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Competing phases in spin ladders with ring exchange and frustration
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The ground-state properties of spin-1/2 ladders are studied, emphasizing the role of frustration and ring
exchange coupling. We present a unified field theory for ladders with general coupling constants and geometry.
Rich phase diagrams can be deduced by using a renormalization group calculation for ladders with in-chain
next-nearest-neighbor interactions and plaquette ring exchange coupling. In addition to established phases
such as Haldane, rung singlet, and dimerized phases, we also observe a surprising instability towards an
incommensurate phase for weak interchain couplings, which is characterized by an exotic coexistence of
self-consistent ferromagnetic and antiferromagnetic order parameters.
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I. INTRODUCTION

Spin ladders are heavily studied prototypical models exem-
plifying the role of quantum fluctuations in low-dimensional
quantum systems [1–28]. Already in their simplest form
they show some of the most discussed quantum many-body
properties, such as a spin liquid or a topological Haldane
gapped state. Theoretical studies have identified a number of
remarkable ground-state phases, but given the large variety
of possible tuning parameters it is likely that this list is far
from complete. At the same time experimental progress on
novel materials [29–31] as well as advancements in the field of
optical lattices [32–35] give renewed interest in spin ladders
in their own right beyond the larger effort to gain a better
insight into complex phases of frustrated two-dimensional
(2D) models. This work now focuses on SU(2) invariant
ladders in order to answer the important question regarding
which phases are accessible for a general choice of tunable
couplings within the framework of an effective field theory. In
particular, an incommensurate phase is postulated for a certain
class of ladder systems in the weak-coupling limit, which has
so far received little attention.

The generalized SU(2) invariant spin-1/2 ladder is de-
scribed by the Heisenberg Hamiltonian plus a ring exchange
interaction,

H =
∑
〈i,j〉

Jij Si · Sj + K
∑

p

(
Pp + P −1

p

)
, (1)

where Jij take on values of antiferromagnetic nearest-neighbor
coupling J > 0 and next-nearest-neighbor (NNN) coupling J2

in the two chains as well as two diagonal couplings Jd,J
′
d

and a rung coupling J⊥ between the chains as depicted in
Fig. 1. The second term in Eq. (1) sums over the plaquettes
of the system, where Pp stands for the cyclic permutation of
the spins on the four sites of the pth plaquette. Such a ring
exchange interaction arises from the higher-order expansion
of the Hubbard model in the strongly interacting limit [36,37]
and can also be written as a product of two-spin permutations
Pp = Pp1p2Pp1p3Pp1p4 , which in terms of Pauli matrices σ

reads Pij = (1 + σ i · σ j )/2 [38]. The tunable parameters in
Fig. 1 provide a generalization of previously studied ladder
models. It has been established that weak interchain couplings
give rise to four possible gapped quantum phases, which are
characterized by correlations in form of singlets [4–12]:

(i) Rung singlet phase: Singlet formation across the rungs
for an antiferromagnetic rung coupling J⊥ > 0.

(ii) Haldane phase: Singlet formation analogous to the so-
called AKLT state [39] in the spin-1 model with a topological
string order parameter for J⊥ < 0.

(iii) Columnar dimerized phase: Alternating singlet for-
mation within each chain on the same bonds in both legs for
K < 0.

(iv) Staggered dimerized phase: Alternating singlet forma-
tion within each chain with a shift of one site between the two
legs for K > 0.

The rung singlet and Haldane phases have short-range
correlations, while the dimer correlations in the dimerized
phases are long range and break translational invariance.
The four phases with singlet formation are also dominant if
one considers frustrating couplings Jd,J

′
d ,J2, which normally

enhance quantum fluctuations. Such frustrating couplings have
been extensively studied in a cross-coupled ladder (CCL) for
Jd = J ′

d [12–18] or a diagonal ladder (DL) for Jd > J ′
d = 0

[18–20]. Both the DL and the CCL can be tuned from a
rung singlet phase to a Haldane phase with increasing Jd/J⊥.
Interestingly, the columnar dimerized phase also appears in
the DL for intermediate Jd/J⊥ [18], but such a phase is
debated for the CCL since it would spontaneously break
translational invariance [14–18]. A frustrating in-chain next-
nearest-neighbor interaction causes dimerization in single
chains for J2 > J2c ≈ 0.241167J [40–42] and therefore also
stabilizes the corresponding dimer phases in ladder systems
with next-nearest-neighbor coupling [21–25].

We now want to answer the question if the enhanced
entropy from competing phases may open the possibility

J⊥

Jd

Jd

J

J2

K

FIG. 1. Generalized spin ladder with ring exchange interaction
K , NNN coupling J2, and two diagonal couplings Jd and J ′

d .
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for interesting additional phases. We therefore consider the
interplay of all couplings in the full model in Fig. 1 using the
framework of a renormalization group (RG) treatment. We find
that for Jd �= J ′

d the enlarged unit cell permits an interesting
incommensurate phase, which occurs at surprisingly small
coupling strengths and may serve as a guide to analogous
phases in higher dimensions.

II. FIELD THEORY AND RENORMALIZATION GROUP

Starting from the established effective field-theory descrip-
tion of two decoupled chains, the spin operators acquire the
following representation in the continuum limit [43–47]:

S(x) ≈ J(x) + (−1)x�n(x), (2)

where � is a nonuniversal constant [48] and the lattice constant
is set to unity. The uniform part of the spin operator is
the sum of the chiral SU(2) currents of the Wess-Zumino-
Witten (WZW) model, J = JL + JR; the fundamental field
g of the WZW model is used to express the alternating
spin component n ∼ trσg and the dimerization operator
εj = (−1)j Sj · Sj+1 ∼ trg. Without interchain couplings the
field theory can be written for each leg separately in the form

H0 = 2πv

3

∫
dx

[
: JL · JL : + : JR · JR : +3λa

2
JL · JR

]
,

(3)

where the first two normal ordered terms are conformally
invariant and the last part represents a backscattering marginal
operator. Without any additional couplings between the two
legs of the ladder this theory describes a spin liquid for each
chain which is generally unstable to perturbations. The velocity
v ≈ πJ

2 − 1.65J2 and the value of the marginal coupling λa can
be tuned by the in-chain nearest-neighbor coupling J2 [42–44].

We denote the field theories for each chain with an
additional index η = 1,2. The allowed symmetries of the
microscopic model dictate that up to four additional relevant or
marginal operators can be generated by the coupling between
the legs of the ladder

δH = 2πv

∫
dx(λnOn + λcOc + λεOε + λbOb). (4)

Here the operator On = n1 · n2 of scaling dimension 1
describes the coupling between the antiferromagnetic part
of the spins, which drives the system into a rung singlet
phase for λn > 0 and into a Haldane phase for λn < 0. An
effective coupling of the dimerization is described by the
relevant operator Oε = ε1ε2 of scaling dimension 1, which
may drive the system into a staggered (λε > 0) or columnar
(λε < 0) dimerized phase. Interestingly, for J ′

d �= Jd , the
unit cell is enlarged, which allows another relevant operator
Oc = J1 · n2 − J2 · n1 of scaling dimension 3/2, which is
invariant under translation by two sites. It is not invariant
under translation by one site, unless the chain index is also
exchanged, in agreement with the model in Fig. 1 for J ′

d �= Jd .
As we will see below, this operator can drive the system into
yet another interesting incommensurate phase. Finally, there
is another marginal coupling Ob = J1,L · J2,R + J1,R · J2,L of
scaling dimension 2, which can tip the balance of which
relevant operator dominates under renormalization.

The corresponding RG equations of the bare coupling
constants are determined up to second order according to the
operator product expansion [49,50]

dλk

dl
= (2 − dk)λk − π

v

∑
i,j

Cijkλiλj , (5)

with dk the scaling dimension of each operator and the
coefficients Cijk are obtained by the operator product expan-
sion [47,51] as discussed in Appendix 1. For the operator
content in Eq. (4), we arrive at the following RG flow
(λ̇ = dλ/dl):

λ̇a = λa
2 + 1

2λε
2 − 1

2λn
2, (6a)

λ̇b = λb
2 − λελn + λn

2, (6b)

λ̇ε = λε + 3
2λaλε − 3

2λbλn − 3
2λc

2, (6c)

λ̇n = λn − 1
2λaλn − 1

2λbλε + λbλn − λc
2, (6d)

λ̇c = 1
2λc − 1

4λaλc + λbλc + 1
2λcλε − λcλn. (6e)

The bare coupling constants can be determined from the
microscopic model using Eq. (2) (see also the Appendix)

λn = �2 J⊥ − J̃d

2πv
,λε = 36

�2

π2

K

2πv
,λc = �

Jd − J ′
d

2πv
,

λa = 1.723(J2 − J2c) +
[

2 − �2 + 3�2

π2
(1 + �2)

]
K

2πv
,

λb = J⊥ + J̃d

2πv
+ 4

[
1 − (1 + �2)2

π2

]
K

2πv
, (7)

where we have used J̃d = Jd + J ′
d . As expected, Oc is

forbidden by symmetry for J ′
d = Jd and stays zero under

renormalization in Eqs. (6) in this case. The system remains ap-
proximately scale invariant above an energy scale � as long as
the coupling constants are small. However, as the cutoff �(l) =
�0e

−l is lowered, typically one of the coupling constants
effectively becomes of order unity under renormalization,
which determines the dominant ground-state correlations. In
turn, the value of �(l) at this breakdown point defines a new
intrinsic energy scale, below which scale invariance is lost
and no further renormalization of all couplings is possible.
This means that there generally is an implied assumption
that subdominant couplings remain small so they do not turn
around the RG flow in higher order. Good agreement with
numerically determined phase transitions has been achieved
when using � = 1 and integrating the RG equations up to a
breakdown point where one coupling reaches λ∗ = 1, which
is the procedure we use in the following.

The operators with the smaller scaling dimension, i.e., On

and Oε , renormalize faster and will drive the systems into
one of the four known phases as discussed above. However,
there are regions of the parameter space where the outcome
of the renormalization procedure is less trivial to predict due
to the competition of the frustrating couplings. In particular,
if the bare couplings λε,λn are very small, it is possible
that the relevant coupling λc may drive the phase into an
incommensurate phase as discussed below. Nonetheless, λε

and λn will always be generated by higher-order terms in the

144415-2



COMPETING PHASES IN SPIN LADDERS WITH RING . . . PHYSICAL REVIEW B 95, 144415 (2017)

FIG. 2. Phase diagram of the cross coupled ladder as a function
of K , and the ratio J⊥/2Jd , for Jd = J ′

d = 0.2J , and three values of
J2 = 0, 0.2J , and J2c, denoted by black solid, blue dashed, and red
dot-dashed lines, respectively.

renormalization procedure [14] and may still dominate the
low-energy physics depending also on the marginal couplings.

III. PHASE DIAGRAMS

To illustrate the interplay of different coupling constants
we first consider the CCL with Jd = J ′

d in the presence of
in-chain frustration J2 and ring exchange coupling K . As
shown in Fig. 2 the four known phases dominate the phase
diagram since λc = 0 by symmetry in this case. For K = 0
there is a direct phase transition from rung singlet to Haldane
phase at J⊥/2Jd = 1 with no intermediate dimerized phase.
It has been argued before that by including higher-order
irrelevant operators such an intermediate dimerized phase can
be generated in a narrow region for K = 0 [14,15], so the
possibility of such a phase obviously depends on higher orders
and cannot easily be settled using RG. Numerically, an indirect
signature was seen in Ref. [24], but other works have found no
evidence [16–18]. A next-nearest-neighbor coupling J2 < J2c

does not change the basic topology of the phase diagram but
has a large effect on the range of the dimer phases. This is due
to the fact that the in-chain frustration J2 leads to a reduced
starting value of λa and therefore makes the dimerization
operator effectively more relevant.

For comparison the phase diagram of the DL with J ′
d = 0

is shown in Fig. 3 for K = 0 and three values of the
NNN interaction, J2 = 0,0.2J,J2c as function of the two
interchain couplings J⊥ and Jd . The symmetry properties of
this model fundamentally differ from the CCL, because the
larger unit cell permits the presence of the operator Oc, which
plays an important role in generating the dimer operator Oε

under the renormalization in Eq. (6). Interestingly, in contrast
to the CCL, therefore an intermediate columnar dimerized
phase exists even without ring exchange, where the generated
operator Oε dominates the correlations. This phase again
becomes larger in the presence of in-chain frustration J2 for
reasons mentioned above.

One interesting aspect of the phase diagram in Fig. 3 is
the fact that there is no phase which is generated directly by
the relevant operator Oc even in cases where its initial bare
coupling constant λc may be largest. This invites interesting

FIG. 3. Phase diagram of the diagonal ladder (J ′
d = 0) as a

function of Jd and J⊥ for K = 0 and three values of J2 = 0, 0.2J ,
and J2c, denoted by black solid, blue dashed, and red dot-dashed lines
respectively.

questions: First, is it ever possible to generate phases which
are characterized by a dominant coupling λc in the extended
parameter space? And, second, if such a phase exist, what
dominant correlation would be expected?

The first question is answered by finding suitable parame-
ters for such a phase by taking advantage of canceling out the
effect from competing dimer phases. We understand that the
dimerized phase in Fig. 3 is created by Oε , which grows beyond
bounds after it is generated in second order by the initial bare
coupling λc. To suppress this generation, it is possible to add a
small ring exchange K , which initially pushes the value of λε to
be slightly positive in Eq. (7). The analogous reasoning applies
for λn, where a small positive bare value can be achieved by
choosing J⊥ slightly larger than Jd . Accordingly, we show the
phase diagram for the diagonal ladder with J⊥ = 1.1Jd and
J2 = 0.2J as a function of K and Jd in Fig. 4. In this case,
there is indeed an extended region with this additional phase for
K > 0, which we describe as incommensurate for reasons that
will be explained below. This incommensurate phase separates
the staggered dimer from the columnar dimer phase.

To illustrate another example of possible parameters for this
phase, we consider a general ratio of the diagonal couplings

FIG. 4. Phase diagram of the diagonal ladder (J ′
d = 0) as a

function of Jd and K for J⊥/Jd = 1.1 and J2 = 0.2J .
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FIG. 5. Phase diagram as a function of −J ′
d/Jd and K , for J⊥ =

0, J2 = J2c, and Jd = 0.2J .

J ′
d/Jd in Fig. 5 for J⊥ = 0, J2 = J2c, and Jd = 0.2J . Accord-

ing to Eq. (7) the initial value of λc becomes strongest for J ′
d =

−Jd , while the other initial couplings are zero for J⊥ = K = 0
and J2 = J2c. Indeed, the intermediate incommensurate phase
appears for small positive K and J ′

d ≈ −Jd , again separating
the staggered and columnar dimer phases.

To answer the question about the nature of the phase
for strong Oc = J1 · n2 − J2 · n1 it is possible to invoke a
self-consistency argument, analogous to a chain mean-field
theory [52–54]. Clearly, the operator Oc causes an alternating
magnetic order n in one chain to induce a collinear ferromag-
netic order J in the other chain and vice versa. Assuming small
finite-order parameters we can write for the expectation values

〈J2〉 = −λcχ0〈n1〉; 〈n1〉 = −λcχ1〈J2〉
(8)

〈J1〉 = λcχ0〈n2〉; 〈n2〉 = λcχ1〈J1〉,
where χ0 is the uniform susceptibility and χ1 is the alternating
susceptibility. While χ0 is finite [55], χ1 diverges with
1/T [53,54], so there will always be a low-enough energy
scale at which λ2

cχ0χ1 = 1 results in self-consistent finite
values for both the alternating antiferromagnetic and the
collinear ferromagnetic correlations. Semiclassically, n1(2) is
perpendicular to J1(2), so therefore also n1 is perpendicular
to n2 in this mean-field argument. For coupled chains in
a higher-dimensional array this will result in an incom-
mensurate ordered phase, characterized by a small collinear
ferromagnetic part which effectively shifts the wavelength of
the antiferromagnetic order [56,57]. In the one-dimensional
ladder system a spontaneously broken SU(2) symmetry is
not possible, so for this model the phase is characterized
by short-range incommensurate correlations [58]. Note that a
finite expectation value of Oc in this phase does not break trans-
lational invariance or any other symmetries spontaneaously,
since Oc is part of the original Hamiltonian.

IV. CONCLUSIONS

Incommensurate behavior due to frustration has been much
discussed in the literature, not only for strongly frustrated
chains [58] and coupled ladder systems [22,59,60] but,

more recently, also for anisotropic triangular lattices [61–64].
However, the incommensurate phase we have predicted in this
paper arises for small frustration and interchain couplings.
It is generated by a complex combination of competing
instabilities, which requires only a small perturbation from
the spin-liquid fixed point of decoupled chains. This opens
the door for the search also in 2D systems for corresponding
incommensurate phases near instabilities.

In conclusion, we have examined a general SU(2)-invariant
ladder model with focus on frustration and ring exchange.
For small coupling strengths the renormalization flow to four
known phases can be quantitatively examined. In addition, we
predict that there is an instability to an incommensurate phase
in parts of the parameter space. In contrast to other models
with incommensurate behavior, this phase can be observed
even for very small values of frustration and interchain
couplings. While frustration is an important ingredient for
enhanced quantum fluctuations in order to generate the phase,
the underlying instability towards incommensurate order is
already present in the field theory of any weakly coupled
chains with a broken translational symmetry Jd �= J ′

d . It
therefore appears that an essential aspect for the observed
incommensurate behavior is the enlarged unit cell, which in
turn provides an important clue what choice of couplings
may be promising to show corresponding phases in a 2D
generalization of the model.
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APPENDIX

In this Appendix additional information for the derivation
of the renormalization group equations is given and the
bosonization of the four spin interaction is discussed.

1. Field theory and renormalization group flow

For the derivation of the bosonization formulas and the
operator product expansion (OPE) it is useful to consider
an interacting spinful Fermion model as the underlying
physical realization where only the spin channel will be
considered in the low-energy limit. For the half-filled Hubbard
model, the charge channel is gapped and the Heisenberg
couplings considered in the paper corresponds to the spin
channel.

The spin currents are therefore conveniently expressed in
terms of left- and right-moving Fermion operators

J a
κ (zκ ) =: ψ†

κη

σ a
ηη′

2
ψκη′ : (zκ ), (A1)

where σa are the Pauli matrices with a summed over spin-
index η = ↑,↓, and κ = R,L denotes the chirality. The chiral
complex coordinates are zL/R = ±ix + vτ . The dimerization
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and staggered magnetization operators are given by [51]

ε(z) ∼ i

2
[: ψ

†
RηψLη : (z)− : ψ

†
LηψRη : (z)],

(A2)

na(z) ∼ 1

2
σa

ηη′ [: ψ
†
RηψLη′ : (z)+ : ψ

†
LηψRη′ : (z)],

where z implies a dependence on both chiral variables zR , zL

in this case.
The OPEs among J a

κ , ε, and nb can be calculated using
Wick’s theorem [47] and the two-point correlation function

〈〈ψκη(zκ )ψ†
κ ′η′ (wκ ′)〉〉 = δκκ ′δηη′

γ

zκ − wκ

, (A3)

where we choose a normalization of γ = 1/2π . Keeping all
relevant terms, the important OPEs are [51]

J a
κ (zκ )J b

κ ′(wκ ′) = δκκ ′

[
(γ 2/2)δab

(zκ − wκ )2
+ iεabcγ

J c
κ (wκ )

zκ − wκ

]

J a
κ (zκ )ε(w) = iκ

γ /2

zκ − wκ

na(w)

J a
κ (zκ )nb(w) = i

γ /2

zκ − wκ

[εabcn
c(w) − κδabε(w)]

ε(z)ε(w) = γ 2

|z − w| − |z − w|JR · JL(w)

na(z)ε(w) = −iγ |z − w|
[

J a
R(wR)

zL − wL

− J a
L(wL)

zR − wR

]

na(z)nb(w) = |z − w|
[

γ 2δab

|z − w|2 + iεabcγ

×
[

J c
R(wR)

zL − wL

+ J c
L(wL)

zR − wR

]
+ Q̂ab(w)

]
,

(A4)

where δab is the Kronecker δ function and εabc the Levi Civita
symbol. Here

Q̂ab = 1
2σa

ηη′σ
b
ττ ′ψ

†
RηψLη′ψ

†
LτψRτ ′ , (A5)

denotes the zeroth-order contraction between the fermionic
fields. After freezing out the gapped charge degrees of
freedom, only the trace of this operator is relevant for the
calculation of the renormalization group flow, which reads

Q̂aa = JR · JL. (A6)

The evolution of the bare couplings is determined from the
OPEs of the perturbing operators using [49]

dλk

dl
= (2 − dk)λk − π

v

∑
i,j

Cijkλiλj , (A7)

where dk is the scaling dimension of the operator, v is the
velocity, and Cijk is the coefficient extracted from the OPE
Oi(z)Oj (w) ∼ Ok(w). Using Eqs. (A4) and (A7), we arrive at
the renormalization group equations in the main text.

2. Four-spin interactions

In this part, we present the bosonization of the four-spin
interactions. The ring exchange interaction is given by

H = K
∑

p

(
hp + 1

4

)
, (A8)

where p sums over the plaquettes of the system and the local
energy operators are given by

hp = Sp1 · Sp2 + Sp3 · Sp4 + Sp1 · Sp4 + Sp2 · Sp3

+ Sp1 · Sp3 + Sp2 · Sp4 + 4
(
Sp1 · Sp2

)(
Sp3 · Sp4

)
+ 4

(
Sp1 · Sp4

)(
Sp2 · Sp3

) − 4
(
Sp1 · Sp3

)
(Sp2 · Sp4 ).

The indices p1 − p4 count clockwise the spins of the pth
plaquette. The Hamiltonian consists of products of spin
operators, H2, and products of pairs of spin operators, H4.

The four-spin interactions are either on the same leg of the
ladder or on the rungs of the ladder. The leg component HL

and the rung HR are given by

HL = 4K
∑

j

(S1,j · S1,j+1)(S2,j · S2,j+1), (A9)

HR = 4K
∑

j

(S1,j · S2,j )(S1,j+1 · S2,j+1)

− 4K
∑

j

(S1,j · S2,j+1)(S2,j · S1,j+1). (A10)

Spin operators are substituted in the continuum with

Sj /a → S(x) ≈ J(x) + (−1)x�n(x), (A11)

and the product of two spin operators on the same chain
becomes with the help of Eq. (A4),

aSa(x)Sb(x + a)

≈ −(a�)2Q̂ab(x) + (−1)x2γ�δabε(x)

+ γ (1 + a�2)

[
εabc

[
J c

R(x) − J c
L(x)

] − γ

a
δab

]
. (A12)

Using this equation for the products of spin operators in the
leg part, we arrive at

HL ≈ 12aKγ 2�2

×
∫

dx[(a + (a�)2)Oa(x) + 12Oε(x)]. (A13)

The rung part of the four spin interactions can be written as

HR ≈ 4a3K

∫
dxSa

1 (x)Sb
1 (x + a)

× [
Sa

2 (x)Sb
2 (x + a) − Sb

2 (x)Sa
2 (x + a)

]
, (A14)

where, due to the relative minus sign and the δ functions,
relevant terms are eliminated, and only interchain marginal
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terms survive,

HR ≈ −16aKγ 2(1 + a�2)2
∫

dxOb(x). (A15)

Combining Eqs. (A13) and (A15) and carrying out a trivial
calculation for the two spin interactions H2,

H2 ≈ aK

∫
dx[(2 − a�2)Oa(x) + 4Ob(x)], (A16)

one arrives at the bosonized ring exchange interaction in the
continuous limit

H ≈ aK

∫
dx

[(
2 − a�2 + 3a�2

π2
(1 + a�2)

)
Oa

+ 4

(
1 − (1 + a�2)2

π2

)
Ob + 36

�2

π2
Oε

]
, (A17)

which is used to determine the corresponding bare coupling
strengths in the main text.
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