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We construct a two-dimensional (2D) lattice model that is argued to realize a gapped chiral spin liquid with
(Ising) non-Abelian topological order. The building blocks are spin- 1

2 two-leg ladders with SU(2)-symmetric
spin-spin interactions. The two-leg ladders are then arranged on rows and coupled through SU(2)-symmetric
interactions between consecutive ladders. The intraladder interactions are tuned so as to realize c = 1/2 Ising
conformal field theory, a fact that we establish numerically via density matrix renormalization group studies.
Time-reversal breaking interladder interactions are tuned so as to open a bulk gap in the 2D lattice system. This
2D system supports gapless chiral edge modes with Ising non-Abelian excitations but no charge excitations, in
contrast to the Pfaffian non-Abelian fractional quantum Hall state.
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I. INTRODUCTION

It has been known in quantum-field theory since the 1980s
that point particles may obey non-Abelian braiding statistics
in (2+1)-dimensional spacetime [1–5]. Moore and Read
showed in 1991 that certain Pfaffian wave functions support
quasiparticles with non-Abelian braiding statistics [6]. This
discovery opened the possibility that non-Abelian braiding
statistics could be found in certain fractional quantum Hall
plateaus [6–9].

A second physical platform to realize braiding statistics
that is neither bosonic nor fermionic is provided by quasi-two-
dimensional quantum spin magnets with a gapped chiral spin-
liquid ground state [10,11]. Quasi-two-dimensional arrays of
quantum spin chains also have the potential for realizing
gapped spin liquid ground states with quasiparticles obeying
Abelian or non-Abelian braiding statistics [12–15].

In this paper, we construct a two-dimensional (2D) lattice
model, depicted in Fig. 1, that is argued to realize a non-
Abelian chiral spin liquid. This 2D model consists of an array
of coupled one-dimensional (1D) two-leg quantum spin- 1

2
ladders. The interladder coupling leads to a bulk gap, while
gapless modes remain at the boundaries. The chiral edge states
correspond to the Ising conformal field theory (CFT) with
central charge c = 1/2, similarly to the Moore-Read Pfaffian
state. However, in contrast to the Pfaffian quantum Hall state,
there is no additional c = 1 chiral bosonic charge-carrying
edge mode. By the bulk-edge correspondence, the bulk of
the coupled spin-ladder model is a gapped chiral spin liquid
supporting Ising non-Abelian topological order [16,17].

To obtain this result, we argue that the aforementioned
lattice model is a regularization of one of the interacting
quantum-field theories presented in Ref. [14], one that supports
chiral non-Abelian topological order. We start from coupled
two-leg ladders (called bundles in Ref. [14]), on which quan-
tum spin- 1

2 degrees of freedom are localized. Two ingredients
are needed. First, the interactions within the two-leg ladders
should be fine-tuned so as to realize the Ising universality
class in (1+1)-dimensional spacetime, the Ising criticality in
short. Second, the interactions between the two-leg ladders
(the bundles) should be dominated by strong current-current

interactions. Alternatively, the interactions between the ladders
(bundles) could be weak when mediated by Kondo-like
quantum spin- 1

2 degrees of freedom, as shown by Lecheminant
and Tsvelik in Ref. [15]. If so, the results of Ref. [14]
suggest that the 1D array of coupled two-leg ladders is a
lattice regularization of a chiral spin liquid supporting Ising
non-Abelian topological order. We are going to detail how we
achieve Ising criticality in a single two-leg ladder, and how
these fine-tuned two-leg ladders are coupled so as to stabilize
2D Ising non-Abelian topological order.

II. ISING CRITICALITY IN A LADDER

To realize the Ising criticality, we assume that the in-
traladder spin- 1

2 interactions allow us to interpolate between
two distinct dimerized ground states. This can be achieved
by positing the following quantum spin- 1

2 Hamiltonian on a
two-leg ladder:

Ĥladder := Ĥleg + Ĥ ′
leg + Ĥzigzag. (2.1a)

The first leg of the ladder hosts the quantum spin- 1
2 operators

Ŝi on every site i = 1, . . . ,N , where any two consecutive sites
are displaced by the lattice spacing a. Similarly, the second
leg of the ladder hosts spin- 1

2 operators Ŝ
′
i ′ on every site i ′ =

1, . . . ,N . Hamiltonians Ĥleg and Ĥ ′
leg are the antiferromagnetic

J1-J2 one-dimensional Heisenberg model, i.e.,

Ĥleg :=
N∑

i=1

(J1 Ŝi · Ŝi+1 + J2 Ŝi · Ŝi+2) (2.1b)

with J1,J2 � 0 and Ĥ ′
leg obtained from Ĥleg with the sub-

stitution Ŝi → Ŝ
′
i ′ . The spin- 1

2 operators on the two legs
also interact through an SU(2)-symmetric antiferromagnetic
Heisenberg exchange interaction, which we choose to be

Ĥzigzag := J∨
N∑

i,i ′=1

(δi ′,i + δi ′,i+1)̂Si · Ŝ
′
i ′ (2.1c)
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FIG. 1. Strongly coupled spin- 1
2 two-leg ladders that realize the Ising topological order in two-dimensional space. The intraladder couplings

J1, J2, and J∨ are defined in Eq. (2.1). The interladder couplings J⊥ (represented by the green bond) and χ⊥ (represented by the blue arrows)
are defined in Eq. (3.2).

with J∨ � 0. The coordination number in Ĥzigzag is 2, not 1,
as would be the case for the standard rung antiferromagnetic
Heisenberg exchange interaction.

Hamiltonian (2.1) is invariant under a global SU(2) rotation
of all spins, the interchange of the upper and lower legs, and
the mirror symmetries centered about a site of one leg and
the middle of the bond of the other leg. Hamiltonian (2.1)
simplifies in two limits, namely when J∨ = 0 or when J2 = 0.

When J∨ = 0, Hamiltonian (2.1) is the sum of two
independent J1-J2 antiferromagnetic Heisenberg chains. It is
gapless when J2/J1 � (J2/J1)c ≈ 0.24 and gapful otherwise
[18,19]. In the gapped phase, the ground-state manifold is
fourfold-degenerate as the translation symmetry along each leg
is spontaneously broken by one of two possible (leg) dimerized
ground states when periodic boundary conditions are imposed
(by identifying site N + 1 with site 1). In particular, at the
Majumdar-Ghosh point J2/J1 = 1/2 [20], the ground state is
a linear combination of the four possible direct products of all
singlet states of two spin- 1

2 degrees of freedom on every other
bond along the upper or lower legs.

When J2 = 0, Hamiltonian (2.1) is the J∨-J1 antiferromag-
netic Heisenberg quantum spin- 1

2 zigzag chain. (Notice that
the zigzag chain is equivalent to one of the chains discussed
above upon the identification J1 → J2 and J∨ → J1.) The
zigzag chain is gapless when J1/J∨ � (J1/J∨)c ≈ 0.24 and
gapful otherwise [18]. In the gapped phase, the ground-state
manifold is twofold-degenerate as the translation symmetry
along the chain is spontaneously broken by one of two possible
(zigzag) dimerized ground states when periodic boundary
conditions are imposed. Again, at the Majumdar-Ghosh point
J1/J∨ = 1/2 [20], the ground state is a linear combination
of the two possible direct products of all singlet states of two
spin- 1

2 degrees of freedom on every other bond along the zigzag
chain. (Henceforth, we shall measure all energies in units of
J1, i.e., J1 ≡ 1.)

We are now going to present numerical evidence according
to which two distinct dimerized phases that are adiabatically
connected to the two Majumdar-Ghosh points (J2,J∨) = (0,2)
and (1/2,0), respectively, are separated by a phase boundary
that realizes the Ising criticality. This is to say that it is possible

to connect the Majumdar-Ghosh points (J2,J∨) = (0,2) and
(1/2,0) by a one-dimensional path in parameter space along
which the spectral gap and order parameters vanish at an
isolated quantum critical point. We note that a transition
between distinct dimerized phases may be a general route
to achieving an Ising critical theory. Vekua and Honecker in
Ref. [21] and Lavarélo et al. in Ref. [22] have also shown
numerically that two other families of ladders for quantum
spin- 1

2 display a quantum critical point in the Ising universality
class that separates two distinct gapped dimer phases.1 We note
as well that quantum spin-1 chains can also show a quantum
critical point in the Ising universality class separating gapped
phases that are not related by a loss of symmetry [23].

To determine the phase diagram and the nature of the
quantum transitions between the different phases at zero tem-
perature, we resort to the density matrix renormalization group
method (DMRG) [24,25]. We simulate the two-leg ladder
(2.1) with open boundary conditions using up to 2000 DMRG
states for the largest systems considered,2 which guarantees
an accuracy of nine significant digits in the energy and six
significant digits in the entanglement entropy. We focus on the
transition line that separates the leg-dimer and zigzag-dimer
phases. As in Ref. [22], we plot the ground-state expectation
value for the leg-dimer order parameters in Fig. 2(a) as a
function of J∨ for different system sizes, together with an
extrapolation to the thermodynamic limit, which allows us to
locate the transition at the point J∨ ≈ J2 ≈ 0.44.3 Panel (b)

1In Ref. [21] ([22]), the coordination number between sites on
opposite legs of the ladder that are connected by antiferromagnetic
exchange couplings is 3 (1).

2The largest systems considered were N = 96 in Figs. 3(a) and 3(c),
N = 97 in Figs. 3(b) and 3(d), and N = 768 in Figs. 3(e) and 3(f).

3Let l be an integer labeling sites along one leg of a two-leg
ladder or the sites along a zigzag path that alternates between the
lower and upper legs of the two-leg ladder. Define the three-site,
two-spin operator D̂l := Ŝl · (Ŝl+1 − Ŝl−1). The local order parameter
for dimer order, Dl , is the ground-state expectation of D̂l .
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FIG. 2. (a) Leg-dimer order parameter at the center of the ladder,
DN/2, across the transition for a fixed value of J2 = 0.44 and
different system sizes. The extrapolation to the thermodynamic limit
is obtained with a second-order polynomial in 1/N , while the dashed
curve is a fit to the Ising scaling law with a transition at J∨ = 0.442.
(b) Scaling of DN/2 with 1/N for different values of J∨ around
the critical point. The scaling at the transition (J∨ = 0.44) is well
described by an exponent 1/8 corresponding to the Ising universality
class.

shows the anomalous scaling exponent of the leg-dimer order
parameter as a function of 1/N . It can be approximated by an
exponent of 1/8 precisely at J2 = 0.44, indicating the Ising
nature of the transition.

Further evidence for the nature of the transition is found
through finite-size scaling of the energy spectra and the
entanglement entropy.

The finite-size spectrum for the 2D Ising CFT depends on
the boundary conditions [26]. For an open boundary condition,
CFT predicts the spectrum

En(N ) = ε0 N + ε1 + πv

N

(
− 1

48
+ xn

)
+ O

(
1

N2

)
, (2.2)

where ε0 and ε1 are nonuniversal constants, while xn is the
anomalous scaling dimension of the operator corresponding
to the state labeled by the integer n. The value of xn is
sensitive to the limit N → ∞ being taken with even or odd
values of N . Which set (conformal tower) of anomalous
scaling dimensions enters on the right-hand side of Eq. (2.2)
depends on the parity in the number of spins per chain in the
two-leg ladder. For an even number N of spins per chain, the
conformal tower starts from the identity operator, i.e., x0 = 0.
There follow the anomalous scaling exponents x1 = 2, x2 = 3,
x3 = x4 = 4, and so on. For an odd number of spins per chain,
N , the conformal tower starts from the energy operator ε with
the anomalous scaling exponent x0 = 1/2, followed by the
exponents x1 = 3/2, x2 = 5/2, x3 = 7/2, x4 = 9/2, and so
on. Our DMRG results are summarized in Figs. 3(a)–3(d). For
any n = 0,1,2,3,4, analyzing the leading linear dependence
and the axis intercept of En(N )/N versus 1/N determines the
numerical values of ε0 and ε1. The value of v is obtained from
averaging the slope of [En(N ) − ε0 N − ε1]/N as a function
of 1/N2 in Eq. (2.2) for n = 0,1,2,3,4 assuming that xn is
governed by the Ising universality class. The consistency of
this assumption is then verified by fitting xn from the slope of
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FIG. 3. The function [E0(N ) − ε0 N − ε1]/N is plotted as a
function of 1/N2 with (a) N even and (b) N odd. The nonuniversal
constants ε0 = 0.7771(2) and ε1 = 0.040(6) follow from a linear
dependence of En(N )/N on 1/N intercepting the origin in the
thermodynamic limit N → ∞. The slopes in (a) and (b) give
πv [x0 − (1/48)] for N even and odd, respectively. The function
En(N ) − E0(N ) is plotted as a function of 1/N with (c) N even and
(d) N odd for n = 1,2,3,4 and n = 1,2,3, respectively. The slopes in
(c) and (d) give πv (xn − x0) when the limit N → ∞ is taken with N

even and odd, respectively. The slopes from the plots of Eq. (2.3) as
a function of (e) sin [πx/(N + 1)] with N = 768 fixed and (f) ln N

with x fixed yield c = 0.47 ± 0.02 and 0.49 ± 0.02, respectively.

[En(N ) − ε0 N − ε1]/N as a function of 1/N2 with v given
as above. Alternatively, xn can be fitted from the slope of
En(N ) − E0(N ) as a function of 1/N with v given as above.
For even and odd N , the values x0 = 0.000(4), x1 = 2.0(1),
x2 = 2.9(5), x3 = 3.9(2), x4 = 3.9(9) and x0 = 0.5(2), x1 =
1.5(1), x2 = 2.5(0), x3 = 3.3(9) follow from these fittings,
respectively. They agree with the Ising universality class within
the error bars.

The entanglement entropy computed with DMRG also
agrees with that of the Ising universality class. If we cut open
the two-leg ladder of length N along a rung into one block of
size x, the entanglement entropy S(x,N ) scales with x and N

like [22,27–31]

S(x,N ) = c

6
ln

(
N + 1

π
sin

π x

N + 1

)
+ A 〈̂Sx · Ŝx+1〉 + B,

(2.3)
where the number c = 1/2 is the Ising central charge, while A

and B are nonuniversal constants. The entanglement entropy
S(x,N ) and the spin-spin correlation 〈̂Sx · Ŝx+1〉 are computed
by DMRG and fitted according to the scaling law (2.3) as
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FIG. 4. (a) Coset representation of the critical point of the two-leg
ladder in the Ising universality class. (b) Coset representation of the
strong current-current interactions that stabilize the chiral spin liquid
phase with Ising topological order. A microscopic regularization of
these strong current-current interactions is encoded by the interladder
couplings J⊥ and χ⊥ defined in Eq. (3.2).

summarized in Figs. 3(e) and 3(f). The best fit for c is very
close to one-half irrespective of whether x is varied holding N

fixed or choosing x = N/2.
We close this discussion of a single two-leg ladder by

providing a field-theory description of the Ising criticality.
The continuum field theory sheds light on why Ising criticality
emerges, and how to couple the two-leg ladders together so as
to build the 2D bulk-gapped topological phase in the second
step of our construction. The quantum fields that encode the
low-energy degrees of freedom around the Ising critical point
follow from the identifications [32]

Ŝi → ̂JL(x) + ̂JR(x) + (−1)i n̂(x), (2.4a)

Ŝ
′
i ′ → ̂J ′

L(x) + ̂J ′
R(x) + (−1)i

′
n̂′(x). (2.4b)

The modes that vary slowly on the scale of the lattice spacing
a are the non-Abelian chiral currents ̂JM (x) and ̂J ′

M (x) with
M = L,R on the upper and lower legs, respectively. Their
scaling dimension is 1 when J2 = J∨ = 0. The quantum fields
n̂(x) and n̂′(x) represent the staggered magnetizations on
their respective legs. Their scaling dimension is 1/2 when
J2 = J∨ = 0. In the absence of the microscopic couplings J2
and J∨, each chain can be separately described using the ŝu(2)1
affine Lie algebra satisfied by the chiral currents. Together, the
two sets of currents also satisfy a ŝu(2)1 ⊕ ŝu(2)1 affine Lie
algebra (with central charge c = 2). Once the microscopic
couplings J2 and J∨ are turned on, a number of macroscopic
interactions appear, including the marginally relevant current-
current interaction ( ̂JL + ̂J ′

L)( ̂JR + ̂J ′
R), as we show in

Appendix A. The chiral sums ̂JM + ̂J ′
M , M = L,R, of the

currents on both chains satisfy themselves an affine subalgebra
ŝu(2)2 (with central charge c = 3/2). At strong coupling,
the added interactions gap the ŝu(2)2 piece, leaving behind
the coset theory [ŝu(2)1 ⊕ ŝu(2)1]/ŝu(2)2, which is precisely
the Ising critical theory (with central charge c = 1/2). While
the marginal twist term n̂ · ∂x n̂′ is allowed by symmetry in
the continuum description of the two-leg ladder [33], our
DMRG results support the case that, by properly selecting the
microscopic couplings, the total current-current interactions
can dominate the renormalization-group (RG) flow to strong
couplings and gap the corresponding subalgebra.

A useful pictorial rendition of this mechanism is the
following. The two-leg ladder is represented by a colored
square box in Fig. 4(a). The chiral critical modes generating the
affine Lie algebra ŝu(2)1 ⊕ ŝu(2)1 are represented by two lines
with opposite arrows in Fig. 4(a). The forking of either one of

the directed lines represents the fact that the affine Lie algebra
contains the diagonal affine subalgebra ŝu(2)1+1 (dashed blue
tine of the fork) and the coset ŝu(2)1 ⊕ ŝu(2)1/ŝu(2)1+1 (red
tine). The marginally relevant current-current perturbation
( ̂JL + ̂J ′

L)( ̂JR + ̂J ′
R) is represented by an arc that connects

the lines associated with the ŝu(2)1+1 subalgebra. This cou-
pling gaps the modes associated with this subalgebra without
affecting the modes associated with the coset theory. We are
thus left with a gapless Ising critical theory.

III. ISING NON-ABELIAN TOPOLOGICAL ORDER

Equipped with this pictorial representation, we consider
next an array of two-leg ladders labeled by the index m =
1, . . . ,n in Fig. 4(b), each of which is fine-tuned to the Ising
quantum critical point. Next, we present a mechanism to gap
the bulk modes, and we leave behind only the Ising critical
theories at the leftmost and rightmost bundles, i.e., at the
edges. This cannot be achieved by simply coupling the Ising
modes with opposite chirality across any two consecutive
two-leg ladders, depicted as neighboring colored boxes in
Fig. 4(b). The reason is that the Ising degrees of freedom are
fractionalized, and one is only allowed to write microscopic
couplings between unfractionalized degrees of freedom. There
is no physical current operator associated with the coset.
The mechanism to circumvent this problem was presented
in Ref. [14]. One couples the chiral currents associated with
the original ŝu(2)1 ⊕ ŝu(2)1 algebra with the same end result
of gapping the bulk and leaving the edge states.

To gap the bulk, any two consecutive two-leg ladders are
coupled by the marginally relevant ŝu(2)1 ⊕ ŝu(2)1 current-
current interactions

Ĥjj := gjj

n−1∑
m=1

( ̂JL,m · ̂JR,m+1 + ̂J ′
L,m · ̂J ′

R,m+1). (3.1)

These couplings are represented by the directed arcs in
Fig. 4(b). The arrows on the arcs are needed because this choice
of current-current interaction breaks time-reversal symmetry.
By inspection of Fig. 4(b), the array of two-leg ladders is
fully gapped if periodic boundary conditions are imposed on
the label m, whereas gapless chiral edge states from the Ising
universality class survive in the vicinity of the first and last
two-leg ladders when open boundary conditions hold. Hereto,
we want a lattice regularization of the quantum-field theory
represented by Fig. 4(b). It is depicted in Fig. 1.

Microscopic interactions between neighboring two-leg
ladders that break time-reversal symmetry and generate the
desired current-current interactions (3.1) are obtained from
the interactions

Ĥinterladder := Ĥ� + Ĥ ′
� + Ĥ� + Ĥ ′

�, (3.2a)

where

Ĥ� := χ⊥
2

N∑
i=1

n−1∑
m=1

[̂Si,m+1 · (̂Si+1,m ∧ Ŝi,m)

+Ŝi+1,m · (̂Si,m+1 ∧ Ŝi+1,m+1)] (3.2b)
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and

Ĥ� := J⊥
N∑

i=1

n−1∑
m=1

(̂Si,m · Ŝi,m+1 + Ŝi,m+1 · Ŝi+1,m), (3.2c)

with Ĥ ′
� and Ĥ ′

� following from Ĥ� and Ĥ� by the

substitution Ŝi,m → Ŝ
′
i ′,m. The choice (χ⊥/π ) = 2J⊥ yields

the current-current interaction Eq. (3.1) in the continuum limit
with gjj ∝ (χ⊥/π ) + 2J⊥, as we show in Appendix B, where
we also argue that any relevant bare coupling vanishes by
symmetry. Marginally relevant and relevant couplings that
compete with gjj can still be generated at higher loop order,
as shown in Refs. [34,35]. If the coupling gjj is small, these
competing interactions may overtake it in a weak-coupling
RG analysis. An alternative way to rephrase the issue is that,
if the gap is only exponentially small in the bare coupling
gjj , the stability of the desired phase is still subject to the
weak-coupling analysis done around the fixed point defined
by J⊥ = χ⊥ = 0, i.e., a fixed point that is not stable against
these competing relevant perturbations. However, for strongly
coupled chains, the gap is not exponentially small in the bare
coupling gjj , and the addition of the very weak perturba-
tions will not destroy the gap. Ultimately, nonperturbative
techniques such as DMRG are needed to confirm that the
Ising topological phase depicted in Fig. 4(b) is stable when
interactions are strong in the microscopic model in Fig. 1.We
also note that introducing a buffer of Kondo spin- 1

2 between
every neighboring two-leg ladder that mediates an indirect
interaction between neighboring two-leg ladders, as was done
by Lecheminant and Tsvelik in Ref. [15], also stabilizes the
Ising topological phase depicted in Fig. 4(b).

IV. CONCLUSION

In summary, field-theoretical arguments supported by
DMRG suggest that it is possible to tune a quantum spin- 1

2
two-leg ladder to Ising quantum criticality through strong
current-current interactions. Similarly, strong current-current
interactions between consecutive two-leg ladders are argued to
stabilize a ground state supporting 2D Ising topological order.
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APPENDIX A: CONTINUUM LIMIT
FOR A SINGLE LADDER

In this appendix, we start from the spin- 1
2 two-leg lad-

der Hamiltonian (2.1), whose antiferromagnetic exchange

(a)

(c)

(d)

(b)

FIG. 5. (a) A two-leg ladder is the set of points represented by
the filled black circles on which the quantum spin-1/2 degrees of
freedom are localized. The chain of upper (lower) circles defines
the upper (lower) leg. The bonds between two consecutive sites on
either the upper or lower leg represent the antiferromagnetic exchange
coupling J1 � 0. The bonds between two next-nearest neighbor sites
on either the upper or lower leg represent the antiferromagnetic
exchange coupling J2 � 0. The dashed bonds across the upper and
lower legs represent the antiferromagnetic exchange coupling J∨ � 0.
(b) When J∨ = 0, the two-leg ladder decouples into two identical
J1 − J2 antiferromagnetic Heisenberg chains. (c) When J2 = 0,
the two-leg ladder turns into a single J∨ − J1 antiferromagnetic
Heisenberg chain. (d) One-dimensional phase diagram in parameter
space relating the two Majumdar-Ghosh points J2 = 0, J1/J∨ =
1/2 and J∨ = 0, J2/J1 = 1/2. The Majumdar-Ghosh points are
represented by squares. They realize gapped phases. The gap closes
in a continuous fashion at the unstable quantum critical point
represented by the filled circle that belongs to the Ising universality
class.

couplings are depicted in Fig. 5(a). We are going to deduce
a naive continuum limit of Hamiltonian (2.1), which we shall
interpret as a perturbed conformal field theory (CFT). In doing
so, we shall keep track of the following symmetries obeyed
by Hamiltonian (2.1a), namely (i) invariance under any global
SU(2) rotation of all spins, (ii) invariance under the interchange
of the upper and lower legs, and (iii) the mirror symmetries
centered about a site of one leg and the middle of the bond of
the other leg [see Fig. 5(a)].

In Appendix A 1, we review the limit J∨ = 0 for which
the two-leg ladder decouples into two J1-J2 antiferromagnetic
spin- 1

2 chains and how this limiting case is related to perturbed
conformal field theory.

In Appendix A 2, we explain within perturbed conformal
field theory why the fine-tuning of Hamiltonian (2.1) to the
point (A13) in coupling space has the potential for realizing
Ising criticality. This fine-tuning is captured by turning the
perturbation (A11) into the perturbation (A14).
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1. The case J∨ = 0

When J∨ = 0, the ladder Hamiltonian (2.1) decouples
into two independent quantum spin- 1

2 chains with nearest-
and next-nearest-neighbor antiferromagnetic Heisenberg ex-
change couplings J1 > 0 and J2 � 0, respectively [see
Fig. 5(b)]. Without loss of generality, we shall consider the
Hamiltonian (2.1a) for the upper leg only. The results below
apply to the lower leg by adding a prime to all operators and
quantum fields.

The phase diagram along the line parametrized by the
dimensionless coupling J2/J1 > 0 consists of the quantum
critical segment 0 < J2/J1 � (J2/J1)c, the quantum critical
end point (J2/J1)c, and the gapped phase along the semi-
infinite segment (J2/J1)c < J2/J1 < ∞ [18]. The gapped
phase breaks spontaneously the translation symmetry by one
lattice spacing of the spin- 1

2 chain through the onset of
long-ranged dimer order when J2/J1 becomes larger than
(J2/J1)c. In particular, at the Majumdar-Ghosh point [20],
(J2/J1)MG ≡ 1/2 > (J2/J1)c, the ground state for an even
number of sites N and with periodic boundary conditions
(PBC) is twofold-degenerate, i.e., any linear combination of
the two valence bond states.

This phase diagram can be derived as was done in Ref. [36]
by perturbing the ŝu(2)1 Wess-Zumino-Witten theory describ-
ing the gapless phase by the addition of the current-current
interaction,

V̂bs := −(
g

(1)
bs − g

(2)
bs

) ∫
dx ̂JL(xL) · ̂JR(xR)

≡ gbs

∫
dx ̂JL(xL) · ̂JR(xR) (A1a)

in the Hamiltonian picture of quantum-field theory, where
xL := vτ + ix and xR := vτ − ix. Here,

0 < g
(1)
bs ∝ J1, 0 < g

(2)
bs ∝ J2. (A1b)

The quantum critical regime corresponds to this perturbation
being marginally irrelevant,

gbs < 0. (A2a)

The gapped regime corresponds to this perturbation being
marginally relevant,

gbs > 0. (A2b)

The spin operators that were defined on the sites i from the
one-dimensional chain with the lattice spacing a are encoded in
the effective low-energy quantum-field theory by the following
quantum fields. If

i (2a) → x, N a → L, (A3a)

then

Ŝ2i → (2a) [m̂(x) + n̂(x)], (A3b)

Ŝ2i+1 → (2a) [m̂(x) − n̂(x)] (A3c)

for all sites i = 1, . . . ,N/2 of the upper leg, assuming that N

is even. It then follows that the quantum fields m̂(x) and n̂(x)
commute at equal time,

[m̂(x),̂n(y)] = 0 (A4)

for all x and y from [0,L]. Furthermore, if we assume that
the quantum fields m̂(x) and n̂(x) vary smoothly relative to
the length scale 2a, we may then interpret the former vector of
quantum fields as encoding smooth fluctuations of the uniform
magnetization and the latter vector of quantum fields as
encoding smooth fluctuations of the staggered magnetization.

Finally, the decomposition

m̂(τ,x) = ̂JL(τ + ix) + ̂JR(τ − ix), (A5a)

and the identifications

̂JM (xM ) → JM (xM ), n̂(τ,x) → n(τ,x) (A5b)

hold between the operators ̂JM with M = L, R, and n̂ in the
imaginary-time Heisenberg picture and the bosonic fields JM

with M = L, R, and n. The latter enter the operator content of
the conformal field theory with the affine ŝu(2)1 algebra. They
are the closed affine ŝu(2)1 algebra [37–39]

J a
M (xM ) J b

M (0) ∼ 1

(2π )2

δab/2

x2
M

+ 1

2π

iεabcJ c
M (0)

xM

, (A6a)

the closed algebras

na(τ,x) nb(0,0) ∼ 1

2π2 a

δab

(xL xR)1/2
+ · · · , (A6b)

and

ε(τ,x) ε(0,0) ∼ 1

2π2 a

δab

(xL xR)1/2
+ · · · , (A6c)

with the nonvanishing cross terms

J a
L(xL) nb(0,0) ∼ iεabc nc(0,0) + iδab ε(0,0)

4πxL

, (A6d)

J a
R(xR) nb(0,0) ∼ iεabc nc(0,0) − iδab ε(0,0)

4πxR

, (A6e)

J a
L(xL) ε(0,0) ∼ − ina(0,0)

4πxL

, (A6f)

J a
R(xR) ε(0,0) ∼ + ina(0,0)

4πxR

. (A6g)

Here, ε(τ,x) is the quantum field that encodes smooth
fluctuations of the staggered dimerization.

Having established the nature of the line of quantum
critical points along the segment 0 < J2/J1 � (J2/J1)c and
the dictionary relating the spins to the operator content at
criticality, we can construct the continuum limit for the
perturbations of the critical segment,

J∨ = 0, 0 < J2/J1 � (J2/J1)c (A7)

in the parameter space for the two-leg ladder.

2. The case J∨ �= 0

To obtain the naive continuum limit of the Hamiltonian
(2.1c), treated as a perturbation to the critical segment
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0 < J2/J1 � (J2/J1)c, we first write

ĤJ∨ := J∨

N/2∑
i=1

Ŝ2i · (̂S
′
2i + Ŝ

′
2i+1)

+ J∨

N/2∑
i=1

Ŝ2i+1 · (̂S
′
2i+1 + Ŝ

′
2i+2), (A8)

where we have assumed that N is an even integer and we
imposed PBC. If we insert the decomposition (A3) into the
chainlike Hamiltonian (A8) and perform an expansion in
powers of (2a) to leading order, we get

ĤJ∨ → (2a) J∨

∫ L

0
dx [m̂(x) + n̂(x)] · [2 × m̂′(x)]

+ (2a) J∨

∫ L

0
dx [m̂(x) − n̂(x)] · {2 × m̂′(x)

+ (2a) ∂x m̂′(x) + (2a) ∂x n̂′(x) + O[(2a)2]}. (A9)

Hence, the segment of quantum criticality (A7) in parameter
space is perturbed by

Ĥ∨
per :=

∫ L

0
dx (Ŵ∨

jj + Ŵ∨
tw + · · · )(x), (A10a)

where

Ŵ∨
jj (x) = +g∨[ ̂JL(x) + ̂JR(x)] · [ ̂J ′

L(x) + ̂J ′
R(x)] (A10b)

is a marginally relevant perturbation [14] with the coupling

g∨ = 4 × v∨ > 0, v∨ := (2a) J∨, (A10c)

and

Ŵ∨
tw = −gtw n̂(x) · ∂x n̂′(x) (A10d)

is a marginal interaction [33] with the coupling

gtw = (2a) v∨ > 0, (A10e)

and · · · represents irrelevant local perturbations.
Observe that [see Eqs. (A1a) and (A10b)]

V̂bs(x) + V̂ ′
bs(x) + Ŵ∨

jj (x)

= gbs[ ̂JL(x) · ̂JR(x) + ̂J ′
L(x) · ̂J ′

R(x)]

+ g∨[ ̂JL(x) · ̂J ′
R(x) + ̂JR(x) · ̂J ′

L(x)]

+ g∨[ ̂JL(x) · ̂J ′
L(x) + ̂JR(x) · ̂J ′

R(x)]. (A11)

Define

K̂L(x) · K̂R(x) = [ ̂JL(x) + ̂J ′
L(x)] · [ ̂JR(x) + ̂J ′

R(x)],

(A12a)

where

K̂M (x) := ̂JM (x) + ̂J ′
M (x), M = L,R. (A12b)

If

gbs = g∨ ≡ gbs=∨, (A13)

then

V̂bs(x) + V̂ ′
bs(x) + Ŵ∨

jj (x)

= gbs=∨ K̂L(x) · K̂R(x)

+ gbs=∨ [ ̂JL(x) · ̂J ′
L(x) + ̂JR(x) · ̂J ′

R(x)]. (A14)

Ising quantum criticality of the two-leg ladder (2.1) is a
consequence of the flow to strong coupling of the local current-
current interaction (K̂L · K̂R)(x) when it is the only runaway
flow from the ŝu(2)1 ⊕ ŝu(2)1 quantum critical point. The Ising
quantum critical point realizes the coset theory with the affine
Lie algebra ŝu(2)1 ⊕ ŝu(2)1/ŝu(2)2, whose central charge is 1

2 .

APPENDIX B: CONTINUUM LIMIT
FOR COUPLED LADDERS

We are going to construct the perturbation to the conformal
field theory derived in Appendix A 1 that results from coupling
the spin- 1

2 two-leg ladders as shown in Fig. 1. The counterpart
to the generic perturbation (A11) in Appendix A is the generic
perturbation (B7).

We consider n two-leg ladders labeled by m = 1, . . . ,n.
They interact through the perturbations Ĥ� and Ĥ ′

�, where

Ĥ� := χ⊥
2

N∑
i=1

n−1∑
m=1

[̂Si,m+1 · (̂Si+1,m ∧ Ŝi,m)

+ Ŝi+1,m · (̂Si,m+1 ∧ Ŝi+1,m+1)] (B1a)

with χ⊥ real valued and Ĥ ′
� that follows from Ĥ� by the

substitution Ŝi,m → Ŝ
′
i ′,m, and the perturbations Ĥ� and Ĥ ′

�,
where

Ĥ� :=
N∑

i=1

n−1∑
m=1

[J⊥ Ŝi,m · Ŝi,m+1

+ (J/ Ŝi,m · Ŝi+1,m+1 + J\ Ŝi,m+1 · Ŝi+1,m)] (B1b)

with J⊥,J/,J\ > 0, and Ĥ ′
� obtained from Ĥ� by the substi-

tution Ŝi,m → Ŝ
′
i ′,m. Figure 1 depicts the special case of

J⊥ = J\, J/ = 0, (B2)

which is considered in Eq. (3.2) from the main text.
The continuum limit of the three-spin interaction Ĥ� (B1a)

is derived in Appendix B 1. The result is the local polynomial

V̂� := gχ⊥

n−1∑
m=1

( ̂JL,m · ̂JR,m+1 − ̂JR,m · ̂JL,m+1) + · · · ,

(B3a)

where

gχ⊥
= 2 × (2a)

χ⊥
π

, (B3b)

and · · · denotes irrelevant local perturbations. Similarly, the
continuum limit of Ĥ ′

� delivers the local polynomial V̂ ′
� that

follows from substituting ̂JM,m(x) → ̂J ′
M,m(x) for M = L,R

in V̂�.
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The naive continuum limit of Ĥ� defined by Eq. (B1b) can
be derived in a similar way as we did in Appendix A 2. The
result is the local polynomial

V̂� :=
n−1∑
m=1

[
n−2∑
m′=1

g
(m′)
jj ( ̂JL,m · ̂JL,m+m′ + ̂JR,m · ̂JR,m+m′)

+
n−2∑
m′=1

g
(m′)
jj ( ̂JL,m · ̂JR,m+m′ + ̂JR,m · ̂JL,m+m′)

+
n−2∑
m′=1

(g(m′)
nn n̂m · n̂m+m′ + g(m′)

εε ε̂m ε̂m+m′)

+
n−2∑
m′=1

g
(m′)
tw (̂nm · ∂x n̂m+m′)

]
(B4a)

up to irrelevant local perturbations. Here, the bare values of
the couplings are

g
(m′)
jj ≡ (g⊥

jj + g
/

jj + g
\
jj ) δm′1

= 2 × (2a)(J⊥ + J/ + J\) δm′1, (B4b)

g(m′)
nn ≡ (g⊥

nn + g/
nn + g\

nn) δm′1

= 2 × (2a)(J⊥ − J/ − J\) δm′1, (B4c)

g(m′)
εε = 0, (B4d)

g
(m′)
tw ≡ (g/

tw − g
\
tw) δm′1

= (2a)2(−J/ + J\) δm′1. (B4e)

We note that the initial value of the twist coupling vanishes
[40] if

J/ = J\. (B5)

The continuum limit of Ĥ ′
� can be obtained by the substitutions

̂JM,m(x) → ̂J ′
M,m(x) with M = L,R, n̂m(x) → n̂′

m(x), and
ε̂m(x) → ε̂′

m(x) in V̂�. The result is the local polynomial V̂ ′
�.

The condition

J⊥ = J\, J/ = 0 (B6)

forbids the presence of any relevant perturbation of the form
n̂m · n̂m+m′ and ε̂m ε̂m+m′ with m′ an odd integer by the symmetry
under reflection in a plane perpendicular to the chains [12,35].

Addition of the contributions to the current-current
backscattering from the local perturbations V̂�, V̂�, V̂ ′

�, and
V̂ ′

� [see Eqs. (B3) and (B4)] gives the local current-current
perturbation

V̂�,� bs :=
n−1∑
m=1

[g+( ̂JL,m · ̂JR,m+1 + ̂J ′
L,m · ̂J ′

R,m+1)

+ g−( ̂JR,m · ̂JL,m+1 + ̂J ′
R,m · ̂J ′

L,m+1)] (B7a)

with the couplings

g± := g
(1)
jj ± gχ⊥

= 2 × (2a)(J⊥ + J/ + J\) ± 2 × (2a)
χ⊥
π

. (B7b)

Given the initial values g+ > 0 and g− � 0, g+ flows to strong
coupling while g− flows to zero. Conversely, given the initial
values g− > 0 and g+ � 0, it is g− that flows to strong coupling
while it is g+ that flows to zero. The strong-coupling fixed
points that we seek require that

sgn(g+ × g−) < 0. (B8)

Furthermore, under the condition (B6), if we choose

χ⊥
π

= 2J⊥, (B9)

then

g+ ≡ gjj = 8 × (2a) J⊥, g− = 0. (B10)

This is the case considered in Eq. (3.1) from the main text.

Continuum limit of the three spin interactions (B1a)

The perturbation Ĥ� defined by Eq. (B1a) couples two
consecutive two-leg ladders in such a way that it breaks
time-reversal symmetry. The coupling Ĥ� involves two terms
per square plaquette defined by the vertices (i,m), (i+1,m),
(i,m+1), (i + 1,m + 1). We shall take the naive continuum limit
arising from each term separately.

We write

Ĥ�1
:= χ⊥

2

N∑
i=1

n−1∑
m=1

εabcŜa
i,m+1 Ŝb

i+1,m Ŝc
i,m

= χ⊥
2

N/2∑
i=1

n−1∑
m=1

εabc
(
Ŝa

2i,m+1 Ŝb
2i+1,m Ŝc

2i,m

)
+ χ⊥

2

N/2∑
i=1

n−1∑
m=1

εabc
(
Ŝa

2i+1,m+1 Ŝb
2i+2,m Ŝc

2i+1,m

)
,

(B11)

where we have assumed that N is an even integer and imposed
PBC. If we insert the decomposition (A3) into the Hamiltonian
(B11), and we perform an expansion in powers of (2a) to
leading order, we get

Ĥ�1
→ χ⊥

2

n−1∑
m=1

∫ L

0
dx εabc 2

× (2a)2
[
m̂a

m+1(x) m̂b
m(x) m̂c

m(x) − m̂a
m+1(x) n̂b

m(x) n̂c
m(x)

+ n̂a
m+1(x) m̂b

m(x) n̂c
m(x) − n̂a

m+1(x) n̂b
m(x) m̂c

m(x)
]

+ · · · , (B12)

where · · · refers to irrelevant local perturbations. To proceed,
we need to point-split pairs of operators sitting at the same
position x in the same bundle m. After point-splitting, we shall
use the operator product expansion (OPE) (A6) so as to reduce
the point-split pair of operators to either aC number or a single
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operator. We treat such pairs of point-split operators one by
one. First,

εabc m̂b
m(x) m̂c

m(x) = εabc lim
2a→0

[
Ĵ b

L,m(x + 2a) + Ĵ b
R,m(x + 2a)

]
× [

Ĵ c
L,m(x) + Ĵ c

R,m(x)
]

∼ εabc lim
2a→0

[
δbc

8π2(+i2a)2
+ iεbcd Ĵ d

L,m(x)

2π (+i2a)

+ δbc

8π2(−i2a)2
+ iεbcd Ĵ d

R,m(x)

2π (−i2a)

]
= (2a)−1

π

[
Ĵ a

L,m(x) − Ĵ a
R,m(x)

]
. (B13a)

The OPEs (A6a) were used for the line with the ∼, and the
identity εabcεbcd = 2 δad was used to reach the last equality.
Second,

εabc n̂b
m(x) n̂c

m(x) ∼ 0. (B13b)

Hereto, the OPEs (A6b) were used. Third,

εabc m̂b
m(x) n̂c

m(x) ∼ 0. (B13c)

Insertion of Eqs. (B13a) into Hamiltonian (B12) gives

Ĥ�1
→ χ⊥

n−1∑
m=1

∫ L

0
dx

(2a)

π
[ ̂JL,m+1(x) + ̂JR,m+1(x)] ·

[ ̂JL,m(x) − ̂JR,m(x)] + · · · . (B14)

Next, we write

Ĥ�2
:= −χ⊥

2

N∑
i=1

n−1∑
m=1

εabcŜa
i+1,m Ŝb

i+1,m+1 Ŝc
i,m+1

= −χ⊥
2

N/2∑
i=1

n−1∑
m=1

εabc
(
Ŝa

2i+1,m Ŝb
2i+1,m+1 Ŝc

2i,m+1

)

−χ⊥
2

N/2∑
i=1

n−1∑
m=1

εabc
(
Ŝa

2i,m Ŝb
2i,m+1 Ŝc

2i−1,m+1

)
, (B15)

where we have assumed that N is an even integer and imposed
PBC. The continuum limit of Ĥ�2

(B15) can be derived in a
similar way as we did for Ĥ�1

. The result is

Ĥ�2
→ −χ⊥

n−1∑
m=1

∫ L

0
dx

(2a)

π
[ ̂JL,m(x) + ̂JR,m(x)] ·

[ ̂JL,m+1(x) − ̂JR,m+1(x)] + · · · . (B16)

Thus, the continuum limit of Ĥ� (B1a) can be read from
Eqs. (B14) and (B16). It is

Ĥ� = (2a)
χ⊥
π

n−1∑
m=1

∫ L

0
dx [( ̂JL,m − ̂JR,m) · ( ̂JL,m+1 + ̂JR,m+1)

− ( ̂JL,m + ̂JR,m) · ( ̂JL,m+1 − ̂JR,m+1)] + · · ·

= gχ⊥

n−1∑
m=1

∫ L

0
dx

(
̂JL,m · ̂JR,m+1 − ̂JR,m · ̂JL,m+1

)
+ · · · ,

(B17a)

where the coupling gχ⊥
stands for

gχ⊥
= 2 × (2a)

χ⊥
π

. (B17b)

Similarly, the continuum limit of Ĥ ′
� follows from that of Ĥ�

with the substitution ̂JM,m(x) → ̂J ′
M,m(x) with M = L,R.

[1] J. Fröhlich, in Nonperturbative Quantum Field Theory, NATO
ASI Series Vol. 185, edited by G. ’t Hooft, A. Jaffe, G. Mack, P.
Mitter, and R. Stora (Springer, Boston, MA, 1988), pp. 71–100.

[2] J. Fröhlich and F. Gabbiani, Rev. Math. Phys. 02, 251 (1990).
[3] J. Fröhlich, F. Gabbiani, and P.-A. Marchetti, in The Algebraic

Theory of Superselection Sectors. Introduction and Recent
Results, edited by D. Kastler (World Scientific, Singapore,
1990), p. 259.

[4] K. Rehren, in The Algebraic Theory of Superselection Sectors.
Introduction and Recent Results, edited by D. Kastler (World
Scientific, Singapore, 1990), p. 333.

[5] J. Fröhlich and P.A. Marchetti, Nucl. Phys. B 356, 533 (1991).
[6] G. Moore and N. Read, Nucl. Phys. B360, 362 (1991).
[7] X. G. Wen, Phys. Rev. Lett. 66, 802 (1991).
[8] A. Kitaev, Ann. Phys. (NY) 321, 2 (2006).
[9] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[10] V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095

(1987).

[11] X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413
(1989).

[12] G. Gorohovsky, R. G. Pereira, and E. Sela, Phys. Rev. B 91,
245139 (2015).

[13] T. Meng, T. Neupert, M. Greiter, and R. Thomale, Phys. Rev. B
91, 241106 (2015).

[14] P.-H. Huang, J.-H. Chen, P. R. S. Gomes, T. Neupert, C. Chamon,
and C. Mudry, Phys. Rev. B 93, 205123 (2016).

[15] P. Lecheminant and A. M. Tsvelik, arXiv:1608.05977.
[16] X.-G. Wen, Int. J. Mod. Phys. B 05, 1641 (1991).
[17] M. Oshikawa and T. Senthil, Phys. Rev. Lett. 96, 060601

(2006).
[18] F. D. M. Haldane, Phys. Rev. B 25, 4925 (1982).
[19] S. R. White and I. Affleck, Phys. Rev. B 54, 9862 (1996).
[20] C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, 1399

(1969).
[21] T. Vekua and A. Honecker, Phys. Rev. B 73, 214427 (2006).
[22] A. Lavarélo, G. Roux, and N. Laflorencie, Phys. Rev. B 84,

144407 (2011).

144413-9

https://doi.org/10.1142/S0129055X90000107
https://doi.org/10.1142/S0129055X90000107
https://doi.org/10.1142/S0129055X90000107
https://doi.org/10.1142/S0129055X90000107
https://doi.org/10.1016/0550-3213(91)90378-B
https://doi.org/10.1016/0550-3213(91)90378-B
https://doi.org/10.1016/0550-3213(91)90378-B
https://doi.org/10.1016/0550-3213(91)90378-B
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1103/PhysRevLett.66.802
https://doi.org/10.1103/PhysRevLett.66.802
https://doi.org/10.1103/PhysRevLett.66.802
https://doi.org/10.1103/PhysRevLett.66.802
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/PhysRevLett.59.2095
https://doi.org/10.1103/PhysRevLett.59.2095
https://doi.org/10.1103/PhysRevLett.59.2095
https://doi.org/10.1103/PhysRevLett.59.2095
https://doi.org/10.1103/PhysRevB.39.11413
https://doi.org/10.1103/PhysRevB.39.11413
https://doi.org/10.1103/PhysRevB.39.11413
https://doi.org/10.1103/PhysRevB.39.11413
https://doi.org/10.1103/PhysRevB.91.245139
https://doi.org/10.1103/PhysRevB.91.245139
https://doi.org/10.1103/PhysRevB.91.245139
https://doi.org/10.1103/PhysRevB.91.245139
https://doi.org/10.1103/PhysRevB.91.241106
https://doi.org/10.1103/PhysRevB.91.241106
https://doi.org/10.1103/PhysRevB.91.241106
https://doi.org/10.1103/PhysRevB.91.241106
https://doi.org/10.1103/PhysRevB.93.205123
https://doi.org/10.1103/PhysRevB.93.205123
https://doi.org/10.1103/PhysRevB.93.205123
https://doi.org/10.1103/PhysRevB.93.205123
http://arxiv.org/abs/arXiv:1608.05977
https://doi.org/10.1142/S0217979291001541
https://doi.org/10.1142/S0217979291001541
https://doi.org/10.1142/S0217979291001541
https://doi.org/10.1142/S0217979291001541
https://doi.org/10.1103/PhysRevLett.96.060601
https://doi.org/10.1103/PhysRevLett.96.060601
https://doi.org/10.1103/PhysRevLett.96.060601
https://doi.org/10.1103/PhysRevLett.96.060601
https://doi.org/10.1103/PhysRevB.25.4925
https://doi.org/10.1103/PhysRevB.25.4925
https://doi.org/10.1103/PhysRevB.25.4925
https://doi.org/10.1103/PhysRevB.25.4925
https://doi.org/10.1103/PhysRevB.54.9862
https://doi.org/10.1103/PhysRevB.54.9862
https://doi.org/10.1103/PhysRevB.54.9862
https://doi.org/10.1103/PhysRevB.54.9862
https://doi.org/10.1063/1.1664979
https://doi.org/10.1063/1.1664979
https://doi.org/10.1063/1.1664979
https://doi.org/10.1063/1.1664979
https://doi.org/10.1103/PhysRevB.73.214427
https://doi.org/10.1103/PhysRevB.73.214427
https://doi.org/10.1103/PhysRevB.73.214427
https://doi.org/10.1103/PhysRevB.73.214427
https://doi.org/10.1103/PhysRevB.84.144407
https://doi.org/10.1103/PhysRevB.84.144407
https://doi.org/10.1103/PhysRevB.84.144407
https://doi.org/10.1103/PhysRevB.84.144407


HUANG, CHEN, FEIGUIN, CHAMON, AND MUDRY PHYSICAL REVIEW B 95, 144413 (2017)

[23] N. Chepiga, I. Affleck, and F. Mila, Phys. Rev. B 93, 241108
(2016).

[24] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[25] S. R. White, Phys. Rev. B 48, 10345 (1993).
[26] J. L. Cardy, Nucl. Phys. B 275, 200 (1986).
[27] P. Calabrese and J. Cardy, J. Stat. Mech. (2004) P06002.
[28] P. Calabrese and J. Cardy, J. Phys. A 42, 504005 (2009).
[29] N. Laflorencie, E. S. Sørensen, M.-S. Chang, and I. Affleck,

Phys. Rev. Lett. 96, 100603 (2006).
[30] I. Affleck, N. Laflorencie, and E. S. Sørensen, J. Phys. A 42,

504009 (2009).
[31] J. Cardy and P. Calabrese, J. Stat. Mech. (2010) P04023.
[32] I. Affleck and F. D. M. Haldane, Phys. Rev. B 36, 5291 (1987).

[33] A. A. Nersesyan, A. O. Gogolin, and F. H. L. Eßler, Phys. Rev.
Lett. 81, 910 (1998).

[34] O. A. Starykh and L. Balents, Phys. Rev. Lett. 93, 127202 (2004).
[35] O. A. Starykh and L. Balents, Phys. Rev. Lett. 98, 077205 (2007).
[36] C. Mudry and E. Fradkin, Phys. Rev. B 50, 11409 (1994).
[37] O. A. Starykh, A. Furusaki, and L. Balents, Phys. Rev. B 72,

094416 (2005).
[38] S. Furukawa, M. Sato, S. Onoda, and A. Furusaki, Phys. Rev. B

86, 094417 (2012).
[39] A. Metavitsiadis, D. Sellmann, and S. Eggert, Phys. Rev. B 89,

241104 (2014).
[40] D. Allen, F. H. L. Essler, and A. A. Nersesyan, Phys. Rev. B 61,

8871 (2000).

144413-10

https://doi.org/10.1103/PhysRevB.93.241108
https://doi.org/10.1103/PhysRevB.93.241108
https://doi.org/10.1103/PhysRevB.93.241108
https://doi.org/10.1103/PhysRevB.93.241108
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1016/0550-3213(86)90596-1
https://doi.org/10.1016/0550-3213(86)90596-1
https://doi.org/10.1016/0550-3213(86)90596-1
https://doi.org/10.1016/0550-3213(86)90596-1
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1103/PhysRevLett.96.100603
https://doi.org/10.1103/PhysRevLett.96.100603
https://doi.org/10.1103/PhysRevLett.96.100603
https://doi.org/10.1103/PhysRevLett.96.100603
https://doi.org/10.1088/1751-8113/42/50/504009
https://doi.org/10.1088/1751-8113/42/50/504009
https://doi.org/10.1088/1751-8113/42/50/504009
https://doi.org/10.1088/1751-8113/42/50/504009
https://doi.org/10.1088/1742-5468/2010/04/P04023
https://doi.org/10.1088/1742-5468/2010/04/P04023
https://doi.org/10.1088/1742-5468/2010/04/P04023
https://doi.org/10.1103/PhysRevB.36.5291
https://doi.org/10.1103/PhysRevB.36.5291
https://doi.org/10.1103/PhysRevB.36.5291
https://doi.org/10.1103/PhysRevB.36.5291
https://doi.org/10.1103/PhysRevLett.81.910
https://doi.org/10.1103/PhysRevLett.81.910
https://doi.org/10.1103/PhysRevLett.81.910
https://doi.org/10.1103/PhysRevLett.81.910
https://doi.org/10.1103/PhysRevLett.93.127202
https://doi.org/10.1103/PhysRevLett.93.127202
https://doi.org/10.1103/PhysRevLett.93.127202
https://doi.org/10.1103/PhysRevLett.93.127202
https://doi.org/10.1103/PhysRevLett.98.077205
https://doi.org/10.1103/PhysRevLett.98.077205
https://doi.org/10.1103/PhysRevLett.98.077205
https://doi.org/10.1103/PhysRevLett.98.077205
https://doi.org/10.1103/PhysRevB.50.11409
https://doi.org/10.1103/PhysRevB.50.11409
https://doi.org/10.1103/PhysRevB.50.11409
https://doi.org/10.1103/PhysRevB.50.11409
https://doi.org/10.1103/PhysRevB.72.094416
https://doi.org/10.1103/PhysRevB.72.094416
https://doi.org/10.1103/PhysRevB.72.094416
https://doi.org/10.1103/PhysRevB.72.094416
https://doi.org/10.1103/PhysRevB.86.094417
https://doi.org/10.1103/PhysRevB.86.094417
https://doi.org/10.1103/PhysRevB.86.094417
https://doi.org/10.1103/PhysRevB.86.094417
https://doi.org/10.1103/PhysRevB.89.241104
https://doi.org/10.1103/PhysRevB.89.241104
https://doi.org/10.1103/PhysRevB.89.241104
https://doi.org/10.1103/PhysRevB.89.241104
https://doi.org/10.1103/PhysRevB.61.8871
https://doi.org/10.1103/PhysRevB.61.8871
https://doi.org/10.1103/PhysRevB.61.8871
https://doi.org/10.1103/PhysRevB.61.8871



