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Universality of the helimagnetic transition in cubic chiral magnets: Small angle neutron scattering
and neutron spin echo spectroscopy studies of FeCoSi
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We present a comprehensive small angle neutron scattering and neutron spin echo spectroscopy study of
the structural and dynamical aspects of the helimagnetic transition in Fe1−xCoxSi with x = 0.30. In contrast
to the sharp transition observed in the archetype chiral magnet MnSi, the transition in Fe1−xCoxSi is gradual,
and long-range helimagnetic ordering coexists with short-range correlations over a wide temperature range.
The dynamics are more complex than in MnSi and involve long relaxation times with a stretched exponential
relaxation which persists even under magnetic field. These results in conjunction with an analysis of the hierarchy
of the relevant length scales show that the helimagnetic transition in Fe1−xCoxSi differs substantially from the
transition in MnSi and question the validity of a universal approach to the helimagnetic transition in chiral
magnets.
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I. INTRODUCTION

Cubic helimagnets such as MnSi, FeGe, Cu2OSeO3, and
Fe1−xCoxSi attract a great amount of attention due to the
observation of chiral skyrmions and their lattices [1–6]. These
chiral skyrmions have dimensions significantly larger than the
lattice constant, are topologically protected, and may have
applications in spintronics and novel devices for information
storage [7–9].

In these chiral magnets, a long-range helimagnetic order of
the magnetic moments exists at zero field below the critical
temperature TC . The helimagnetic ordering is the result of the
competition between three hierarchically ordered interactions
[10], of which the strongest is the ferromagnetic exchange
interaction favoring parallel spin alignment. The twist of
the spins is induced by the weaker Dzyaloshinsky-Moriya
(DM) interaction that results from the absence of a center
of symmetry of the crystallographic structure [11,12]. The
propagation vector of the resulting helical arrangement of the
magnetic moments is fixed by anisotropy. If a magnetic field is
applied that is sufficiently strong to overcome the anisotropy, it
aligns the helices along its direction and induces the so-called
conical phase. Within this conical phase, skyrmion lattice
correlations are stable in a small pocket just below TC [1,3,4,6],
and metastable in a much larger region of the magnetic phase
diagram [6,13,14].

In helimagnets, theory predicts, at zero magnetic field,
a first-order transition to the helimagnetic state [10]. In
the archetype chiral magnet MnSi, this is indeed confirmed
by sharp anomalies of the thermal expansion [15,16], heat
capacity [16,17], and ultrasound absorption [18,19] at TC . In
this system, strong fluctuating correlations build up just above
TC and thus precede the first-order phase transition. These
correlations show up as a ring of intensive diffuse neutron

scattering spreading over a surface with radius τ = 2π/�

[20], where � denotes the pitch of the helix. The origin of
this precursor phase remains subject to debate. Based on the
observations that these correlations are totally chiral up to
∼TC + 1 K, it was suggested that this scattering might emanate
from a chiral spin-liquid phase, which would be the magnetic
equivalent of the blue phase observed in liquid crystals [21]. It
has also been argued that the correlations drive the transition
to first order, as suggested by Brazovskii in a theory originally
developed for liquid crystals [22,23]. This approach provides
a good description of the temperature dependence of the
susceptibility and correlation length, but does not explain all
intriguing features of the precursor phase and the transition in
MnSi [24,25]. Studies of the helimagnetic transition to other
cubic chiral magnets are scarce. In fact, only Cu2OSeO3 has
been studied by a critical scaling analysis and, in this case, the
Brazovskii approach was found to be less conclusive than for
MnSi [24,26].

In this work, we address the open question of the heli-
magnetic transition in the semiconductor Fe1−xCoxSi and,
at the same time, of the theoretically expected universality
of the helimagnetic transition in cubic chiral magnets [23].
Fe1−xCoxSi is of particular interest as important physical
properties can be altered by tuning the chemical substitution
which changes both the sign and the magnitude of the DM
interaction. The helical order is stabilized over a wide range
of concentrations of 0.05 < x < 0.8 [27–29]. By changing the
concentrations, TC changes from a few Kelvin to 50 K and the
pitch � from ∼30 to ∼200 nm [28,30]. Furthermore, the sign of
the chirality alters from left to right handed at x = 0.65 [31].

The specific composition of the sample used in this work,
Fe0.7Co0.3Si, has a TC of approximately 43 K and a pitch
of � ∼ 40 nm. We present the results of small angle neu-
tron scattering (SANS) measurements that provide structural
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FIG. 1. SANS results obtained at D33 by applying the magnetic field along the incident neutron beam ( �B ‖ �ki). Characteristic patterns
are shown for B = (a) 0, (b) 22, and (c) 43 mT. (d) The temperature dependence of the total scattered intensity for selected magnetic fields.
(e) S(Q) in arbitrary units, deduced by radially averaging the scattered intensity at a magnetic field of 43 mT, for the temperatures indicated.
The solid lines indicate the best fits of Eq. (1) to the data.

information on the magnetic correlations as well as SANS in
combination with polarization analysis to determine the degree
of magnetic chirality. These measurements are complemented
by the investigation of the associated dynamics by neutron
spin echo spectroscopy (NSE). The combined experimental
findings show that the helimagnetic transition in Fe0.7Co0.3Si
is gradual and involves slow and complicated dynamics and is,
as such, quantitatively different from the transition in MnSi,
which challenges the validity of a universal approach to the
helimagnetic transition for chiral magnets.

II. EXPERIMENTAL DETAILS

The measurements were performed with the Fe0.7Co0.3Si
single crystal (∼0.1 cm3) that was used for previous neutron
scattering studies [13,32] and originates from the same batch
as the sample for the ac susceptibility measurements [33].
The sample was oriented with the [1̄10] axis vertical for all
experiments.

SANS measurements were performed on the instruments
D33 at the Institute Laue Langevin and LARMOR at ISIS.
At D33, the monochromatic neutron beam had an incident
wavelength of λ = 0.6 nm with �λ/λ = 10% and the mag-
netic field �B was applied along �ki , the wave vector of
the incoming neutron beam. Complementary measurements
with �B ⊥ �ki were performed on the time-of-flight SANS
instrument LARMOR at the ISIS neutron spallation source
where neutrons with wavelengths of 0.8 � λ � 1.6 nm were
used. The SANS patterns were normalized to standard monitor
counts and background corrected using a measurement at 60 K,
a temperature which corresponds to ∼1.5 TC . Measurements
with �B ⊥ �ki were performed after either zero-field cooling

(ZFC) the sample or by field cooling (FC) through TC . As the
results did not depend on the specific magnetic history and
the specific protocol, most measurements were recorded with
a ZFC protocol.

Neutron spin echo as well as SANS with polarization
analysis and spherical polarimetry were performed on the
NSE spectrometer IN15 at the Institut Laue Langevin using
a polarized neutron beam with a polarization of 95% and a
monochromatization of �λ/λ = 15%. At zero field, both the
paramagnetic NSE and the SANS with polarization analysis
and spherical polarimetry measurement were performed with
λ = 0.8 nm. The measurements under magnetic field were
performed with λ = 1.2 nm and in the ferromagnetic NSE
configuration [34,35]. For these measurements, the magnetic
field was applied perpendicular to the incident neutron beam
( �B ⊥ �ki), a configuration where the chiral scattering of the
sample does not depolarize the scattered neutron beam [36].
All NSE spectra were averaged over the entire detector and a
background correction was performed when required using a
high-temperature measurement at 60 K.

III. EXPERIMENTAL RESULTS

A. SANS

We commence the presentation of the experimental results
with the SANS patterns displayed in Fig. 1 for the configu-
ration where the magnetic field was parallel to the incoming
neutron beam ( �B || �ki), and in Fig. 2 for the complementary
setup where the magnetic field was applied perpendicular to
it ( �B ⊥ �ki). These results bear the signatures of the different
phases present below TC .
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FIG. 2. SANS results obtained at LARMOR by applying the magnetic field perpendicular to the incident neutron beam ( �B ⊥ �ki).
Characteristic patterns are shown for B = (a) 0, (b) 22, and (c) 43 mT. (d) The temperature dependence of the total scattered intensity
for selected magnetic fields. (e) S(Q) in arbitrary units, deduced by radially averaging the scattered intensity at a magnetic field of 0 mT, for
the temperatures indicated. The solid lines indicate the best fits of Eq. (1) to the data.

At T = 40 K, four peaks show up at zero field, which
are smeared over a ring with radius τ = 2π/� and do not
have exactly the same intensities due to a slight misalignment
of the crystal [13,32]. These peaks are the signature of the
helical phase, where helices are aligned along the 〈100〉
crystallographic directions. By increasing the magnetic field,
the scattering patterns change and at B = 22 mT there is
no scattered intensity for �B ‖ �ki , as shown in Fig. 1(b). On
the other hand, only two peaks along the magnetic field
direction are found for �B ⊥ �ki [Fig. 2(b)]. These patterns
are characteristic of the conical phase, where all helices are
oriented along the magnetic field and Bragg peaks are thus
only visible along the field direction in the configuration where
�B ⊥ �ki .

By further increasing the magnetic field, a ring of intensity
with radius τ appears. As illustrated by the patterns at
B = 43 mT, this ring is only visible for �B ‖ �ki and, as
such, indicates the onset of the A phase and skyrmion lattice
correlations. These, however, do not lead to the characteristic
sixfold pattern found in MnSi due to a combination of
magnetocrystalline anisotropy and chemical disorder that is
specific to Fe1−xCoxSi [6,13]. We note that the skyrmion lattice
correlations coexist with the conical phase as the scattering
patterns of �B ⊥ �ki reveal two peaks along the magnetic field
direction originating from the conical correlations at the same
fields and temperatures for which the skyrmion lattice is
stabilized.

By increasing the temperature to T = 42 and 43 K, thus
approaching TC ≈ 43 K, the behavior remains roughly the
same. However, some differences show up as, for example,
the A-phase ring of scattering appears also at B = 22 mT in
Fig. 1(b). Furthermore, a broad ring of diffuse scattering is seen

at T = 43 K, which resembles the ring of diffuse scattering
visible above TC in MnSi. The patterns in Fig. 2 indicate that
the ring is very weak and coexists with the Bragg peaks of the
conical phase and the spots of the A phase. Above T = 44 K,
the intensity of the helical Bragg peaks decreases significantly
and is superimposed to a weak ring of diffuse scattering that
persists under magnetic field for both configurations.

The temperature dependence of the total scattered intensity,
obtained by integrating the SANS patterns, is given for selected
magnetic fields in Figs. 1(d) and 2(d) for �B || �ki and �B ⊥ �ki ,
respectively. At zero magnetic field, the intensity increases
gradually with decreasing temperature with no particular
change at TC . For T � TC , a magnetic field suppresses part
of the scattered intensity in both configurations.

Below TC , the temperature dependence is similar for
all magnetic fields in the configuration �B ⊥ �ki . On the
contrary, for �B || �ki , a magnetic field has dramatic effects with
nonmonotonic temperature and magnetic field dependencies.
Indeed, even a field of B = 11 mT is large enough to suppress
most of the magnetic scattering below TC . Just below TC ,
diffuse scattering starts to build up at this field, leading to a
kink at a temperature that provides the best estimation of TC

from the SANS data. At higher magnetic fields, the marked
maxima are due to the onset of the A phase, which appears as
additional intensity and is stabilized for 22 � B � 54 mT. At
even higher magnetic fields, as for example for B = 66 mT,
the scattered intensity in this configuration is negligible at all
temperatures.

A further step in the quantitative analysis of the SANS
data is the analysis of the momentum transfer, Q, dependence
of the scattered intensity S(Q). S(Q) is obtained in arbitrary
units by radial averaging the scattered intensity and is shown
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FIG. 3. Comparison of a Gaussian, Lorentzian, and a weighted
superposition of a Gaussian and a Lorentzian (solid purple line) to fit
S(Q) at B = 0 mT and T = 43.5 K.

in Fig. 1(e) for 43 mT and Fig. 2(e) for 0 mT. Both plots
show well-defined maxima centered at τ = 2π/� and with line
shapes that vary with temperature. In such a plot, Bragg peaks
have a Gaussian shape since they are expected to be resolution
limited. This contrasts to the broad Q dependence expected
for diffuse scattering. In the case of fluctuating correlations
with a characteristic correlation length ξ , the Ornstein-Zernike
formalism predicts the Lorentz function,

S(Q) = C

(Q − 2π/�)2 + 1/ξ 2
, (1)

with C the Curie constant. Another similar but more complex
function has been suggested for chiral magnets [20], but our
experimental results lack the accuracy required to confirm
deviations from Eq. (1). For this reason, the data have been
analyzed using the simpler Ornstein-Zernike form, convoluted
with the corresponding instrumental Gaussian-shaped resolu-
tion functions.

At temperatures close to TC , neither a Gaussian nor a
Lorentzian function provides a satisfactory description of
S(Q), as illustrated in Fig. 3 for T = 43.5 K. The line shape
is satisfactorily reproduced by a weighted superposition of
the two functions where the relative weight of the Gaussian
function provides an estimate for the elastic fraction aSANS. All
S(Q) data have been fitted in this way, leading to the values

for aSANS, the correlation length ξ , and the pitch � displayed
in Fig. 4.

The elastic fraction, displayed in Fig. 4(a), is 100% well
below TC , but decreases with increasing temperature above
T ≈ 41 K and becomes zero within a temperature range of
∼3 K at T ≈ 44 K. The deduced values for the correlation
length ξ are displayed in Fig. 4(b) and show within the
experimental accuracy a similar trend for all magnetic fields.
At T = 42.5 K, ξ ∼ 30 nm or ξ ∼ 0.75� and decreases with
increasing temperature to ξ ∼ 0.35� at 45 K.

The pitch of the helix � shown in Fig. 4(c) only depends
weakly on the magnetic field. The temperature dependence of
� is consistent with earlier measurements [13] as � increases
by ∼4% between T = 38 and 44 K. As the pitch of the helix
is proportional to the ratio of the ferromagnetic exchange and
the DM interaction, this temperature dependence suggests a
slight change in the balance between the two interactions in
favor of the ferromagnetic exchange.

B. NSE

The relaxation of the magnetic correlations above TC

has been investigated by NSE at B = 0 and 50 mT. The
corresponding intermediate scattering functions I (Q,t) are
displayed as a function of the Fourier time t in Figs. 5(a)
and 5(b), respectively. Above TC , at 46 K for B = 0 mT and
42.5 K for B = 50 mT, the relaxation is exponential and I (Q,t)
decays from 1 to 0 when t increases by less than two orders
of magnitude. However, when the temperature decreases and
approaches TC , the relaxation stretches and covers a much
larger time domain. In addition, I (Q,t) at zero field levels off
at the longest Fourier times to an elastic component, aNSE,
that increases with decreasing temperature. The time decay
of I (Q,t) has therefore been fitted by a superposition of the
elastic component and a stretched exponential relaxation,

I (Q,t) = (1 − aNSE) exp[−(t/t0)β] + aNSE, (2)

with t0 the characteristic relaxation time and β the stretching
exponent. The necessity to include the stretching exponent
β is illustrated in Fig. 6, which displays the time decay of
I (Q,t) at T = 43.5 K and shows that the fit with a simple
exponential (β = 1) is poor. The decay is more stretched than
an exponential and leads in this case to β ∼ 0.6.

The temperature dependence of the parameters deduced
from the fit of the NSE spectra at zero field is given in Fig. 7.

FIG. 4. The elastic fraction aSANS, the correlation length ξ , and the pitch of the helical modulation � as a function of temperature for the
magnetic fields indicated as derived from the measurements on D33 where the field was applied parallel to the neutron beam ( �B ‖ �ki).
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FIG. 5. Neutron spin echo spectroscopy results. The intermediate
scattering function I (Q,t) measured at (a) 0 and (b) 50 mT. The solid
lines indicate the fits with the relation provided in Eq. (2).

At T = 46 K, aNSE ∼ 0, but the elastic fraction increases
roughly linearly with decreasing temperature reaching ∼90%
at T = 41 K, which is in qualitative agreement with the values
obtained from the SANS measurements aSANS displayed in
Fig. 4(a). The stretching exponent β depicted in Fig. 7(b) is
equal to one well above 45 K, but decreases with decreasing
temperature and reaches β ∼ 0.57 at 41 K. The characteristic

FIG. 6. Comparison of a fit of the intermediate scattering function
I (Q,t) to Eq. (2) exponential (β = 1) and a stretched exponential fit
(0 � β � 1) for B = 0 mT and T = 43.5 K.

TABLE I. Ideal and measured polarization matrix Pα,β at �τ100.

Ideal T = 42 K

β � α x y z x y z

x −1 η ζ η ζ −0.92(3) 1.03(5) 0.99(5)
y 0 0 0 0.10(2) 0.22(5) −0.15(4)
z 0 0 0 0.07(2) −0.10(4) 0.06(4)

relaxation times t0, displayed in Fig. 7(c), increase gradually
with decreasing temperature from t0 = 1.7 ns at 46 K to t0 = 8
ns at T = 41 K, indicating a slowing down of the relaxation
with decreasing temperature approaching TC .

The data at B = 50 mT are less precise than at zero
field, as they have been collected in the ferromagnetic NSE
configuration that is sensitive to background corrections. The
spectra do not allow a reliable determination of aNSE and, for
this reason, no data are given in Fig. 7(a). On the other hand, the
stretching exponent β shows a similar behavior as at zero field.
In contrast to β, the characteristic relaxation times are almost
doubled as compared with zero field and reach t0 ∼ 40 ns at
T = 40 K. As such, these longer relaxation times indicate a
considerable slowing down of the dynamics under field.

C. Magnetic chirality

Following the equations of Blume and Maleyev [37,38],
the interaction between a polarized neutron beam and chiral
magnetic correlations affects the polarization and the intensity
of the scattered neutron beam. This interaction reveals both
the handness ζ , with ζ = +1 for right-handed and ζ = −1
for left-handed chirality, respectively, and the weight η( �Q) of
the dominant chiral domain, with η = 1 for a single chirality
domain and η = 0 for a disordered state or domains with
equally populated chiralities. For a perfectly polarized incident
neutron beam, this can be written as

ζη( �Q) = | �M( �Q)⊥ × �M( �Q)∗⊥|/[ �M( �Q)⊥ · �M( �Q)∗⊥], (3)

with �M( �Q)⊥ the projection of the magnetic structure factor
onto a plane perpendicular to the scattering vector �Q. This
term can be determined independently from the polarization
and the intensity of the scattered beam [21,36].

With spherical neutron polarimetry, it is possible to control
the incident and the scattered neutron beam polarization
vectors, �P ′ and �P , respectively, independently from each other.
The measurements determine the polarization transfer matrix,
with respect to a right-handed Cartesian set with x̂ = Q̂, ẑ

in the scattering plane, and ŷ perpendicular to it [39]. In the
small angle scattering geometry used in this experiment, ŷ was
collinear with �ki . Table I provides the ideal matrix for the case
of a chiral helix and the experimental results for Fe0.7Co0.3Si
at 42 K revealing full right-handed chirality. The error bars
printed in the table are deduced from the counting rates and
do not include systematic errors of the polarimetric setup
or the sample alignment, which likely account for the slight
discrepancies between the measured and expected values.

Complementary results are obtained from the difference
in the scattered intensities, in spin-flip configuration, when
the incoming beam polarization is parallel NSF

�P’‖�Q = Nx̂,−x̂ or
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FIG. 7. Obtained parameters from fitting the intermediate scattering function I (Q,t) with the relation provided in Eq. (2). (a) The elastic
fraction aNSE, (b) the relaxation time t0, and (c) the stretching exponent β as a function of temperature at B = 0 and B = 50 mT.

antiparallel NSF
�P’‖−�Q = N−x̂,x̂ to �Q. This difference is zero in

the absence of a chiral term and, after background correction,
the product ζη( �Q) is obtained directly from the ratio ζη( �Q) =
(N−x̂,x̂ − Nx̂,−x̂)/(Nx̂,−x̂ + N−x̂,x̂) [21,36].

The resulting temperature dependence of η( �Q = �τ ) after
correction for the incident beam polarization is displayed in
Fig. 8, where the corresponding chiral fraction for MnSi is also
included as a reference. It shows that at �Q = �τ , η = 1 below
TC ∼ 43 K, implying that the system is completely chiral
below TC . Above TC , η decreases substantially with increasing
temperature and drops to η = 0.80 at T = 46 K. However, η

remains nonzero even at 50 K, which implies that well above
TC , the system is still influenced by DM interactions.

IV. DISCUSSION

In the following, we will discuss our experimental findings
in the context of the literature, and in particular in comparison
with the archetype chiral magnet MnSi. As a first step,
we determine the characteristic length scales relevant to the
transition, and discuss their hierarchy and the applicability
of the Brazovskii approach suggested for MnSi [23]. Sub-
sequently, we directly compare the helimagnetic transitions
in Fe0.7Co0.3Si and MnSi and highlight the particularities of
Fe0.7Co0.3Si.

FIG. 8. The chiral fraction as a function of T − TC for both
Fe0.7Co0.3Si and MnSi at B = 0 mT. The data from MnSi have been
adapted from Refs. [21,36].

A. Characteristic lengths and the Brazovskii approach

It has been suggested that the helimagnetic transition is
governed by a hierarchy of characteristic lengths reflecting
the relative strength of the interactions [10,23]: the Ginzburg
length ξG, the Dzyaloshinsky-Moriya (DM) length ξDM, and
ξcub, the length associated with the cubic anisotropy. The
Ginzburg length quantifies the strength of the interactions
between the magnetic fluctuations, which are strong in the limit
of ξG > ξ (T ), whereas they can be considered as a perturbation
in the other limit ξ (T ) < ξG. The Dzyaloshinsky-Moriya (DM)
length is related to the pitch of the helix � by ξDM = �/2π and
the cubic anisotropy length reflects the influence of the cubic
anisotropy.

If the Ginzburg length is much larger than the length
scale associated with the DM interaction, i.e., ξG � ξDM,
the interactions between the fluctuations should govern the
behavior close to the transition, driving it to first order as
suggested by Brazovskii [22,23]. Also for ξG < ξDM, the
transition is driven by fluctuations and expected to be of first
order following the Bak and Jensen (1980) approach in this
so-called Wilson-Fisher renormalization-group limit. So far,
the helimagnetic transition and the role of the characteristic
lengths remain largely unexplored and have only been dis-
cussed for the case of MnSi [23] and Cu2OSeO3 [26].

Whereas the DM length can be obtained directly from the
pitch of the helix, the cubic anisotropy length can only be
derived from the temperature dependence of the correlation
length. On the other hand, the Ginzburg length can be obtained
both from the correlation length and the macroscopic sus-
ceptibility. As the accuracy of the experimentally determined
correlation length is limited, we are unable to determine the
cubic anisotropy length and we derive the Ginzburg length
from the susceptibility data of Ref. [33], which is reproduced
in Fig. 9. For this purpose, we fit the real component of the ac
susceptibility χ ′ with [22,23]

χ ′ = χ ′
0

1 + σ 2Z2(T )
, (4)

where χ0 is a constant, σ equals the ratio of the DM and
Ginzburg length (σ = ξDM/ξG), and Z(T ) is given by

Z(T ) =
3
√

2ε + (1 + √
1 − 2ε3)2/3

3
√

2(1 + √
1 − 2ε3)1/3

, (5)
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FIG. 9. Zero-field ac susceptibility as a function of temperature
measured at f = 5 Hz and reproduced from Ref. [33]. The solid line
indicates the fit to the relation of Eq. (4). The inset shows the relative
difference of the measured data to the fit with Eq. (4).

where ε = (T − TMF)/T0 is a relative measure of the distance
to the mean-field temperature TMF.

Equation (4) provides a good description of the temperature
dependence of χ ′ up to T ≈ 50 K as shown in Fig. 9,
leading to estimates of χ0 = (1.27 ± 0.03) × 10−5 m3 mol−1,
TMF = 48.3 ± 0.2 K, T0 = 3.2 ± 0.2 K, and σ = 1.39 ± 0.08.
As illustrated by the inset of Fig. 9, substantial and systematic
deviations occur above 50 K. The value of ξDM ≈ 6.3 nm
derived from the neutron data [Fig. 4(c)] translates σ to ξG ∼
4.5 nm. Both lengths are thus much shorter than the correlation
lengths, which exceed 10 nm in the probed temperature range
below 45 K [see Fig. 4(b)].

As σ > 1 and, therefore, ξG < ξDM, the applicability of
the Brazovskii approach for Fe0.7Co0.3Si is questionable. The
obtained value for σ of 1.39 is much larger than the value found
for MnSi [23] (σ ≈ 0.50), but is in fact reasonably similar
to the value of σ = 1.18(1) found for Cu2OSeO3 [26]. The
comparison of the characteristic lengths therefore indicates
that the helimagnetic transition in Fe0.7Co0.3Si should be
different from that in MnSi.

B. Comparison with MnSi and other cubic helimagnets

The difference between Fe0.7Co0.3Si and MnSi is high-
lighted by comparing the total scattered intensity at the zero
field, as displayed in Fig. 10. The total intensity is obtained
by summing the intensity over the entire detector and thus
also outside the Bragg peak positions. At high temperatures,
a similar temperature dependence is found for both chiral
magnets. Differences in intensity start to develop at TC + 2 K,
although the chiral behavior is similar in this region (Fig. 8).
In MnSi, an increase of intensity indicates the onset of the
precursor phase and strong buildup of chiral correlations,
which ultimately results in a jump of scattered intensity by
more than an order of magnitude within a narrow region of
0.2 K around TC . This jump is as such a signature of the
first-order nature of the transition. In contrast to MnSi, in

FIG. 10. Total background-corrected scattered intensity obtained
by summing the entire detector as a function of temperature at B = 0
mT for Fe0.7Co0.3Si and MnSi as measured on LARMOR. MnSi data
adapted from [40] and scaled at the highest temperature indicated.

Fe0.7Co0.3Si the increase of scattered intensity with decreasing
temperature is gradual and without strong indication for a
precursor phase and a jump in intensity at TC .

The onset of the helimagnetic order is thus very different for
the two chiral magnets. This is in agreement with specific-heat
measurements as the sharp peak visible at TC for MnSi
[17] or Cu2OSeO3 [41] has not been seen for Fe0.7Co0.3Si
[42]. The gradual transition manifests itself also by the
coexistence of long-range helimagnetic order and short-range
chiral correlations. This coexistence occurs in Fe0.7Co0.3Si
over a wide temperature range of ∼5 K, whereas in MnSi this
region does not exceed ∼0.4 K [21,36].

In addition, Fig. 10 shows that the build-up of correlations
above TC in the precursor region is not as strong as for
MnSi. In the latter, intensive correlations start to build up
in this region of the phase diagram. This is also the case for
Fe0.7Co0.3Si, but the probed correlations are much weaker,
possibly because the precursor phenomena are partially sup-
pressed by substitutional disorder. The precursor phase and
the associated precursor phenomena in cubic chiral magnets
have been subject to intensive theoretical and experimental
studies [3,43–45]. It has been suggested that a softening of
the magnetization plays an important role in the formation of
isolated skyrmions and other localized magnetic states in this
region of the phase diagram [3,43–46].

The dynamics of the helimagnetic transition as probed by
NSE also reveal major differences between the two chiral
magnets. Whereas the dynamics of MnSi can be described by
a simple exponential, the dynamics of Fe0.7Co0.3Si around TC

can only be accounted for by a stretched exponential relaxation
[21,40]. This implies that the relaxation stretches over several
orders of magnitude in time and involves a broad distribution
of relaxation times. The corresponding stretching exponents
are close to the values found in disordered systems such as
glass-forming systems [47,48]. In addition, the associated
characteristic relaxation times at zero field for Fe0.7Co0.3Si
can be as long as 10 ns, and are therefore much longer
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than for MnSi where they do not exceed 1 ns [21,40]. These
long relaxation times combined with the stretched exponential
relaxation suggest the relaxation of large magnetic volumes,
which are likely inhomogeneous in size and structure. Similar
conclusions have also been drawn from ac susceptibility
measurements below TC , which, however, probe much longer,
macroscopic relaxation times [33].

The SANS and NSE results show that the helical transition
in Fe0.7Co0.3Si is gradual and involves more complicated and
slower dynamics than in MnSi. The hierarchy of the charac-
teristic length scales puts Fe0.7Co0.3Si closer to Cu2OSeO3

than to MnSi, but this hierarchy in itself does not explain the
particularities of the helimagnetic transition in Fe0.7Co0.3Si.
Moreover, neither the Brazovskii nor the Wilson-Fisher
approach can describe the transition in Fe1−xCoxSi as both
approaches predict a sharp first-order helimagnetic transition
that is in both cases driven by fluctuations [10,22,23].

One important factor that could possibly explain the
different transition in Fe1−xCoxSi is the chemical disorder that
arises from the solid solution of Fe and Co in Fe0.7Co0.3Si.
In conjunction with the effect of the cobalt concentration
on the sign of the DM interaction, the chemical disorder
might be an additional source of frustration. This chemical
disorder could effectively “smear” the phase transition and
make it appear more continuous. This would explain the broad
distribution of relaxation times and the stretched exponential
relaxation probed by NSE. However, we note that the stretched
exponential relaxation does not reflect the inhomogeneous
relaxation of regions with different chiralities as the magnetic
chirality is 100% close to TC (Fig. 8).

C. Transition under magnetic field

The SANS results show that the transition under field
remains similar to the one at zero field up to 40 mT. For
these relatively low magnetic fields, the scattered intensity
above TC is similar to the intensity at zero field. Furthermore,
both the correlation lengths and the elastic fractions remain
almost unchanged. For fields exceeding 40 mT, the scattered
intensity decreases until it is almost completely suppressed for

fields above 60 mT. This is highly similar to the behavior of
the transition in MnSi, where the scattered intensity is also
suppressed by large enough magnetic fields [40].

In addition, the dynamics of the transition to the conical
phase, probed by NSE, slows down considerably under
magnetic field. Compared to zero field, the relaxation times
under field almost quadruple and can be as long as 40 ns
at B = 50 mT. Although the magnetic field induces much
sharper peaks in the conical phase than at zero field (Fig. 2),
the relaxation remains strongly nonexponential. Therefore, the
broad distribution of relaxation times is not affected by the
magnetic field.

V. SUMMARY AND CONCLUSION

In conclusion, SANS and NSE reveal a very gradual
and smeared transition around TC that differs substantially
from the sharp first-order phase transition in MnSi. Magnetic
correlations that are partially chiral but much weaker than
in MnSi coexist in a wide temperature range with the long-
range helimagnetic order. The relaxation around TC is broad,
nonexponential, even under magnetic field, and much slower
and more complex than in MnSi. The hierarchy of interactions
and of the deduced length scales places Fe0.7Co0.3Si closer to
Cu2OSeO3 than to MnSi, but cannot explain all the particu-
larities of the helimagnetic transition. The large differences
between the transition in Fe1−xCoxSi and other systems of the
same family challenges the validity of a universal approach to
the helimagnetic transition in chiral magnets.
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