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We investigated the effects of excited many-electron states in the optical control of the magnetic state in
undoped Mott-Hubbard insulator. To derive the spin Hamiltonian in material under optical pumping one has used
a many-electron approach based on the X-operator representation. Extending the projection operators approach
on arbitrary energy spectra of the Mott-Hubbard insulator, we obtained the Hamiltonian of superexchange
interaction in analytical form. The Hamiltonian includes the spin-exciton variables which are usually missing
in discussion on the magnetic response to optical pumping. The superexchange is also not additive over
contributions from the ground and optical excited states, and nonzero contributions to the Dzyaloshinskii-Moriya
interaction are induced in insulators with different spins at the ground and excited cell states. As a test, a
microscopic background for the optical induced superexchange was analyzed in La2CuO4 (further La214) and
FeBO3 with spins 1/2 and 5/2, respectively.
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I. INTRODUCTION

An ultrafast optical manipulation of magnetic order is a very
actively developing area nowadays. A number of experiments
with femtosecond laser pumping of magnetic insulators has
revealed unusual magnetic response when the photon energy
hν (further h = 1) is less than absorption edge Eg [1–3]. In
the absence of the interband excitations these effects result
from the intra-atomic d-d excitations which form the weak
and narrow absorption bands inside the optical gap of the
crystal. Such optical spectra are typical for the Mott-Hubbard
insulators like FeBO3 and other transition metal oxides. These
effects are beyond the conventional single electron approach to
the electronic structure of solids based on different implemen-
tation of the density functional theory. For example, in KKR-
GF (Green’s function)+DMFT (dynamical mean field theory)
method leads to the complex Lippman-Schwinger integro-
differential equation in a single site problem. This equation
was solved for the coupling induced by nonlocal self energy
� within only single l-channel (e.g., to l = 2 for transition
metal), [4] and many-electron states (a configuration interac-
tion between them) in ab initio approaches are not reproduced
correctly. Nevertheless, for the materials in the ground state,
the exchange interactions has been studied in the ab initio
approach (e.g., in works [5–7]), but the initial many-electron
representation still looks more natural and short way to the
final result when the material is in an optically excited state.

The intra-atomic optical spectra can be obtained in many-
electron approach, where the quasiparticles are just the elec-
tron excitations between the many-electron states of relevant
symmetry and with different numbers of particles; for La214
and FeBO3 it was demonstrated in the works [8,9]. The
undoped Mott-Hubbard insulators, unlike conventional mate-
rials, have both singlet and degenerate ground cell states [10].
The effects of excited states can be essentially important in
these insulators, because the contribution from optical excited
states can reduce or increase the Dzyaloshinskii-Moriya (DM)
interaction. These changes will compete with a twist exchange
from an effective three-spin interaction [11].

It is essential that the optically excited states would be
introduced to the superexchange theory together with the
ground state on equal footing, because the intracell transitions
induced by optical pumping occur much faster than superex-
change interaction (�ν/W � 1; �ν is an optical transition
width). Therefore, in the process of superexchange, the spin
and interaction between them can be modified or even break
down. A general theory with a fixed spin and orbital degrees
of freedom (e.g., the work [12] is a good starting microscopic
point to derive anisotropy effects in the optical absorption at
ν ∼ Eg) shows that individual contributions to superexchange
are given by virtual charge transfer excitations only. Therefore,
it is necessary to derive the microscopic Hamiltonian here,
step by step, where the superexchange constant must be
redefined, if possible. To achieve this, there are two acceptable
approaches to study the superexchange interaction. First is the
calculation with the intermediate states which arise through
hopping from ligand to ligand (e.g., between the oxygens) in
the perturbation theory of higher order than the fourth [13].
Another approach is the cell perturbation theory taking
into account all the excited states. The latter seems more
appropriate [13–16] where, however, it is necessary to work
with a large number of the virtual charge transfer excitations
[17].

Being based on the X-operators representation [18] the
LDA+GTB approach [8,19] includes the whole spectrum of
localized many-electron states both ground and excited with
different spin and orbital moments. It’s important to understand
further that the excited states in our work are distinct from the
virtual “excited states” occurring in a perturbation theory of
superexchange [20]. These excited states may be occupied
due to the optical pumping at the frequencies of specific d-d
excitations only. As a result, the exchange interaction can be
modified. Despite the simplicity of the idea, the magnitude and
sign of the pumping effect on the exchange interaction depends
on the orbital and spin symmetry of the many-electron excited
states.

In this work a Hamiltonian of superexchange interaction
was derived in analytical form due to the many-electron
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approach based on the X-operator representation [18] and
technique of projection operators [21] generalized on arbitrary
quasiparticle energy spectra of Mott-Hubbard insulator. The
Hamiltonian can be reduced to the usual Heisenberg type only
under additional assumptions. It has spin-exciton variables
missing in the discussion on the optical pumping effects. The
superexchange is also not additive over the states of transition
element, in contrast the contributions from the virtual excited
states. The superexchange in unexcited La214 is in accordance
with the phenomenological Goodenough-Kanamori rules be-
cause 180◦ superexchange is antiferromagnetic (AFM), and
ferromagnetic (FM) contribution from the virtual excited
states is very small. The induced AFM contribution to the
mean energy will increase ∼ 4 × 10−3 eV/(%) at the optical
induced occupation (in %) of the excited states.

In contrast cuprate, the optical induced contribution to
superexchange has the FM nature in the antiferromagnet
FeBO3. In unexcited iron borate the FM contribution is exactly
zero. Concerning the DM interaction it can be argued that
the Mott-Hubbard insulators, with the observed optical d-d
excitations forbidden by a spin are of particular interest. The
latter is relevant to the iron borate where these transitions are
observed indeed [22].

II. EXTENDED PROJECTION OPERATORS

In this section, we apply the method of projection op-
erators [21] to derive an effective spin Hamiltonian from
Hamiltonian of the pd model with any number of orbitals
Ĥ = Ĥd + Ĥp + Ĥpp + Ĥpd , where

Ĥd =
∑
f λσ

⎡
⎣(ελ − μ)d+

λf σ dλf σ + 1

2
Uλn

σ
λf n−σ

λf +
∑
λ′σ ′

⎛
⎝−Jdd

+
λf σ dλf σ ′d+

λ′f σ ′dλ′f σ +
∑
f ′

Vλλ′nσ
λf nσ ′

λ′f ′

⎞
⎠

⎤
⎦,

Ĥp =
∑
mασ

[
(εα − μ)p+

αmσpαmσ + 1

2
Uαnσ

αmn−σ
αm +

∑
α′m′σ ′

Vαα′nσ
αmnσ ′

α′m′

]
,

Ĥpd =
∑
mf

∑
αλσσ ′

(
tλαp+

αmσ df λσ + H.c. + Vαλn
σ
αmnσ ′

λf

)
, Ĥpp =

∑
mm′

∑
αβσ

(tαβp+
αmσpβm′σ + H.c.) (1)

and nσ
λf = d+

λf σ dλf σ , nσ
αm = p+

αmσpαmσ , f and m are run over
the positions dλf and pαm, sets of localized atomic orbitals;
likewise ελ and εα are energy appropriate atomic orbitals, tλα

and tαβ are the hopping matrix elements, Uλ, Uα , and Jd are
the intra-atomic Coulomb interactions and Hund exchange,
and Vαλ is the Coulomb repulsion between the electrons at the
copper and oxygen. In this section a consideration is given to
the case with one hole per cell in the undoped materials and
arbitrary number of the occupied orbitals. This is relevant for
the high-Tc cuprates.

In the many-electron approach it is necessary to introduce a
symmetrical cell oxygen state p̂θk by a unitary transformation

p̂θk = Âkp̂αk , where the column vectors p̂αk = (
pxk
pyk
pzk

) and

p̂θk = (
pθ1k
pθ2k
pθ3k

) at σ or π type of bonding. The transformation

matrix Âk depends on the cell symmetry and index θ numbers
the irreducible representations of the symmetry group of
cell. The transformation matrices can be found in works
for cuprates [15,16,23,24], manganites(eg orbitals) with the
orbital ordering [25–27], and cobaltites (t2g orbitals) [28,29].
In a new symmetric cell representation the dependence of the
intracluster and intercluster interactions, including Coulomb,
are renormalized [15] due to strong localization of new
symmetrical Wannier cell functions p̂θf . As a result, Coulomb
interactions are taken into account in a single cell through
a procedure of exact diagonalization, and the interaction be-
tween cells is calculated in the framework of cell perturbation
theory (see, e.g., the diagram approach [30]) The different
Coulomb contributions in the cuprates are investigated in
the works [15,16] in detail. In respect of other oxides the
approximation is based on a sharp drop in the renormalization

coefficients with increasing distance between cells [29,31].
Further, a crystal lattice is divided into unit cells, so that the
Hamiltonian is represented by the sum Ĥ0 + Ĥ1, where the
component Ĥ0 is the sum of intracell terms and component
Ĥ1 takes into account the intercell hoppings and interactions.
The component H0 is exactly diagonalized, and the exact
multielectron cell states |p〉 (|q〉) and energies ξp are obtained.
Then these states are used to construct the Hubbard operators
of the unit cell �Rf : X

p,q

f = |p〉〈q|, where the meaning of the
indexes p and q is clear from Fig. 1 and

Ĥ0 =
∑
f

{
ε0X

00
f +

∑
lσ

(εl − μ)Xlσ,lσ
f +

Nν∑
ν

(Eν−2μ)Xν,ν
f

}

(2)

N 0N N

l

0

hν

FIG. 1. Configuration space of all possible cell states involved
in superexchange with one hole per cell. The sectors N0 and N+
correspond to states (6) and (7), respectively.
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is the sum of intracell terms. A component

Ĥ1 =
∑
fg

∑
rr ′

t rr
′

fg

+
Xr

f Xr ′
g (3)

takes into account the intercell hoppings and interactions, and
t rr

′
fg is the matrix of hopping integrals

t rr
′

fg =
∑
λλ′

∑
σ

tλλ′
fg

× [γ ∗
λσ (r)γλ′σ (r ′) + γ ∗

λ′σ (r)γλσ (r ′)], (4)

where the matrix element is represented by the expression

γλσ (r) = 〈(N+,MS)ν |cf λσ |(N0,MS)l〉
× δ(Sν,Sl ± |σ |)δ(Mν,Ml + σ ). (5)

In the approach one assumes that the quasiparticles are
unit cell excitations which can be represented graphically
as single-particle excitations (transitions) between different
sectors Nh = · · · (N− = N0 − 1),N0,(N+ = N0 + 1), . . . of
the configuration space of the unit cell (N0 is hole number
per cell in the undoped material; see Fig. 1) [32]. Each of
these excitations forms an rth quasiparticle band, where the
vector band index r = {p,q} in configurational space [33]
numerates the initial |p〉 and final |q〉 states. The excitations
with the number of electrons increasing or decreasing form
the conduction or valence bands, respectively. Note that the
possibility to derive the Hamiltonian (2) and (3) from (1) in
terms of arbitrary symmetry of the material has not yet been
investigated.

In the case of one hole per cell N0 = 1, the cell states
|(N0,MS)l〉 are a superposition of different hole configurations
of the same orbital symmetry:

|(N0,MS)l〉 =
∑

λ

βλ(hλ)|hλ,MS〉. (6)

In accordance with the spin selection rules, the nonzero matrix
elements (5) are possible for the one-hole spin doublet states
C1

2Nλ
= 2Nλ in the sector N0 and C2

2Nλ
= Ns + 3Nt of the spin

singlets Ns = C2
Nλ

+ Nλ (low spin partners) and Nt = C2
Nλ

of
spin triplets in the sector N+:

|(N+,MS)ν〉 =
∑
λλ′

βν(hλ,hλ′)|hλ,hλ′ ,MS〉 (7)

(high spin partners) in the two-hole sector N+ and the Nλ

orbital approach. The superexchange interaction appears at
the second order of the cell perturbation theory with respect
to hoppings [14]. That corresponds to virtual excitations from
the occupied singlet and triplet bands through the insulating
gap to the conduction band and back. These perturbations are
described by the off-diagonal elements t rr

′
fg with r = {0,lσ } and

r ′ = {lσ,ν} in expression (3). In the Hubbard model, there is
only one such element, which describes the hoppings between
the lower and upper Hubbard bands. To extract them, we extend
the projection operator method proposed by Chao et al. [21] on
the arbitrary energy spectra of Mott-Hubbard material, where
the total number of diagonal operators Xnn′

f is equal to Nν +
Nl + 1 and the sequence indexes l and ν (1 � l � Nl , 1 � ν �
Nν) runs over all electron states in the configuration spaces in

Fig. 1. Using a set of operators

p0 =
(

X00
i +

∑
lσ

X
lσ,lσ
i

)(
X00

j +
∑
lσ

X
lσ,lσ
j

)
(8)

and

pμ = X
μμ

i + X
μμ

j − X
μμ

i

∑
ν

Xνν
j , (9)

with ν(μ) = 1,2, . . . ,Nν we can identify the contribution to
the superexchange from the interband transitions. As will
be seen below, an approach with the operators (5) and (6)
differs from the work [21] just in details. It can be checked
that each of operators p0 and pμ is a projection operator
p2

0 = p0 and p2
μ = pμ. These operators also form a complete

and orthogonal system, p0 + ∑Nμ

μ=1 pμ = 1, p0pμ = 0, and
pμpν = δμνpμ. We separate the diagonal and off-diagonal
matrix elements in expression

Ĥ = (
Ĥ0 + Ĥ in

1

) + Ĥ out
1 . (10)

According to the work [21], one can introduce a Hamiltonian
of the exchange-coupled (ij )th pair: ĥ = (ĥ0 + ĥin

1 ) + ĥout
1 =

Ĥij , where Ĥ = ∑
ij Ĥij , and

ĥ0 + ĥin
1 = p0ĥp0 +

∑
μν

pμĥpν (11)

with

ĥout
1 = p0ĥ

(∑
μ

pμ

)
+

(∑
μ

pμ

)
ĥp0 (12)

are intra- and interband contributions in Ĥ1, respectively. In
the unitary transformation

h̃ = eGĥ e−G, (13)

the matrix Ĝ satisfies to equation

p0ĥ

(∑
μ

pμ

)
+

(∑
μ

pμ

)
ĥp0

+
[
G,

(
p0ĥp0 +

∑
μν

pμĥpν

)]
= 0, (14)

and transformed Hamiltonian are given by

h̃ ≈
(

p0ĥp0 +
∑
μν

pμĥpν

)

+ 1

2

[
G,

(
p0ĥ

∑
μ

pμ +
∑

μ

pμĥp0

)]
, (15)

where the contributions from interband transitions involving
only low-spin partners can be calculated as

p0ĥ

(∑
μ

pμ

)
=

∑
ll′σ

∑
μ

t
l0,l′μ
ij η(σ )Xlσ0

i X
l′σ̄μ

j (16)

and (∑
μ

pμ

)
ĥp0 =

∑
μ

∑
ll′σ

t
μl′σ̄ ,0lσ

ij η(σ )Xμl′σ̄
i X0lσ

j . (17)

144424-3



GAVRICHKOV, POLUKEEV, AND OVCHINNIKOV PHYSICAL REVIEW B 95, 144424 (2017)

Similar expressions can be obtained and for high-spin partners. The solution of Eq. (14) has the form

G =
∑

μ

∑
ll′σ

t
l0,l′μ
ij

�ll′μ
η(σ )

(
X

μl′σ̄
i X0lσ

j − Xlσ0
i X

l′σ̄μ

j

)
, (18)

where �ll′μ = ε0 + εμ − (εlσ + εl′σ̄ ), and the commutator in Eq. (15) can be represented as

δh̃ = 1

2

∑
μν

{[Gν,(p0ĥpμ + pμĥp0)]}

= 1

2

∑
μν

{[∑
ll′σ

t
l0,l′ν
ij

�ll′ν
η(σ )

(
X

μl′σ̄
i X0lσ

j − Xlσ0
i X

l′σ̄μ

j

)
,

∑
kk′s

t
k0,k′μ
ji η(s)

(
X

μk′ s̄
j X0ks

i + Xks0
j X

k′ s̄μ
i

)]}
. (19)

Calculating commutator in the above expression (19) we obtain the effective Hamiltonian for the exchange-coupled (ij )th
pair:

δh̃ =
∑
ll′kk′

∑
μν

(
t
l0,l′ν
ij t

k0,k′μ
ij

�ll′ν

)
δμν

2

{(
X

l↑,k↓
i X

l′↓,k′↑
j + X

l↓,k↑
i X

l′↑,k′↓
j

) − (
X

l↑,k↑
i X

l′↓,k′↓
j + X

l↓,k↓
i X

l′↑,k′↑
j

)}

+
∑
ll′kk′

∑
μν

(
t
l0,l′ν
ij t

k0,k′μ
ij

�ll′ν

)
δklδk′l′

(
X00

i X
μν

j + X
μν

i X00
j

) = δh̃s−ex + δh̃ρ, (20)

where only a first contribution includes the superexchange interaction δĤs−ex = ∑
ij δh̃s−ex. The latter can be expanded in powers

of variable X
l0s,ls
i(j ) , the mean value of which υ+

l = X̄
l0s,ls
i,j is a probability of optical intracell excitation and

δĤs−ex = Ĥs + Ĥex, (21)

where the superexchange in unexcited material and contributions from optical excited states are given by

Ĥs =
∑
ij

⎧⎨
⎩

NS∑
μ

2
(
t
l0l,l0μ

ij

)2

�l0μ

(
Ŝil0 Ŝj l0 − 1

4
n̂il0 n̂j l0

)
−

3NT∑
μ

(
t
l00,l0μ

ij

)2

�l0μ

(
Ŝil0 Ŝj l0 + 3

4
n̂il0 n̂j l0

)⎫⎬
⎭ (22)

and

Ĥex =
∑
ij

∑
ll′kk′

∑
μ

(
t
l0,l′μ
ij t

k0,k′μ
ji

)
�ll′μ

{(
δl0kZ

−
il + δl0lZ

+
ik + δlkŜil

)(
δl0k′Z−

j l′ + δl0l′Z
+
jk′ + δl′k′ Ŝj l′

)

− 1

4

(
δl0ky

−
il + δl0ly

+
ik + δlkn̂il

)(
δl0k′y−

j l′ + δl0l′y
−
jk′ + δl′k′ n̂j l′

)}
, (23)

and S+
il = X

l↑,l↓
i , 2Sz

il = ∑
σ η(σ )Xlσ,lσ

i , y+
il = n̂il0X

l0l
i , Z+

il = Ŝil0X
l0l
i are a spin, electron-exciton operators, and spin-exciton

at the ith cell. The commutation relations for the latter operators have the spin character in the mean field approximation
Z+

il ≈ Ŝil0υ
+
l , and the contributions involving the spin-exciton variables result in additional effective field in Eq. (22):

J
l0l0
ij ≈ 2

∑
μ

∑
ll′kk′

(
t
l0,l′μ
ij

)(
t
k0,k′μ
ji

)
�ll′μ

(
v+

k δl0l + v−
l δl0k + δl0lδlk

)(
v+

k′ δl0l′ + v−
l′ δl0k′ + δl0l′δl′k′

)

= 2
∑

μ

(
t
l00,l0μ

ij

)2

�ll′μ
+ O(v±) + · · · . (24)

Note that at l = k and l′ = k′ the contribution in Eq. (23) takes the form

Ĥex =
∑
ij

∑
ll′

{
J ll′

A,ij

(
Ŝil Ŝj l′ − 1

4
n̂il n̂j l′

)
−J ll′

F,ij

(
Ŝil Ŝj l′ + 3

4
n̂il n̂j l′

)}
. (25)

It is much like a conventional superexchange (22), but with

other superexchange constants J ll′
A,ij = 2

∑Ns

μ=1 (t l0,l′μ
ij )

2
/�ll′μ

and J ll′
F,ij = ∑3Nt

μ=1 (t l0,l′μ
ij )

2
/�ll′μ, which is additive over the

singlet and triplet virtual μth excited states, respectively.
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N 0N N
1

2a

0

i-th cell j-th cell
i-th cell j-th cell i-th cell j-th cell

(a) (b) (c)

1A

1
3B

1
2bl

1
2a

0

1
2al

1
3B 1

3B

1A 1A0
hν hν hν

FIG. 2. Two circles (dashed line) are a sequence of intracell transitions at the light-induced superexchange J ab
ij (a) and J bb

ij (b) between i

and j cells in Eq. (25); (c) illustrates the single circle (spin-exciton) contribution ∼ (ta0,bA
ij t

b0,bA
ji )/�abA (for cuprates), which can be reduced to

the spin Hamiltonian using additional assumptions only [see Eq. (24)].

Applicability of the expressions (24) and (25) is limited
to small excitation energy δll0 < Eg , where δll0 = εl − εl0 and
Eg = (εμ0 + ε0 − 2εl0 ). The usual mechanism of the superex-
change (22) in the ground state is shown in Fig. 2(b), while
the superexchanges (25) via optical excited state is shown
in Fig. 2(a). At l 
= l′ the last represents a nonsymmetrical
interaction with one excited cell in the pair. The spin-exciton
contribution (∼ X

l0l
i(j )) in Eq. (23) beyond Heisenberg model

is shown in Fig. 2(c). From Eq. (24) it follows that the optical
pumping effects on the superexchange are frequency selective
and linear on the amplitude pumping.

III. OPTICAL EFFECTS ON SUPEREXCHANGE IN
COPPER OXIDE AND IRON BORATE

A. La2CuO4

We test the approach to derive the superexchange in the
high-Tc parent material La214 under optical pumping. The
initial Hamiltonian (1) is similar to the one of the multiband
pd model [34]. The difference with the low energy three orbital
pd model [35–37] is related to an addition of the z-oriented
dz2 orbital and p

(ap)
z orbital of the apical oxygen ions. In the

LDA+GTB method the Hamiltonian parameters are calculated
ab initio [8].

Unlike the work in [37], where the method of projection
operators has also been used to derive the superexchange
interaction, we take into account the intracell excited states
in CuO6 cell. Some improvements are also achieved with
the help of the cell representation. Indeed, a comparison of
the results of the fourth order with the calculations in higher
orders of perturbation theory [13] in atomic representation
and the exact diagonalization of finite clusters [13,38–41]
shows that the in-plane superexchange J depends significantly

weaker on (pαdλ) hopping (∼ tpd ), because of the intermediate
two-hole states which arise through hopping from oxygen to
oxygen (∼ tpp). These effects are partly included in the present
approach even in the second order of cell perturbation due to
the exact diagonalization procedure for the intracell part of
Hamiltonian (1).

Here, it is also useful to obtain the expression for the AFM
contribution in Eq. (25) in the mean-field approximation:

〈Hs−ex〉 ≈ −1

2

∑
ij

∑
ll′

J ll′
ij

〈
Xlσlσ

i

〉〈
Xl′σ̄ l′σ̄

i

〉

≈ −zN

2

⎡
⎣J

l0l0
〈ij〉p

2
l0
+2

∑
l 
=l0

J
ll0
〈ij〉plpl0+

∑
l 
=l0

J ll′
〈ij〉plpl′

⎤
⎦,

(26)

where pl0 = 1 − (
∑

l 
=l0
pl) and pl = 〈Xl↑l↑

i 〉 = 〈Xl↓l↓
i 〉 is a

probability to detect a cell in |(N0,MS)l〉 excited state. Using
the exact diagonalization procedure with LDA parameters,
Jbb ≈ 0.15 eV, δll0 = δab = 1.78 eV, and Eg = 2.00 eV taken
from the work [8], and the band index r = {2b1,A1} associated
with the first removal electron state for a pair of indexes
{l0,μ0} [15,24], one can obtain the weights αl , βl and Aμ,
Bμ at the doublet (6) and singlet, triplet (7) states:

|2b1〉 = ∣∣(N0,MS)l0
〉 =

∑
λ=dz,pz,a

βl0 (hλ)
∣∣hλ,σ 1

2

〉
,

|2a1〉 = |(N0,MS)l〉 =
∑

λ=dz,pz,a

αl(ha)
∣∣ha,σ 1

2

〉
, (27)

and

|A1〉 = ∣∣(N+,M ′
S ′ )μ0

〉 =
∑

λ,λ′=b,dx ,a,pz,dz

Aμ0 (hλ,hλ′)|hλ,hλ′ ,0〉,

|3B1〉 = |(N+,M ′
S ′ )μ〉 =

∑
λ=b,dx

∑
λ′=a,pz,dz

Bμ(hλ,hλ′)|hλ,hλ′ ,M1〉, (28)

where hb and hdx
are the holes in the b-symmetrized pθi cell states of oxygen and dx2−y2 copper states of the CuO2 layer,

respectively. Because of δab < Eg , only two contributions from the doublets |2a1〉 and |2b1〉 are available in the sum (26) over l

indexes. Due to the symmetry CuO2 layer γλ({2a1,A1}) = 0 at any orbital index λ, and therefore t
b0,aA
ij = t

a0,aA
ij = 0. Thus we
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FIG. 3. Sequence of intracell transitions at the superexchange J
(a)
ij (l0τ0,l0μ0) (a), optical induced superexchange J

(b)
ij (l0τ0,l

′μ0) (b), and

J
(c)
ij (l′τ0,l0μ0) (c) in FeBO3.

evaluate the contribution from excited states like the next:

〈δHs−ex〉 = −zN

2

∑
μ

{
(tb0,bμ)

2

�bμ

p2
b + 2

(
(tb0,aμ)

2

�baμ

+ (ta0,bμ)
2

�baμ

)
papb + (ta0,aμ)

2

�bμ

p2
a

}

≈ −zN

2

{
0.15(eV) × p2

b + 2
(ta0,bA1 )

2

�baA1

papb

}
. (29)

In unexcited material pb = 1, pa = 0, and Eq. (29) results
in the exchange interaction Jbb ∼ 0.15 eV in the ground
state [17]. What are the modifications of the exchange
interaction we can expect in L214 under resonance light
pumping? The answer to this question depends on the ratio of
the exchange interaction at the ground |2b1〉 and excited |2a1〉
states. Depletion of the ground state pb = 1 − x decreases Jbb

contribution, and a new contribution Jba from excited state a1

appears [see Fig. 2(a)]. Summing over all μth virtual excited
states in the second term in Eq. (29), we finally obtain the
result that the superexchange AFM contribution in La214 will
increase at any small population of excited states by a factor
of ∼ 4 × 10−3 eV(%)−1, i.e., the superexchange interaction is
increased by 4 meV at x = 0.01.

B. FeBO3

Unlike La214, the high spin Sl0 = 5/2 (see Fig. 3) at the
ground cell state is observed in FeBO3, and even the optically
excited electron-hole pair at ν ∼ Eg will have magnetic
properties. In addition, the first excited state |l′〉 of the cell in
FeBO3 differs from the ground state |l0〉 due to the reduced spin

Sl′ = 3/2. To compare the superexchange in these different
materials it is necessary to extend the calculations from the
Kramers doublets in La214 to the arbitrary spin multiplets in
FeBO3. This leads to cumbersome expressions, but their phys-
ical meaning is interesting enough to obtain some qualitative
conclusions on the superexchange in AFM iron borate under
optical pumping.

In accordance with the transition procedure to the represen-
tation of the Hubbard operators, any one-electron operators
can be represented as a superposition of the many-electron
X-operators:

c+
λf σ =

∑
lμ

[
γ

(t)
λ (lμ)α(t)+

f σ (μl) + γ
(s)
λ (lμ)α(s)+

f σ (μl)
]

+
∑
τ l

[
γ

(t)
λ (τ l)β(t)+

f σ (lτ ) + γ
(s)
λ (τ l)β(s)+

f σ (lτ )
]
, (30)

where c+
λ(α)f σ runs over all d+

λf σ and p+
θf σ operators taken

into account, and new operators α
(s,t)+
f σ (lμ) and β

(s,t)+
f σ (τ l) are

calculated in accordance with the rule of addition of angular
momenta [42]:

α
(s)+
f σ (lμ) = η(σ )

Mμ∑
−Mμ

√
Sl − η(σ )Mμ + 1

2

2Sl + 1
X

Mμ,Ml=Mμ−σ

f , α
(t)+
f σ (τ l) =

Mμ∑
−Mμ

√
Sl + η(σ )Mμ + 1

2

2Sl + 1
X

Mμ,Ml=Mμ−σ

f ,

β
(s)+
f σ (τ l) = η(σ )

Ml∑
−Ml

√
Sτ − η(σ )Ml + 1

2

2Sτ + 1
X

Ml,Mτ =Ml−σ
f , β

(t)+
f σ (lτ ) =

Ml∑
−Ml

√
Sτ + η(σ )Ml + 1

2

2Sτ + 1
X

Ml,Mτ =Ml−σ
f ,

(31)

where the operators α
(s,t)+
f σ (lμ) and β

(s,t)+
f σ (τ l) are defined on a set {N− ↔ N0} of all possible quasiparticle states in the valence

band, and {N0 ↔ N+} states in the conduction band, respectively, and the matrix elements γ
(s,t)
λ (lτ ) and γ

(s,t)
λ (μl) have the

same meaning as in Eq. (5). The operators (31) affect immediately all components of the spin multiplets Sτ = −Mτ ÷ Mτ ,
Sl = −Ml ÷ Ml , and Sμ = −Mμ ÷ Mμ in sectors N−, N0, and N+.
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The representation (31) does not lead to any fundamental differences in previously used cell perturbation theory, since
contributions from the low spin (s) and high spin (t) partners are similar to contributions (25) from the singlet and triplet states
in AFM and FM superexchange for La214. Using the generalized projection operators (with replacement p0 to

∑
τ pτ ) the

commutator (19) may be written in the same form, wherein

ĥout
1 =

∑
τ ll′μ

[
t
μl′,τ l

ij

∑
σ

α
(s)+
iσ (μl′)β(t)

jσ (τ l) + t
lτ,l′μ
ij

∑
σ

β
(t)+
iσ (lτ )α(s)

jσ (l′μ)

]
(32)

and

G =
∑
τ ll′μ

[
t
μl′,τ l

ij

�τll′μ

∑
σ

α
(s)+
iσ (μl′)β(t)

jσ (τ l) − t
lτ,l′μ
ij

�τll′μ

∑
σ

β
(t)+
iσ (lτ )α(s)

jσ (l′μ)

]
, (33)

where �τll′μ = (εμ + ετ ) − (εl + εl′ ). Here, for example, contributions only from |τ0〉, |l0〉, and |μ0〉 ground states in N−, N0,
N+ sectors for FeBO3 (Fig. 3) have AFM character:

Ĥs =
∑
i 
=j

J
(a)
ij (l0τ0,l0μ0)(

2Sτ0 + 1
)(

2Sl0 + 1
){(

Ŝil0 Ŝj l0 − 1

4
n̂il0 n̂j l0

)
−

(
Ŝiτ0 Ŝjμ0 − 1

2
n̂iτ0 n̂jμ0

)}
(34)

with the exchange constant J (a)
ij = 2(t l0τ0,l0μ0

ij )2/�τ0l0μ0 , where �τ0l0μ0 = (εμ0 + ετ0 − 2εl0 ), and factor (2Sτ0 + 1)−1(2Sl0 + 1)−1 =
1/30 according to the one-electron nature of superexchange between cells with high spins and a sum over all the λ orbitals in
Eq. (4).

To derive Eq. (34), we also used the relations between the operators (31) and spin, and also commutation relations between
the different components of the spin:

n̂l0σ = (
2Sτ0 + 1

)
β(t)+

σ (l0τ0)β(t)
σ (τ0l0) = (

2Sl0 + 1
)
α

(s)
σ̄ (l0μ0)α(s)+

σ̄ (μ0l0),

S+
l0

= (
2Sτ0 + 1

)
β

(t)+
↑ (l0τ0)β(t)

↓ (τ0l0) = −(
2Sl0 + 1

)
α

(s)
↓ (l0μ0)α(s)+

↑ (μ0l0) (35)

and

n̂τ0σ + n̂τ0/
(
2Sτ0

) = (
2Sτ0 + 1

)
β(t)

σ (τ0l0)β(t)+
σ (l0τ0), S+

τ0
= (

2Sτ0 + 1
)
β

(t)
↓ (τ0l0)β(t)+

↑ (l0τ0),

n̂μ0σ = (
2Sl0 + 1

)
α

(s)+
σ̄ (μ0l0)α(s)

σ̄ (l0μ0), S+
μ0

= −(
2Sl0 + 1

)
α

(s)+
↑ (μ0l0)α(s)

↓ (l0μ0). (36)

Unlike La214, in the optically unexcited FeBO3 the FM contribution in Eq. (22) from high spin partners to the superexchange
is absent, since the ground state of the cell in the undoped material has the highest possible spin 5/2. Noteworthy in Eq. (34) is
that the optical pumping with a frequency ν ∼ Eg generates an exchange-coupled electron-hole pair. The superexchange in this
pair is equal in magnitude and opposite in sign to superexchange in ground AFM state, i.e., the optic excited electron and hole
in FeBO3 will be connected by the FM superexchange [see second term in Eq. (34)]. In this case, the spin both at the hole Sτ0 ,
and the electrons Sμ0 in many-electron states are equal to 2 (see Fig. 3).

By adding the excited state |l′〉 to the ground states |τ0〉, |μ0〉, and |l0〉, it is possible to investigate the effects of optical pumping at
a frequency of d-d transitions. In accordance with the new sequence of quasiparticle transitions (Fig. 3), in the commutator (19)
α(s)+

σ (Sl0 = 5/2 → Sμ0 = 2) and β(t)+
σ (Sτ0 = 2 → Sl0 = 5/2) are replaced by α(t)+

σ (Sl′ = 3/2 → Sμ0 = 2) = α(t)+
σ (l′μ0) and

β(s)+
σ (Sτ0 = 2 → Sl′ = 3/2) = β(s)+

σ (τ0l
′), respectively. Thus the following relations for new operators are satisfied

n̂l0σ = (
2Sτ0 + 1

)
β(t)+

σ (l0τ0)β(t)
σ (τ0l0), n̂l′σ = (2Sl′ + 1)α(t)

σ (l′μ0)α(t)+
σ (μ0l

′),

S+
l0

= (2Sτ + 1)β(t)+
↑ (l0τ )β(t)

↓ (τ l0), S+
l′ = (

2Sl′ + 1
)
α

(t)
↓ (l′μ)α(t)+

↑ (μl′),

n̂l′σ = (2Sτ + 1)β(s)+
σ̄ (l′τ )β(s)

σ̄ (τ l′), n̂l0σ = (
2Sl0 + 1

)
α

(s)
σ̄ (l0μ)α(s)+

σ̄ (μl0),

S+
l′ = −(2Sτ + 1)β(s)+

↑ (l′τ )β(s)
↓ (τ l′), S+

l = −(
2Sl0 + 1

)
α

(s)
↓ (l0μ)α(s)+

↑ (μl0). (37)

Unlike La214 superexchange in the optically excited FeBO3 contains qualitatively new contributions,

ĥs = −
∑
ij

{
J

(b)
ij (l0τ0l

′μ0)(
2Sτ0 + 1

)
(2Sl′ + 1)

+ J
(c)
ij (l′τ0l0μ0)(

2Sτ0 + 1
)(

2Sl0 + 1
)
}(

Ŝil0 Ŝj l′ + 1

4
n̂il0 n̂j l′

)
, (38)

where

J
(b)
ij (l0τ0,l

′μ0) = 2
(
t
l0τ0,l

′μ0
ij

)2
/�τ0l0l′μ0 , J

(c)
ij (l′τ0,l0μ0) = 2

(
t
l′τ0,l0μ0
ij

)2
/�τ0l0l′μ0 . (39)
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From this relation it follows that under the optical pumping
with a frequency ν < Eg there is the contribution similar to
Eq. (25), and because of the reduced spin Sl′ = 3/2 at the first
excited state |l′〉 (Fig. 3) it has a FM nature.

C. Effects of DM interaction

The effects of DM interaction are observed in La214 and
FeBO3 due to canting of magnetic moments in a nonexcited
ground state [43–46]. Using the ideas from the Appendix
in [47], where the author starts from the localized electron
orbital states and considers the spin-orbit coupling as a
perturbation, the ground state may be written

|l̃0〉 ≈ |l0〉 +
〈
l′

∣∣ξil0

(
L̂i Ŝil0

)|l0〉
δl0l′

∣∣l′〉, (40)

where the spin-orbital interaction ξil0 just gives corrections
to the ground state |l0〉 of the i(j )th cell due to the same total
moment (Li + Si) at the |l′〉 = |4T1〉 state in FeBO3. Following
Eq. (22) and Eq. (25) the DM interaction ĤDM = Ĥ

(0)
DM +

Ĥ
(ex)
DM with contribution Ĥ

(0)
DM in unexcited material and optical

induced contribution Ĥ
(ex)
DM can be derived in the form

Ĥ
(0)
DM ≈ i

∑
ij

{
J

(b)
ij (l0τ0,l

′μ) + J
(c)
ij (l′τ0,l0μ)(

2Sτ0 + 1
)(

2Sl0 + 1
)

}

×
{〈l′|ξil0L̂i |l0〉 − 〈l′|ξjl0L̂j |l0〉

}
δl0l′

[
Ŝil0 × Ŝj l0

]
(41)

and

Ĥ
(ex)
DM ≈ −2i

∑
ij

{
Jij (l′τ0,l

′μ0)(Sl0 + Sl′ + 1)

(2Sτ0 + 1)
(
2Sl0 + 1

)
(2Sl′ + 1)

}

×
{

〈l′|ξil0L̂i |l0〉
δl0l′

[
Ŝil0 × Ŝj l′

]

− 〈l′|ξjl0L̂j |l0〉
δl0l′

[
Ŝil′ × Ŝj l0

]}
. (42)

Therefore, a relative orientation of the spins and the DM vector
is changed under optical pumping because of the induced FM
superexchange (38) in FeBO3. Note also that

Ĥ
(ex)
DM ≈ −

∑
ij

�Dl′l0
ij

{[
Ŝil0 × δŜjl

] − [
δŜil × Ŝj l0

]} 
= 0,

(43)
at forbidden simultaneous optical transitions in ith and j th
cells in the exchange-coupled pair with an inversion center and
δŜil = (Ŝj l − Ŝj l0 ), where the magnitude of the DM vector

D
l′l0
i,j = 2iJij (l′τ0,l

′μ0)
〈l′|ξil0L̂i |l0〉

δl0l′
, (44)

and Jij (l′τ0,l
′μ0) is equal to the expression in the first braces

of Eq. (42). The spin forbidden optical d-d excitations are
authentically observed in magnetic materials (see, e.g., the
works [22,48] and references therein).

IV. CONCLUSIONS

In summary, we have examined the response of superex-
change in magnetic Mott-Hubbard materials with the arbitrary
spin under optical pumping. To derive the effective spin
Hamiltonian we use the initial pd model Hamiltonian in the
Hubbard operators representation (LDA+GTB approach [8])
and method of the projection operators [21]. The effective
Hamiltonian (21) contains not only spin-spin interactions
involving optical excited states but more complicated inter-
actions of non-Heisenberg type accompanied with exciton or
biexciton. The Hamiltonian is nonadditive over the ground and
optical excited states, but it is additive to the virtual excited
states. To test our approach, we have calculated the superex-
change interaction and DM interaction in antiferromagnets
La214 and FeBO3 under optical pumping.

In cuprates under optical pumping with a frequency of d-d
transitions (ν < Eg) AFM superexchange enhanced by 40 K
on 1% of the occupation of excited state. The DM interaction
also does not undergo radical changes since the ground and the
optically excited states of cell are Kramers doublets in La214
(Fig. 2). Under irradiation with a frequency of corresponding
to the charge-transfer excitations (ν ∼ Eg), the optical induced
magnetism of an electron-hole pair does not appear because the
electron and hole are at the many-electron spin singlet states.
A spectral dependence of modified superexchange should
coincide with the d-d absorption spectra in the transparency
window �E ∼ 0-2 eV. Let us note here the discrepancy of our
results and the general trend given in the work of [49], where
the excited states contribute to the FM exchange at the low
“charge transfer energies” (�ll′μ in our notation).

In contrast La214, the results for FeBO3 are qualitative
in nature. In iron borates under optical pumping with a fre-
quency of d-d transitions, the initial AFM superexchange (34)
changes its character on FM (38) due to the spin forbidden
optical excitations |6A1〉 → |4T1〉 (Fig. 3). The initial DM
interaction (41) undergoes a significant perturbation (42) since
the mutual orientation of the spins and the DM vector is
changed by the induced FM contribution. The magnitude of
the induced DM interaction (42) depends on the nature of the
forbidden optical d-d transitions. In particular, the nonzero
DM interaction is induced at the forbidden simultaneous
d-d transitions in the exchange-coupled (i,j )th pair with
a center of inversion. The irradiation with a frequency
of corresponding to charge-transfer excitations results in
the induced exchange-coupled electron-hole pairs, since the
electron and hole have high spins Sμ0 = Sτ0 = 2 in FeBO3.
The superexchange in the induced electron-hole pair is equal
in magnitude but opposite in sign to the AFM superexchange
between the cells at the ground states in unexcited iron
borate.
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