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The staggered quantum walk is a model defined by the product of local operators associated with two or more
independent graph tessellations. This model is versatile, encompasses several well-known discrete-time quantum
walks, and inherits interesting features of the continuous-time quantum walk. We propose an implementation
of the staggered quantum walk model with superconducting microwave resonators, where the required local
operations are provided by the nearest neighbor interaction of the resonators coupled through superconducting
quantum interference devices. The tunability of the interactions makes this system an excellent toolbox for this
class of quantum walks. We focus on the one-dimensional case and discuss its generalization to a more general
class known as triangle-free graphs.
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I. INTRODUCTION

Quantum walks are the quantum generalization of random
walks, and form the building blocks in designing quantum
search algorithms outperforming the similar classical ones [1].
The two main paradigms in this respect are the coined discrete-
time quantum walk (DTQW) [2] and the continuous-time
quantum walk (CTQW) [3]. In one-dimensional (1D) DTQWs,
a two-level quantum system works as a coin, whose quantum
property to exist in a superposition of states gives the distinct
ballistic spreading of the walker encoded in a set of discrete
states. In CTQWs, it is the excitation exchange between
the neighboring sites, in a lattice, that directly works as a
walker without the need of a coin. Typically a tight-biding
Hamiltonian followed by a linear coupling between excitations
in bosonic modes suffices to implement the CTQW model,
making its implementation convenient (see Ref. [4] for an
example with nanomechanical resonators). However, when the
data structure is a lattice with dimension less than four, search
algorithms based on the standard CTQW do not outperform
the classical algorithms based on random walks [5].

Recently, a general class of coinless discrete-time quantum
walks was proposed—the staggered quantum walk (SQW)
[6–8], which includes the quantum walks studied in
Refs. [9,10] as particular cases. This model also includes as
particular cases the flip-flop coined DTQWs with Hadamard
and Grover coins and the entire Szegedy’s quantum walk
model [11]. In the language of graph theory, the required
unitary operators (not Hamiltonians) can be obtained by a
graphical method based on graph tessellations. A tessellation
is a partition of the set of nodes into cliques; that is, each
element of the partition is a clique. A clique is a subgraph that
is complete, namely all nodes of a clique are neighbors.

We have proposed an extension of the SQW model,
called SQW with Hamiltonians [12], which uses the graph
tessellations to define local Hamiltonians instead of the local
unitary evolution operators. The extended model includes the
quantum walks analyzed in Ref. [13] as particular cases.
The SQW with Hamiltonians is fitted for the implementation
through bosonic nearest neighbor interactions, similarly to

the CTQW, with the advantage of being able to outperform
classical search algorithms at lower dimensional lattice struc-
tures [14]. This advantage comes at a price, which is the
necessity to implement time dependent (piecewise-constant)
controlled evolution, requiring highly controllable systems for
its implementation.

Superconducting quantum circuits supporting microwave
photons are promising for realizing the required evolu-
tions in quantum computation [15–17] and quantum sim-
ulation [18,19]. Besides the tunneling devices employed
for qubit encoding, superconducting circuits allow the real-
ization of lattices of coupled elements. Achieving tunable
couplings between circuit elements is a crucial step. Tun-
able strong coupling among superconducting elements has
been achieved in several ways, using both superconducting
quantum interference devices (SQUIDs) and qubits [20–34].
Recently, structured arrays of microwave superconducting
resonators with SQUID tunable couplings [20–22] have
been investigated on dedicated simulations of many-body
models with engineered interactions [35–39]. The evolution
of those systems cannot be simulated with conventional
static-coupling quantum simulators. Notwithstanding, those
arrays could be employed for more general quantum tasks.
Specially, an array of microwave resonators with switchable
couplings can be directly employed for simulating the SQW
dynamics.

In this work we propose the implementation of the SQW
model on a system composed of microwave resonators coupled
through SQUIDs. The implementation is analyzed in detail
on a 1D lattice, which is used as a prototype to describe
a more general dynamics on triangle-free graphs. In that
class of graphs, which includes N -dimensional square lattices
and trees, the resonators interact in a pairwise way in
each element of the tessellation. The conventional optical
and electron-beam lithography technologies that are used in
fabricating superconducting-circuit-based devices allow us to
construct a large scale lattice with an arbitrary geometry.
The lattice dynamics can then be coherently controlled using
external electromagnetic fields. Moreover, due to typically
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FIG. 1. Array of superconducting microwave resonators coupled
through SQUID elements. Disjoint pairs of coupled resonators (with
the coupling strength κ) are realized by applying magnetic pulses with
two different intensities, namely the strong (red/dark-gray) and the
weak (yellow/light-gray) pulses on the SQUIDs. The SQW dynamics
is implemented by alternating the application of pulses with a fixed
period.

large coherent times in superconducting circuits, more walk
steps can be realized in such systems than in any previous
implementation [40].

The remainder of the paper is organized as follows. In
Sec. II we present the Hamiltonian of the superconducting
circuit employed to simulate the dynamics. In Sec. III we
describe the dynamics of the staggered quantum walks on the
line and show how it can be implemented with superconducting
microwave resonators. In Sec. IV we discuss the generalization
for triangle-free graphs and present our conclusions. The
Appendixes describe a formal derivation of the Hamiltonian
used in this work and the system parameters.

II. SUPERCONDUCTING CIRCUIT

Let us consider a 1D array of coupled superconducting
microwave resonators, as in Fig. 1, which can be made from
finite sections of superconducting transmission line [18] or
stripline [21,22]. The resonators couplings are mediated by
SQUID elements. Each SQUID is controlled by an individual
wave generator that produces magnetic flux pulses providing
the system with tunable couplings (see the Appendixes for the
formal derivation of the system dynamics). The Hamiltonian
for the system is written as (h̄ = 1)

H =
∑

n

ωna
†
nan −

∑
〈n,m〉

κnm(�ext)(a
†
nam + a†

man), (1)

where ωn are the resonators frequencies, a
†
n and an are the

creation and annihilation operators satisfying [an,a
†
m] = δnm,

and κnm(�ext) are the flux dependent couplings between
adjacent (m = n ± 1) resonators. Hamiltonian (1) represents
the tight-binding model with controllable hopping strengths
κnm(�ext). Similar tunable coupling with SQUIDs has also
been discussed in Refs. [20,37].

The SQUID coupler is specially appropriate, since it allows
turning on and off the coupling between the two resonators,
hence working as a switch. Actually, two different states,
namely a given large coupling κ and no coupling, are required
here. Such states can be implemented by applying two different
pulses through the corresponding wave generator, say �on and
�off , such that κnm(�on) = κ and κnm(�off) = 0. Such ability
to switch on and off the couplings is essential for our model.

There are several methods to prepare the system in a
predefined state of the resonators and also to measure their

FIG. 2. (a) A 1D array, with the two possible tessellations, namely
the red/dark-gray and the yellow/light-gray ovals. Each tessellation
is a partition of the set of nodes into cliques (a clique is a subgraph in
which every two distinct nodes are connected by an edge). Moreover,
the set of edges are covered in the union of all tessellations. Each
tessellation corresponds to a Hamiltonian. (b) The “unit cells” for the
two- and three-dimensional lattices. For the N -dimensional lattice
2N different tessellations are required.

state after the evolution. We are interested in describing a
single-particle walker, therefore methods for single-photon
generation and detection are required [41–43]. In order
to prepare and measure photons in an arbitrary resonator,
individual transmon qubits [44] are coupled capacitively to the
resonators. Each transmon qubit is also coupled capacitively to
a separate superconducting resonator—a coplanar waveguide
cavity, which is required for manipulating the qubit state.
The dynamics of the transmon qubit coupled to the nth
resonator in near resonant regime is described by the Jaynes-
Cummings Hamiltonian. The way those additional devices are
employed for photon generation and detection is described
after exploring the system dynamics.

III. STAGGERED QUANTUM WALK DYNAMICS

A SQW on the 1D lattice is defined by two tessellations
described in Fig. 2(a). The set of N nodes of the array can
be associated with the canonical basis {|n〉 : n = 0 · · · N − 1},
where |n〉 is a N -component unit vector with 1 in the (n + 1)th
entry and 0 otherwise, spanning the N -dimensional Hilbert
space. We associate vectors |αn〉 = (|n〉 + |n + 1〉)/√2 with
the 2-node elements (colored ovals in Fig. 2) of both tes-
sellations and |αN−1〉 = |N − 1〉, |αN 〉 = |0〉 with the 1-node
elements. Even (odd) n refers to red (yellow) tessellation. The
Hamiltonian for the red (yellow) tessellation is

H0(1) = 2
∑
n even
(n odd)

|αn〉〈αn| − IN, (2)
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where IN is the N -dimensional Hilbert space identity opera-
tor [12]. The Hamiltonians are block diagonal, and each block
is given by the Pauli matrix σx . The local operator of SQW
is defined as U0(1) = exp (iθH0(1)), where θ is an angle [12].
Since the Hamiltonians are block diagonal, the operators are
diagonal as well and the blocks are given by exp (iθσx). The
SQW dynamics is driven by successive applications of U1U0,
starting from an initial state.

The SQW dynamics can be achieved by controlling the
superconducting circuit. We consider Hamiltonian (1) in the
single-photon regime

∑
n〈a†

nan〉 = 1. Therefore the state of
the system with N resonators belongs to the N -dimensional
Hilbert space, which is given in terms of the canonical basis
{|n〉} previously described. The resonators are considered in
resonance at frequency ω. For the required dynamics, the
Hamiltonians H0 and H1 in Eq. (2) are slightly modified by
substituting σx with ωI2 − κσx . The modified Hamiltonians
for N odd [45] can be written in the explicit form

H0 =
[
I(N−1)/2 ⊗ (ωI2 − κσx) 0

0 ω

]
(3)

and

H1 =
[
ω 0
0 I(N−1)/2 ⊗ (ωI2 − κσx)

]
. (4)

Noncommuting Hamiltonians H0 and H1 are referred to as
even and odd, respectively. Here we explicitly consider open
boundary conditions, and with a small modification periodic
boundary conditions could also be addressed. Since we
simulate the dynamics far from the boundaries, corresponding
to the walk on the line, this choice is not relevant.

The even (odd) Hamiltonian is constructed by switching
on only the couplings κn,n+1 with even (odd) index n, directly
corresponding to the tesselation in Fig. 2(a). We are interested
in controlling the system by alternating between the even and
the odd Hamiltonians, in certain time steps τ . Therefore, we
apply the flux pulses �on and �off (see the Appendixes), such
that in the time interval [0,2τ ) the couplings assume the form

κnm(�ext) = κ,

κnp(�ext) = κqm(�ext) = 0, ∀(p,q) �= (m,n), (5)

where n = 2
 for t ∈ [0,τ ), and n = 2
 + 1 for t ∈ [τ,2τ ), in
which 
 = 0 · · · (N − 1)/2 (note that m = n ± 1 for the 1D
array). The system setup during [0,τ ) is given in Fig. 1, where
the red (yellow) magnetic pulses associated with the flux �on

(�off). In [τ,2τ ), the magnetic pulses are interchanged. The
realization of such time dependent couplings implies that the
system is described by the Hamiltonian

H(t) =
{
H0, t ∈ [0,τ ),
H1, t ∈ [τ,2τ ), (6)

which generates the evolution operator

U(2τ ) = U1(τ ) U0(τ ), (7)

where U0 (U1) corresponds to the evolution of the time-
independent Hamiltonian H0 (H1). U0 (U1) is easily calculated
from the exponential of the 2 × 2 matrices in the block

diagonal Hamiltonian H0 (H1),

e−iτ (ωI2−κσx ) = e−iωτ

[
cos κτ i sin κτ

i sin κτ cos κτ

]
. (8)

The parameter θ introduced in the mathematical model is now
set as θ = κτ , by adjusting the time interval τ , and as far
as the resonators are in resonance, the role of e−iωτ in (8)
is irrelevant. This procedure allows us to implement a general
1D-SQW dynamics. For instance, by setting κτ = 2π
 + π/4,
for an integer 
, the blocks of the evolution operators U0 and
U1 take the form of the Hadamard-like operator

H = 1√
2

[
1 i

i 1

]
, (9)

and the quantum walk model introduced in Ref. [13] is
recovered. To have the fastest spread of the walker’s probability
distribution one must set κτ = 2π
 + π/3 [12].

In the following, we consider the time evolution of the
system for the period t = 2τ l with l an integer number, under
the repeated application of operator (7), leading to [U(2τ )]l .
The evolution starts with the initial state

|ψ0〉 = |(N − 1)/2〉, (10)

representing a single photon in resonator (N − 1)/2, the
middle resonator of the chain. In order to produce such initial
state, first all the couplings are turned off, and then a single
photon is generated in resonator (N − 1)/2. Generating a
single photon in a resonator of the system is possible by
promoting the corresponding transmon to its first excited
state and then mapping the excitation into the resonator. The
protocol begins by exciting the transmon by applying a π pulse
through the coplanar waveguide (CPW) cavity, while the qubit
is detuned from the system resonator (CPW cavity and system
resonator must have different different frequencies). Then the
transmon is brought to resonance with the system resonator
for the time tRabi = π/2λ (λ is the qubit-resonator coupling
strength) to transfer its excitation to the resonator.

Now the system evolves as

|ψl〉 = [U(2τ )]l|ψ0〉, (11)

for a given integer l. At this stage, we measure the system by
detecting all the resonators. That can be done by turning off
all the couplings, and then measuring the population of all the
resonators. A resonator photon number detection is processed
by bringing the transmon into resonance with the resonator for
tRabi = π/2λ, hence the (excited) resonator transfer back the
photon to the qubit. Spectroscopy of the transmon transition
frequency through far detuned CPW cavity then gives the
information about the photon number in the resonator. Such
measurement protocol, however, destroys the photon in the
system resonator. To have a nondemolition measurement of the
photon number, the transmon should interact with the system
resonator in a quasidispersive regime [41]. In this case, the
transition frequency of the transmon is stark shifted depending
on the number of photons, 0 or 1, in the system resonator. Now
the spectroscopy of the transmon transition frequency gives
information about the photon number in the system resonator,
in a nondemolition way.
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FIG. 3. Photon probability distribution for a linear array of N =
133 resonators after l = 32 steps (t = 64τ ). The photon is initially
generated in the middle resonator of the array and κτ is tuned for
maximum spread.

Whatever the method employed, the probability distribution
of finding the photon in the array is computed to give

Pl(n) = |〈n|ψl〉|2, (12)

for n = 0 · · · N − 1. Figure 3 shows the photon probability
distribution for a linear array of N = 133 resonators after
l = 32 steps (t = 64τ ), when κτ = 2πl + π/3 (maximum
spread). The dynamics of the photon probability distribution
is ballistic—a clear signature of the quantum walk. It should
be mentioned that for obtaining the probability distribution
in Fig. 3 the above process of initialization, evolution, and
measurement should be repeated many times. However, due
to the ballistic evolution of the quantum walk, the major
part of the probability distribution is concentrated around a
few resonators far from the initial position. Knowing that the
measurement stage can be performed on a considerably smaller
number of resonators.

IV. FINAL CONSIDERATIONS

To conclude we discuss the extension of the described 1D
implementation to a class of graphs called triangle-free graphs,
which includes N -dimensional lattices, trees, and many other
topologies. A graph is triangle-free if no three nodes form
a triangle of edges. To tessellate such a graph we make a
partition of the node set by circling two neighboring nodes at
a time. Two different circles cannot have a node in common
and no node can be missed at the end of the process (there
is the possibility of ending up with isolated single nodes that
form singletons of the partition). The red partition in Fig. 2(a)
is an example of this procedure. The circles are labeled then
by αk for 0 � k < c0, where c0 is the number of circles in the
partition. Having related a Hilbert space basis to the node set,
we associate the unit vector |αk〉 = (|i〉 + |j 〉)/√2 with circle
αk that contains the nodes i and j (if αk contains only node i

then |αk〉 = |i〉). Accordingly, the Hamiltonian

H0 = 2
c0−1∑
k=0

|αk〉〈αk| − IN (13)

is defined for the tessellation associated with {|αk〉}. The vec-
tors |αk〉 have at most two nonzero entries in the computational
basis and Hamiltonian H0 is a reflection operator [12]. The
same procedure is repeated to obtain a second tessellation, but
the new partition must aim the edges that were not included in

the circles of the first partition. The new Hamiltonian H1 can
be obtained from Eq. (13) after replacing |αk〉 with the vectors
associated with the second partition and replacing c0 with c1,
where c1 is the number of circles in the second partition. The
process is continued until all edges have been covered with
circles and the Hamiltonian Hd−1 has been obtained. Besides,
each node must be inside the intersection of d circles. This
situation can be seen for dimensions higher than 1 in the “unit
cells” in Fig. 2(b).

The evolution operator of a SQW with Hamiltonians in the
class of triangle-free graphs has the form

U = eiθHd−1 · · · eiθH1eiθH0 , (14)

where θ is an angle and d is the maximum vertex degree,
that is, the maximum number of edges incident on a node.
For N -dimensional lattices d = 2N , that can be verified for
N = 2,3 in Fig. 2(b).

According to our prescription any desired triangle-free
graph can be implemented using resonators and SQUIDs
associated with the nodes and the edges of the graph,
respectively. The system is described by Hamiltonian (1),
where the first sum runs over all nodes and the second sum
runs over all edges. Each of the Hamiltonians H0, . . . ,Hd−1

can be implemented during the time period τ by applying an
appropriate set of magnetic pulses, such that the couplings
take the form of Eq. (5), in which m,n belong to a suitable
αk . The corresponding setup of the system, in each case,
consists of a collection of disjoint pairs of coupled resonators,
similar to the setup in Fig. 1. Therefore, the time-independent
Hamiltonians can be implemented during the time interval
[0,τd) leading to the evolution (14). We remark that quantum
search algorithms [6] employing the present proposal can
be readily implemented. For that an extra local Hamiltonian
associated with a nonhomogeneous tessellation is required.

Although restricted to implement the single-photon stag-
gered quantum walk model, the system proposed in this
paper is quite general and can be employed to simulate
multiparticle quantum dynamics, in particular, it can realize
boson sampling [46]. While single photons can be loaded in
various resonators there is no need to measure more than one
photon in each resonator because that is a rare event in the
boson sampling protocol. Actually, tunable couplings between
the resonators enable our system to implement microwave
boson sampling, and in this respect our system is similar to the
system presented in Ref. [47]. However, besides the possibility
of realizing the boson sampling problem, we have addressed
specially the implementation of the search problem in the
system (see Ref. [46] for discussions regarding search problem
in a boson computer). It should be noted that the sampling
problem requires unitary operators that are randomly chosen
according to the Haar measure [46]. In contrast, the quantum
dynamics considered here corresponds to structured unitary
operators, which are easy for boson sampling problem. In this
way, the staggered quantum walk is not strictly equivalent to
single-photon boson sampling.

Finally, considering that the coupling strength is about
10 MHz (see the Appendixes) and the single photon lifetime in
the resonators is around 100 μs or higher [15], there is enough
time to realize a considerable number of steps. Moreover,
the magnetic pulses should be switched within 0.1 μs.
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Imperfection in the resonators and couplings frequencies can
affect the dynamics producing, for example, wave function
localization. However, it is expected that the system can
tolerate small imperfections in the couplings similarly to the
continuous-time dynamics [4].
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APPENDIX A: DERIVATION OF THE SYSTEM
HAMILTONIAN

Here we derive formally Hamiltonian (1) corresponding
to the circuit in Fig. 1 in the main text, which follows by
quantizing the classical Lagrangian of the circuit.

Consider a one-dimensional array of coupled supercon-
ducting microwave resonators, as in Fig. 4(a). The microwave
resonator, here a transmission line resonator, can be considered
as a two-wire line, each piece of infinitesimal length of which
can be modeled as a LC circuit, with the inductance and
capacitance per unit length l and c, respectively as shown
in Fig. 4(b) [48]. Considering the flux variable ψn(x,t) along
the transmission line resonator, the corresponding Lagrangian
is given by [49]

LR
n =

∫ L

−L

[
c

2
(∂tψn)2 − 1

2l
(∂xψn)2

]
dx, (A1)

where c and l are considered position independent and,
without loss of generality, supposed to be identical for all
the resonators.

For a symmetrical SQUID, consisting of a superconducting
ring interrupted by two identical Josephson junctions, the
Lagrangian is written as

LS
n = 1

2
CJ

(
φ̇2

n,1 + φ̇2
n,2

) + EJ (cos ϕn,1 + cos ϕn,2), (A2)

where CJ is the junction capacitance, EJ is the Josephson
energy, and φn,1(2) and ϕn,1(2) are the flux and the phase
differences across the junctions, respectively. The flux and the
phase differences are related by ϕn,1(2) = 2πφn,1(2)/�0, where
�0 is the flux quantum. Again, without loss of generality, all
the SQUIDs are assumed to have the same CJ and EJ .

The fluxoid quantization along the SQUID loop is given
by φn,1 + φn,2 + �tot,n = k�0, where �tot,n is the total flux
enclosed by the loop and k is an integer number [50]. The
total flux is the sum of the externally applied flux �ext,n,
subjecting the SQUIDs individually, and the flux generated by
the currents circulating through the loop. Here it is assumed
that the flux produced by the circulating currents is negligible
hence �tot,n ≈ �ext,n. In this case, for the symmetrical SQUID,
it is possible to write (φn,1 − φn,2)/2 = ψn(0,t) − ψn+1(0,t).
Now, the SQUID variables in Eq. (A2) can be eliminated
by expressing the Lagrangian in terms of (φn,1 ± φn,2)/2.

FIG. 4. Schematic representation of the system in (a) and the
system parameters with the lumped element model of the resonator
in (b).

Specifically, the second term in Eq. (A2) changes to

2EJ cos

(
π

�ext,n

�0

)
cos

2π

�0
[ψn(0,t) − ψn+1(0,t)],

supposing k is an even integer. The flux-dependent co-
sine function can be expanded in terms of its argument
(2π/�0)[ψn(0,t) − ψn+1(0,t)] and only the first terms be kept,
when the argument is small. The small values for the argument
correspond to small flux difference in the adjacent resonators.
In the quantum regime, as discussed in the following, the
argument is given in terms of the creation and annihilation
operators of the adjacent resonators [see Eqs. (A18) and (A25)]
which is small for low photon numbers in the system. In this
case, it is sufficient to consider the expansion up to the second
order terms and dismiss the higher order terms that correspond
to nonlinear photon interactions [20]. Therefore, the SQUID
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Lagrangian can be written as

LS
n = CJ [∂tψn(0,t) − ∂tψn+1(0,t)]2

− En(�ext)[ψn(0,t) − ψn+1(0,t)]2, (A3)

where

En(�ext) = 4π2

�2
0

EJ cos π
�ext,n

�0
, (A4)

implying each SQUID can be controlled individually using
the individual external magnetic fields. Note that in La-
grangian (A3) all the terms independent of the flux variables
have been disregarded.

The system can be described by the Lagrangian

L =
∑

n

L̃R
n + LI

n, (A5)

where, for each index n, the resonator Lagrangian LR
n and

SQUID Lagrangians LS
n−1 and LS

n are considered. The modi-
fied resonator Lagrangian is given by

L̃R
n = LR

n + 2CJ [∂tψn(0,t)]2

− (En−1 + En)[ψn(0,t)]2, (A6)

that includes all the terms containing ψn, hence, the
terms corresponding to ψn±1 are left for L̃R

n±1. The interaction
Lagrangian

LI
n = −2CJ ∂tψn(0,t)∂tψn+1(0,t)

+ 2Enψn(0,t)ψn+1(0,t) (A7)

includes the contributions that couple indices n and n + 1,
hence, those that couple indices n and n − 1 are left for LI

n−1.
Supposing the interaction energy between the adjacent

resonators is small with respect to the energy of each resonator,
the problem can be treated perturbatively. In this way, the equa-
tion of motion is derived without considering the interaction
Lagrangian but then the corresponding solutions are used in
the total Lagrangian that includes the interaction term. The
Euler-Lagrange equation for the modified Lagrangian L̃R

n turns
out to be∫ L

−L

(
c∂2

t ψn − l−1∂2
xψn

)
dx + 4CJ ∂2

t ψn(0,t)

+ 2(En−1 + En)ψn(0,t)0. (A8)

Away from the center of the resonator (x = 0), Eq. (A8)
gives the wave equation ∂2

t ψn = (1/
√

lc)2∂2
xψn, in which

1/
√

lc is the velocity of the electromagnetic wave in the res-
onator. By letting ψn(x,t) = ξn(t)un(x) in the wave equation,
the Sturm-Liouville equation

d2

dx2
un = −k2

nun, (A9)

for the spatial mode is obtained. The equation corresponds to
the nth resonator in which kn = (ωn

√
lc) is the wave number

and ωn is the wave angular frequency. At x = 0, Eq. (A8) gives(
dun

dx

)
x=0+

−
(

dun

dx

)
x=0−

= h0un(0), (A10)

which implies a discontinuity in the current passing through
the resonator at x = 0. Moreover,

h0 = 2
( − 2CJ ω2

n + En−1 + En

)
l

= −8χck
2
nL + χln−1 + χln

L
(A11)

in which the dimensionless parameters

χc = CJ (2Lc)−1,

χln = En(2Ll) (A12)

are the relative capacitance and the relative inverse inductance
of the Josephson junctions with respect to the total resonator
capacitance 2Lc and total resonator inductance 2Ll. Finally, at
x = ±L we impose the open boundary condition (zero current)(

dun

dx

)
x=−L

=
(

dun

dx

)
x=L

= 0. (A13)

The eigenfunctions of Eq. (A9) subjecting to the con-
straints (A10) and (A13) can be written as

un,ν(x) =
{
An,ν cos kn,νx − Bn,ν sin kn,νx, −L � x � 0,

An,ν cos kn,νx + Bn,ν sin kn,νx, 0 � x � L,

(A14)

where the wave numbers kn,ν are the solutions of the
transcendental equation

tan kn,νL = h0

2kn,ν

= −4χckn,νL + χln−1 + χln

2kn,νL
, (A15)

and the integer ν labels different modes of oscillation. Note
that one of the coefficients in Eq. (A14) is already known in
terms of the other one, say Bn,ν = h0An,ν/2kn,ν .

The eigenfunctions (A14), for a given resonator, form an
orthogonal set for different modes ν according to

1

2
c

∫ L

−L

un,ν(x)un,ν ′ (x)dx + 2CJ un,ν(0)un,ν ′ (0)

= 1

2
Lcδν,ν ′ , (A16)

which also determines the value of An,ν . Moreover, the
derivatives of the eigenfunctions (A14), obey the relation

1

2l

∫ L

0

d

dx
un,ν

d

dx
un,ν ′dx + (En−1 + En)un,ν(0)un,ν ′ (0)

= 1

2
Lcω2

n,νδν,ν ′ . (A17)

Figure 5(a) shows the graphical solutions for Eq. (A15) for
some typical values of χc and χl . The first normal mode and its
derivative which is proportional to the current are sketched in
Fig. 5(b). The frequency of the first normal mode corresponds
to the smallest positive solution of Eq. (A15). The discontinuity
in the current is given by Eq. (A10) associating with the current
flowing to the adjacent resonator.

The general solution for Eq. (A8) is obtained by summing
over all normal modes ξn,ν(t)un,ν(x), namely

ψn(x,t) =
∑

ν

ξn,ν(t)un,ν(x), (A18)
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FIG. 5. Graphical solutions for Eq. (A15) with χc = 0.5 × 10−3

and χln−1 = χln = −0.3059 in (a), and the first normal mode and its
derivative (the current) in (b) (the plot with the discontinuity at x = 0
corresponds to the current). The frequency of the first normal mode
is calculated as kn,1L = 3.0351.

where each ξn,ν(t) is the temporal part of the wave function
corresponding to the mode ν. Substituting the general solu-
tion (A18) in the modified resonator Lagrangian in Eq. (A6),
and using the the relations (A16) and (A17), we find

L̃R
n = 1

2
Lc

∑
ν

ξ̇ 2
n,ν − ω2

n,νξ
2
n,ν, (A19)

which shows each (temporal) normal mode corresponds to
an independent simple harmonic oscillator. Considering the
modes ξn,ν(t) as coordinates, the momentum conjugate to
which are defined as

qn,ν(t) = ∂L̃R
n /∂ξ̇n,ν = Lcξ̇n,ν, (A20)

which can be used to write Hamiltonian (A19) as

H̃R
n = 1

2

∑
ν

1

Lc
q2

n,ν + Lcω2
n,νξ

2
n,ν . (A21)

Moreover, substituting the general solution (A18) in the
interaction Lagrangian (A7) and using the conjugate momen-
tums (A20) gives

HI
n =

∑
ν

gcap
n qn,νqn+1,ν + gind

n ξn,νξn+1,ν , (A22)

where

gcap
n = − 2CJ

(Lc)2
un,ν(0)un+1,ν(0), (A23)

gind
n = 2Enun,ν(0)un+1,ν(0), (A24)

and we have neglected the terms that couple any pair of
different modes in the adjacent resonators.

Hamiltonians (A21) and (A22) can be quantized by in-
troducing the creation and annihilation operators a

†
n,ν and

an,ν , respectively, corresponding to the excitations in mode
ν in resonator n. The operators obey the commutation
relations [an,ν,a

†
m,ν ′ ] = δnmδν,ν ′ . The coordinates ξn,ν and the

momentums qn,ν are then expressed as [49]

ξ̂n,ν =
√

h̄

2Lcωn,ν

(an,ν + a†
n,ν), (A25)

q̂n,ν = −i

√
h̄Lcωn,ν

2
(an,ν − a†

n,ν), (A26)

that turn Eq. (A21) into

H̃R
n =

∑
ν

h̄ωn,ν

(
a†

n,νan,ν + 1

2

)
, (A27)

which is the quantized harmonic oscillator Hamiltonian
with infinite noninteracting modes. However, we restrict the
harmonic oscillator to the first frequency mode, hence the
subindex ν and the corresponding summation is dismissed and
the resonator Hamiltonian becomes H̃R

n = h̄ωna
†
nan, in which

the zero-point energy is also dropped to simplify.
The interaction Hamiltonian (A22) is also quantized as

HI
n = h̄κcap

n (an − a†
n)(an+1 − a

†
n+1)

+ h̄κ ind
n (an + a†

n)(an+1 + a
†
n+1), (A28)

where

κcap
n = 2χcun(0)un+1(0)

√
ωnωn+1, (A29)

κ ind
n = χln

2knkn+1L2
un(0)un+1(0)

√
ωnωn+1, (A30)

and we have considered just the first mode of the resonators.
However, as mentioned before, the coupling between the
resonators is weak. Moreover, the resonators are assumed to
be similar and in resonance. So we can make the rotating wave
approximation (RWA) discarding the “counter rotating terms”
anan+1 and a

†
na

†
n+1 to obtain

HI
n = −h̄κn(�ext)(ana

†
n+1 + a

†
n+1an), (A31)

where

κn(�ext) = −κ ind
n (�ext) + κcap

n , (A32)

and we have stressed the external field dependency of the
couplings by including it in the corresponding arguments. The
total Hamiltonian of the system is therefore as in Eq. (1) in
the main text, after replacing κn with κnm where m = n ± 1
[see Fig. 4(a)].

APPENDIX B: NUMERICAL DATA FOR THE SYSTEM
FREQUENCIES

Here we estimate the numerical data for the system
parameters.

For a transmission line resonator, an impedance Z =√
l/c = 50 � [20,22,51] may correspond to a capacitance per
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unit length c = 10−10 F/m [51] and the impedance per unit
length l = 2.5 × 10−7 H/m. Considering the SQUID junctions
capacitance CJ = 10−15 F [52], for a resonator of length
L = 10−2 m (comparable with the microwave wavelength),
we obtain χc = 0.5 × 10−3. On the other hand, the maximum
value of En(�ext) in Eq. (A4) is given by (4π2/�2

0)EJ

which can be calculated using EJ = 6.6262 × 10−24 J for the
Josephson energy [52] and �0 = 2.0679 × 10−15 Wb for the
flux quantum. Therefore the maximum value of χln is obtained
as |χln|max = (4π2/�2

0)EJ (2Ll) = 0.3059.
Actually, the above values for χc and χln have been used

in generating the plots in Fig. 5, which give kn,1L = 3.0351
corresponding to the first mode frequency. Supposing all
the resonators are identical, or in resonance with the same
frequency ω, we obtain ω = 607.028 MHz. The capacitive
and inductive couplings in Eqs. (A29) and (A30) are then
obtained as κcap = 0.6193 MHz and κ ind = −10.2821 MHz,
respectively, for u(0) = A = 1.01.

APPENDIX C: SWITCHING ON AND
OFF THE COUPLINGS

Here we infer the magnetic fields pulse profile for switching
the couplings.

The time-dependent couplings required for the one-
dimensional staggered quantum walk are given in Eq. (5).
Such couplings lead to a collection of disjoint pairs of coupled
resonators at each time interval τ . We can set κ in Eq. (5) to
be the maximum value of κn(�ext) in Eq. (A32), by setting
χln = −|χln|max, as calculated in the previous section. That
corresponds to applying an external magnetic flux equal to the

quantum flux

κ = κn(�ext)|�ext,n=�0 , (C1)

hence �on = �0.
The required external fluxes for turning off the couplings

κn±1(�ext), as demanded by Eq. (5), and given by Eq. (A32),
are calculated by letting χln±1 = 4χc(knL)2 [see Eqs. (A29)
and (A30)], where we have assumed that all the resonators are
identical. Using such value for χln±1 modifies the resonator
frequency ω that was calculated in the previous section
for the case all the couplings were on. To obtain the new
frequency for the case corresponding to a collection of disjoint
pairs of coupled resonators, the values for χln−1 and χln

should be substituted in the transcendental Eq. (A15). Having
considered the first mode frequency, we get the system
frequencies as ω = 617.8077 MHz, κ ind

n = −10.0054 MHz,
κ

cap
n = κ

cap
n±1 = 0.6242 MHz, and κ ind

n±1 = κ
cap
n±1. Moreover, in

this case, knL = 3.089 which leads to χln±1 = 0.0191, there-
fore, cos (π�ext,n/�0) = 0.0624 and we obtain

0 = κn±1(�ext)|�ext,n=0.4801�0 , (C2)

hence �off = 0.4801�0. When the system topology corre-
sponds to a general triangle-free graph, with degree d, each
resonator is coupled to d resonators through d SQUIDs.
Therefore, the whole derivation for the 1D array (a triangle-free
graph with d = 2) is valid here, but slightly modified to
include the extra SQUIDs coupled to each resonator. Finally, an
isolated pair of coupled resonators can be realized by turning
on an specific coupling and turning off the remaining d − 1
ones.
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