenience.
In a conventional 2D superconductor with a spin-degenerate

Fermi surface, the application of an in-plane magnetic field
induces an energy splitting between opposite-spin bands.
This energy mismatch between opposite spins creates a
pair-breaking effect in the clean system characterized by the
pair-breaking equation for temperature T �T 0

c [35],

ln
T 0

c

T
= 1

2

[
ψ

(
1

2
+ iμBBc

2πT

)

+ψ

(
1

2
− iμBBc

2πT

)]
− ψ

(
1

2

)
, (21)

where T 0
c is the transition temperature at zero field in the

clean system and ψ(z) is the digamma function. This equation
determines the critical field Bc that destroys the supercon-

ducting state at temperature T �T 0
c from spin paramagnetism.

Furthermore, the scattering from nonmagnetic impurities does
not alter this pair-breaking Eq. (21) such that the critical field
remains the same regardless of the presence of scalar disorders
[35].

Unlike the conventional 2D superconductors, in our system
the two single-spin Fermi pockets at different valleys remain
perfectly nested without the energy mismatch caused by spin
paramagnetism, and the spins at the two pockets are no longer
opposite with equal-spin components induced by the field.
These two differences give rise to new features in the spin-
valley locking system from the effects of in-plane magnetic
fields. First, in the clean limit, the presence of in-plane
magnetic fields does not lead to a pair-breaking effect for the
lack of energy mismatch, but mildly suppresses the transition
temperature through the weakening of the pairing strength. The
suppressed transition temperature T ′

c is related to the zero-field
transition temperature T 0

c as T ′
c = T 0

c exp (−b2/v0NF ) in the
mean-field theory, where NF is the density of states at the
Fermi level. Second, the superconducting state is no longer
immune to the scalar disorder, since nonmagnetic disorder
potential can cause intervalley scattering due to the field-
induced parallel-spin components on the two pockets. This
interplay between the in-plane magnetic field and the scalar
disorder leads to a pair-breaking effect.

In the presence of dilute randomly distributed nonmagnetic
impurities, the Hamiltonian for short-range impurity potential
is given by

Himp =
∑

j

∫
d2rU0δ(r − Rj )ρ(r), (22)

where Rj is the position of the j th impurity and U0 is
the disorder strength. Transforming to momentum space and
projecting onto the upper valence bands, Himp can be written
using the Nambu-valley basis �k as

Himp =
∑
k1,k2

∑
j

ei(k1−k2)·Rj �
†
k1

Û�k2 , (23)

with the disorder scattering vertex Û taking the form

Û = U0η̂z + U0
b√

1 + b2
τ̂x , (24)

where τ̂i are Pauli matrices operating in valley space. The first
term in Û corresponds to intravalley scattering and the second
term corresponds to intervalley scattering. Note that we have
ignored the factors ei(±2K)·Rj in the intervalley terms because
ei(2K)·Rj and ei(−2K)·Rj will appear in pair and cancel each other
in the diagrammatical calculation of self energy.

The self-energy due to impurity scattering after averaging
over randomly distributed impurity configurations, in the first-
order Born approximation, is obtained as [36,37]

�̂(k,iωn) = nimp

∫
d2k′

(2π )2 Û Ĝ0(k′,iωn)Û , (25)

where nimp is the impurity concentration and Ĝ0 is the
Green’s function matrix of the clean system, Ĝ0(k′,iωn) =
(iωn − ξk′ η̂z + 	η̂x)−1, with the Matsubara frequencies ωn =
(2n + 1)πT . After integrating out ξ in the self-energy, the
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disorder renormalized Green’s function matrix Ĝ =
(Ĝ−1

0 − �̂)
−1

can be parameterized as

Ĝ(k,iωn) = [iω̃n − ξkη̂z + 	̃η̂x + iF (ωn)η̂zτ̂x]
−1

, (26)

where the quantities ω̃n, 	̃, and F (ωn) have the definitions

ω̃n = ωn +
(

1

2τ1
+ 1

2τ2

)
ωn√

ω2
n + 	2

, (27)

	̃ = 	 +
(

1

2τ1
− 1

2τ2

)
	√

ω2
n + 	2

, (28)

F (ωn) = 1

2τ1

ωn√
ω2

n + 	2

2b√
1 + b2

. (29)

Here, 1/τ1 and 1/τ2 are the collision rates corresponding
to the disorder-induced intravalley and intervalley scattering,
respectively, with the expressions

1

τ1
= 2U 2

0 nimpπNF ,
1

τ2
= 1

τ1

b2

1 + b2
. (30)

In the superconducting state, the self-consistency equation
for the order parameter is given by

	 = 1

4
v′T

∑
n

∫
d2k

(2π )2 Tr[η̂x Ĝ(k,iωn)], (31)

where Tr[. . .] is the trace of the argument. Explicitly, from
Eq. (26), it has the form

	 = v′πNF T
∑

n

	̃√
ω̃2

n + 	̃2
. (32)

Linearizing the self-consistency Eq. (32) near the critical field
Bc, we obtain the pair-breaking equation due to the interplay
between the in-plane field and the scalar disorder,

ln
T ′

c (bc)

T
= ψ

(
1

2
+ δc

2πT

)
− ψ

(
1

2

)
, (33)

where T ′
c (bc) = T 0

c exp (−b2
c/v0NF ) is the transition tem-

perature in the clean system in the presence of the field
bc = μBBc/Esoc, and the pair-breaking parameter

δc = 1

τ2

∣∣∣∣
bc

= 1

τ1

b2
c

1 + b2
c

(34)

arises from the valley-flip scattering process. Equation (33)
determines the in-plane critical field Bc(T ) at temperature

T �T ′
c . For bc�1, the pair-breaking parameter takes the simple

form δc≈τ−1
1 (μBBc/Esoc)2.

As T →0, the pair-breaking Eq. (33) can be approximated
by the asymptotic expansion of the digamma function, which
leads to 2πT ′

c exp [ψ(1/2)] = (b2
c/τ1)/(1 + b2

c ). At finite dis-
order concentration, τ−1

1 �=0, when bc�1 with T ′
c≈T 0

c , the
critical field at zero temperature is approximated as

μBBc

∣∣∣∣
T →0

≈Esoc
[
2πeψ(1/2)kBT 0

c τ1/h̄
]1/2

, (35)

where we have put back the Boltzmann constant kB and the
reduced Planck constant h̄. The large spin-orbit interaction
Esoc(∼150−500 meV) in monolayer TMDs indicates that the
in-plane critical field Bc is significantly enhanced, well beyond
the Pauli limit.

VII. CONCLUSIONS

In this letter, we report on the nature of the superconducting
state of hole-doped TMDs. Remarkably, the correlated state
inherits the valley contrasting phenomena of the noninteracting
state. While the magnitude is smaller, pair-breaking produces
quasiparticles that have the same Berry curvature, and hence
the same anomalous velocity. Thus one predicts an anomalous
Hall response unlike the valley Hall response observed in
MoSe2.

Spin-valley locking leads to large critical magnetic fields.
A similar phenomenon was recently reported in heavily
hole-doped (beyond the spin-split gap) NbSe2 [29]. In the
new regime, where only one band per valley intersects the
chemical potential, no pair-breaking occurs for in-plane fields
unless disorder is present. While systematic synthesis and
characterization of hole-doped systems is still in its early
stages, the fact that other two-dimensional compounds and
their bulk counterparts are known to be superconducting [38]
provides impetus to explore this novel phenomena.

ACKNOWLEDGMENTS

The software developed [39] and used [40] for this work
and the included figures is available freely online. We thank
Michael Phillips for useful discussions. We acknowledge the
support of the Army Research Office through Grant ARO
W911NF1510079.

[1] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[2] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801

(2005).
[3] B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802

(2006).
[4] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann,

L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318,
766 (2007).

[5] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[6] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[7] W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, Annu.

Rev. Condens. Matter Phys. 5, 57 (2014).

[8] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A.
Kis, Nat. Nanotechnol. 6, 147 (2011).

[9] Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, Phys. Rev. B
84, 153402 (2011).

[10] Y. Zhang, J. Ye, Y. Matsuhashi, and Y. Iwasa, Nano Lett. 12,
1136 (2012).

[11] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and
M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).

[12] J. T. Ye, Y. J. Zhang, R. Akashi, M. S. Bahramy, R. Arita, and
Y. Iwasa, Science 338, 1193 (2012).

[13] W. Bao, X. Cai, D. Kim, K. Sridhara, and M. S. Fuhrer, Appl.
Phys. Lett. 102, 042104 (2013).

144508-6

https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1146/annurev-conmatphys-020911-125138
https://doi.org/10.1146/annurev-conmatphys-020911-125138
https://doi.org/10.1146/annurev-conmatphys-020911-125138
https://doi.org/10.1146/annurev-conmatphys-020911-125138
https://doi.org/10.1038/nnano.2010.279
https://doi.org/10.1038/nnano.2010.279
https://doi.org/10.1038/nnano.2010.279
https://doi.org/10.1038/nnano.2010.279
https://doi.org/10.1103/PhysRevB.84.153402
https://doi.org/10.1103/PhysRevB.84.153402
https://doi.org/10.1103/PhysRevB.84.153402
https://doi.org/10.1103/PhysRevB.84.153402
https://doi.org/10.1021/nl2021575
https://doi.org/10.1021/nl2021575
https://doi.org/10.1021/nl2021575
https://doi.org/10.1021/nl2021575
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1126/science.1228006
https://doi.org/10.1126/science.1228006
https://doi.org/10.1126/science.1228006
https://doi.org/10.1126/science.1228006
https://doi.org/10.1063/1.4789365
https://doi.org/10.1063/1.4789365
https://doi.org/10.1063/1.4789365
https://doi.org/10.1063/1.4789365


UNCONVENTIONAL SUPERCONDUCTIVITY AND . . . PHYSICAL REVIEW B 95, 144508 (2017)

[14] F. Zahid, L. Liu, Y. Zhu, J. Wang, and H. Guo, AIP Adv. 3,
052111 (2013),

[15] E. Cappelluti, R. Roldán, J. A. Silva-Guillén, P. Ordejón, and F.
Guinea, Phys. Rev. B 88, 075409 (2013).

[16] X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Nat. Phys. 10, 343
(2014).

[17] T. Das and K. Dolui, Phys. Rev. B 91, 094510 (2015).
[18] J. Lee, K. F. Mak, and J. Shan, arXiv:1508.03068 [cond-

mat.mes-hall].
[19] R. A. Bromley, R. B. Murray, and A. D. Yoffe, J. Phys. C 5, 759

(1972).
[20] T. Böker, R. Severin, A. Müller, C. Janowitz, R. Manzke, D.

Voß, P. Krüger, A. Mazur, and J. Pollmann, Phys. Rev. B 64,
235305 (2001).

[21] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev.
Lett. 105, 136805 (2010).

[22] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G.
Galli, and F. Wang, Nano Lett. 10, 1271 (2010).

[23] A. Kormányos, V. Zólyomi, N. D. Drummond, P. Rakyta, G.
Burkard, and V. I. Fal’ko, Phys. Rev. B 88, 045416 (2013).

[24] G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, and D. Xiao,
Phys. Rev. B 88, 085433 (2013).

[25] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959
(2010).

[26] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev.
Lett. 108, 196802 (2012).

[27] K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, Science
344, 1489 (2014).

[28] J. M. Lu, O. Zheliuk, I. Leermakers, N. F. Q. Yuan, U. Zeitler,
K. T. Law, and J. T. Ye, Science 350, 1353 (2015).

[29] X. Xi, Z. Wang, W. Zhao, J.-H. Park, K. T. Law, H. Berger, L.
Forro, J. Shan, and K. F. Mak, Nat. Phys. 12, 139 (2016).

[30] Y. Saito, Y. Nakamura, M. S. Bahramy, Y. Kohama, J. Ye, Y.
Kasahara, Y. Nakagawa, M. Onga, M. Tokunaga, T. Nojima, Y.
Yanase, and Y. Iwasa, Nat. Phys. 12, 144 (2016).

[31] B. T. Zhou, N. F. Q. Yuan, H.-L. Jiang, and K. T. Law, Phys.
Rev. B 93, 180501 (2016).

[32] N. F. Q. Yuan, K. F. Mak, and K. T. Law, Phys. Rev. Lett. 113,
097001 (2014).

[33] J. Zhang and V. Aji, Phys. Rev. B 94, 060501 (2016).
[34] L. P. Gor’kov and E. I. Rashba, Phys. Rev. Lett. 87, 037004

(2001).
[35] K. Maki and T. Tsuneto, Prog. Theor. Phys. 31, 945 (1964).
[36] A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 12, 1243

(1961).
[37] K. Maki, in Superconductivity, edited by R. D. Parks (Dekker,

New York, 1969).
[38] R. Roldán, E. Cappelluti, and F. Guinea, Phys. Rev. B 88, 054515

(2013).
[39] Related software and source code at https://evansosenko.com/

dichalcogenides.
[40] J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007).

144508-7

https://doi.org/10.1063/1.4804936
https://doi.org/10.1063/1.4804936
https://doi.org/10.1063/1.4804936
https://doi.org/10.1063/1.4804936
https://doi.org/10.1103/PhysRevB.88.075409
https://doi.org/10.1103/PhysRevB.88.075409
https://doi.org/10.1103/PhysRevB.88.075409
https://doi.org/10.1103/PhysRevB.88.075409
https://doi.org/10.1038/nphys2942
https://doi.org/10.1038/nphys2942
https://doi.org/10.1038/nphys2942
https://doi.org/10.1038/nphys2942
https://doi.org/10.1103/PhysRevB.91.094510
https://doi.org/10.1103/PhysRevB.91.094510
https://doi.org/10.1103/PhysRevB.91.094510
https://doi.org/10.1103/PhysRevB.91.094510
http://arxiv.org/abs/arXiv:1508.03068
https://doi.org/10.1088/0022-3719/5/7/007
https://doi.org/10.1088/0022-3719/5/7/007
https://doi.org/10.1088/0022-3719/5/7/007
https://doi.org/10.1088/0022-3719/5/7/007
https://doi.org/10.1103/PhysRevB.64.235305
https://doi.org/10.1103/PhysRevB.64.235305
https://doi.org/10.1103/PhysRevB.64.235305
https://doi.org/10.1103/PhysRevB.64.235305
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1021/nl903868w
https://doi.org/10.1021/nl903868w
https://doi.org/10.1021/nl903868w
https://doi.org/10.1021/nl903868w
https://doi.org/10.1103/PhysRevB.88.045416
https://doi.org/10.1103/PhysRevB.88.045416
https://doi.org/10.1103/PhysRevB.88.045416
https://doi.org/10.1103/PhysRevB.88.045416
https://doi.org/10.1103/PhysRevB.88.085433
https://doi.org/10.1103/PhysRevB.88.085433
https://doi.org/10.1103/PhysRevB.88.085433
https://doi.org/10.1103/PhysRevB.88.085433
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1126/science.1250140
https://doi.org/10.1126/science.1250140
https://doi.org/10.1126/science.1250140
https://doi.org/10.1126/science.1250140
https://doi.org/10.1126/science.aab2277
https://doi.org/10.1126/science.aab2277
https://doi.org/10.1126/science.aab2277
https://doi.org/10.1126/science.aab2277
https://doi.org/10.1038/nphys3538
https://doi.org/10.1038/nphys3538
https://doi.org/10.1038/nphys3538
https://doi.org/10.1038/nphys3538
https://doi.org/10.1038/nphys3580
https://doi.org/10.1038/nphys3580
https://doi.org/10.1038/nphys3580
https://doi.org/10.1038/nphys3580
https://doi.org/10.1103/PhysRevB.93.180501
https://doi.org/10.1103/PhysRevB.93.180501
https://doi.org/10.1103/PhysRevB.93.180501
https://doi.org/10.1103/PhysRevB.93.180501
https://doi.org/10.1103/PhysRevLett.113.097001
https://doi.org/10.1103/PhysRevLett.113.097001
https://doi.org/10.1103/PhysRevLett.113.097001
https://doi.org/10.1103/PhysRevLett.113.097001
https://doi.org/10.1103/PhysRevB.94.060501
https://doi.org/10.1103/PhysRevB.94.060501
https://doi.org/10.1103/PhysRevB.94.060501
https://doi.org/10.1103/PhysRevB.94.060501
https://doi.org/10.1103/PhysRevLett.87.037004
https://doi.org/10.1103/PhysRevLett.87.037004
https://doi.org/10.1103/PhysRevLett.87.037004
https://doi.org/10.1103/PhysRevLett.87.037004
https://doi.org/10.1143/PTP.31.945
https://doi.org/10.1143/PTP.31.945
https://doi.org/10.1143/PTP.31.945
https://doi.org/10.1143/PTP.31.945
https://doi.org/10.1103/PhysRevB.88.054515
https://doi.org/10.1103/PhysRevB.88.054515
https://doi.org/10.1103/PhysRevB.88.054515
https://doi.org/10.1103/PhysRevB.88.054515
https://evansosenko.com/dichalcogenides
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55



