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Synchronization of spin torque nano-oscillators
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Synchronization of spin torque nano-oscillators (STNOs) has been a subject of extensive research as various
groups try to harness the collective power of STNOs to produce a strong enough microwave signal at the
nanoscale. Achieving synchronization has proven to be, however, rather difficult for even small arrays while in
larger ones the task of synchronization has eluded theorists and experimentalists altogether. In this work we solve
the synchronization problem, analytically and computationally, for networks of STNOs connected in series. The
procedure is valid for networks of arbitrary size and it is readily extendable to other network topologies. These
results should help guide future experiments and, eventually, lead to the design and fabrication of a nanoscale
microwave signal generator.
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I. INTRODUCTION

The synchronization phenomenon of spin torque nano-
oscillators (STNOs) has been the subject of extensive research
for many years due to the potential of networks of STNOs
to generate microwave signals at the nanoscale [1–3]. In the
last few years, Adler-type [4] injection locking has emerged as
the most promising method to achieve synchronization, either
through an external microwave current [5–7] or through a
microwave magnetic field [8,9]. In particular, it was shown
recently that a record number of five nanocontact STNOs
[10] can synchronize via spin-wave beams [11]. Non-Adlerian
approaches to synchronization of nanopillar STNOs have
also been considered. Georges et al. [12] found the critical
coupling strength and minimum number of STNOs for the
onset of synchronization analytically by describing the STNOs
as phase oscillators in the framework of Kuramoto [13]. Later,
Iacocca and Akerman [14] provided conditions for the onset
of phase instability that may be caused, surprisingly, by strong
coupling in identical STNOs. It is well known, however,
that amplitude can affect synchronization, especially near the
onset of a Hopf bifurcation [15]. In fact, in STNOs amplitude
and phase are intrinsically coupled by the dependence of the
effective field on the magnetization [16]. Thus, if the Hopf
bifurcation parameter is of the same scale as the coupling
parameter then the amplitude is no longer negligible and the
Kuramoto model reduction is no longer valid. Furthermore,
when the amplitude dynamics are not negligible and the natural
oscillation frequencies are not homogeneous, synchronization
may be enhanced regardless of the topology of the network
[17]. Consequently, a complete understanding of synchro-
nization of nanopillar-based STNOs, via non-Adlerian type,
requires an analysis that incorporates the amplitude dynamics.
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In 2005, back-to-back publications in Nature Letters (Kaka
[2], a collaboration between NIST and Hitachi GST and
Mancoff [18] from Freescale Semiconductor) showed that two
STNOs tend to phase lock when they are in close proximity
of one another. The coupling in these cases resulted from spin
waves propagating through the continuous free layers, leading
to phase locking. Soon after, Grollier et al. [1] investigated
computationally the behavior of a one-dimensional (1D) series
array of N = 10 electrically coupled STNOs. Their study
showed that the ac produced by each individual oscillator leads
to feedback between the STNOs, causing them to synchronize,
and that, collectively, the microwave power output of the
array increases as N2. In a follow-up study, Persson et al.
[3] mapped out numerically the region of synchronization of
the 1D serially connected array considered by Grollier et al.
for the special case of N = 2 STNOs. Their work shows
that the region of parameter space where synchronization
exists is rather small, thus explaining the difficulty (already
observed by experimentalists) to achieve synchronization.
Li et al. [19] showed that this difficulty was due, mainly,
to the coexistence of multiple stable attractors, suggesting
that the synchronization regime is highly sensitive to initial
conditions. Persson et al. [3] also investigated numerically the
effect of including a time delay between the magnetization-
induced change in voltage and the current variation. They
highlight that this increases significantly the parameter region
of synchronization, especially with respect to differences
in anisotropy fields between the STNOs. We determine
numerically that the synchronization for 1000 STNOs is robust
to nonhomogeneities in the anisotropy field on the order of
4–5%, as Persson et al. also observes in the absence of delay.
It will be worthwhile to investigate in future work the effects
of time delay and to find out whether the synchronization is
robust to larger anisotropy in the network.

On a single STNO [see Fig. 1(a)], an originally unpolarized
electric current I , in amperes, is applied to the fixed magnetic
layer whose magnetization is represented by M̂ . As the
electrons pass through the layer, their spins become aligned to
that of the fixed layer, thus creating a spin-polarized current.
Then the polarized current exerts a torque on the magnetization
of the free layer, which can lead to steady precession. We
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FIG. 1. Left: Schematic representation of a nanopillar STNO. A
spin-polarized current can exert a torque on the magnetization of the
free layer and lead to steady precession. Right: A circuit array of
STNOs connected in series.

consider a circuit array of N identical STNOs coupled in series
[see Fig. 1(b)] and study the conditions to synchronize the
individual precessions. Our approach employs the dc current,
Idc, flowing in each STNO and the angle θh of the applied
magnetic field as the bifurcation parameters. No injection of
ac current is required. The all-to-all coupling of the network
of identical STNOs implies a complete permutation symmetry
which we exploit using equivariant bifurcation theory [20].

We search for fully synchronized periodic oscillations in
the network of N STNOs, first by finding implicit analytical
expressions for Hopf bifurcation curves, in (Idc,θh) space, at
a synchronized equilibrium that yield symmetry-preserving
in-phase oscillations (see Fig. 2). We calculate the stability of
the synchronization manifold near a synchronous equilibrium
and combine Hopf criticality results to determine regions of
parameter space where the fully synchronized periodic state
is asymptotically stable near bifurcation. More importantly,
the results are valid for networks of arbitrary size N . Normal
hyperbolicity [22,23] guarantees the synchronization manifold
is robust to small nonhomogeneities in the STNOs. Numerical
simulations show that synchronization is preserved to approx-
imately ±5% variations in anisotropy strength. Results are
illustrated with arrays of up to N = 1000 nano-oscillators
(see Fig. 3). The analysis also captures symmetry-breaking
patterns of oscillations, but we do not pursue the study of
those cases here. These patterns are described as “multiple
synchronization attractors” in Ref. [24].

II. LOCI OF STABLE SYNCHRONIZED OSCILLATIONS

The free-layer magnetization vector, m̂ = [m1,m2,m3]T ,
for an individual nanopillar oscillator is governed by
the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) [25–28]
equation

dm̂

dt
= −γ m̂ × −→

H eff + α m̂ × dm̂

dt
− γ μ Im̂ × (m̂ × M̂),

(1)
where γ is the gyromagnetic ratio, α is the Gilbert damping
term, μ contains material parameters, and �Heff is the effective
magnetic field. The term �Heff consists of an anisotropy
field, �Han = κ(m̂ · ê||)ê||, where κ is the strength of the
anisotropy (we set κ = 45 Oe in our simulations [21]) and e|| =
[sin θ|| cos φ||, sin θ|| sin φ||, cos θ||]T is a preferred direction of

FIG. 2. Top: Loci of Hopf bifurcations of synchronized oscilla-
tions. Bottom: Stability of synchronization manifold (red, supercriti-
cal Hopf and stable synchronization manifold; black, subcritical Hopf
and unstable synchronization manifold; and blue, supercritical Hopf
and unstable synchronization manifold). The combined results of
these two plots reveal the optimal region to synchronize a series array
of nanopillar STNOs: the first quadrant of parameter space (Idc,θh).
Parameters [21] are N1 = 1, N2 = 0, γ = 2.2×105 m A−1 s−1, α =
0.008, κ = 45 Oe, μ = 0.992, ha = 300 Oe, β�R = 5.95×10−4.

FIG. 3. Locking into synchronization with N = 1000 STNOs.
Start at high Idc and let the system lock into the common equilibrium.
Then sweep down Idc until the common equilibrium vanishes and
synchronized oscillations appear. Top inset: Zoom-in on the top part
of the oscillation showing a high level of synchronization between
all the STNOs. Bottom inset: Zoom-in on the set of random initial
conditions for the N = 1000 STNOs and evolution for small time
values showing rapid convergence to a synchronized equilibrium.
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magnetization. �Hd is a demagnetization field and we set �Hd =
−4πS0(N1m1x̂ + N2m2ŷ + N3m3ẑ), where S0 = 8400/4π is
the constant magnitude of the average magnetization vector
S(t) (in units of oersted) so that m̂ = S/S0, N1, N2, and
N3 are dimensionless constants satisfying N1 + N2 + N3 = 1,
and {x̂,ŷ,ẑ} are the orthonormal unit vectors. �Happl is an
applied magnetic field given by �Happl = ha [0, sin θh, cos θh]T ,
which we assume to lie on the yz plane at some angle θh

instead of the z axis, and note that ha is in units of oersted.
M̂ is the fixed-layer magnetization vector that defines the
spin-polarization direction of the current. In what follows we
assume θ|| = 0 so that e|| = [0,0,1], which produces an easy
axis in the z direction. Finally, we assume the direction of
polarization of the spin-polarized current to remain constant
along the z direction, i.e., M̂ = ẑ.

For an array of STNOs, coupling occurs if the input current
I is replaced by Ij . First, we assume the STNOs to be
identical. Later, we consider the effects of nonhomogeneities
as perturbations of the synchronization manifold. Applying
Kirchhoff’s laws we obtain the current through the j th STNO:

Ij = Idc

(
1 +

N∑
i=1

β�Ri cos θi(t)

)
, (2)

where Idc is a constant dc, β�Ri is a parameter that depends on
the resistances in the parallel and antiparallel magnetization
states, and θi(t) is the angle between the magnetization of
the fixed and free ferromagnetic layers. We substitute Eq. (2)
into Eq. (1) and, for convenience, we convert to complex
stereographic coordinates through the change of variables
zj = (mj1 + imj2)/(1 + mj3). Direct calculations yield

żj = γ (1 + iα)

1 + α2

[
iha3zj + ha2

2

(
1 + z2

j

) + iκ
1 − |zj |2
1 + |zj |2 zj − μIDCzj − μIDCβ�R

N∑
k=1

1 − |zk|2
1 + |zk|2 zj

− 4πS0

1 + |zj |2
(

N1 − N2

2

(
z3
j − z̄j

) +
(

1 − 3N1 + 3N2

2

)
(zj − zj |zj |2)

)]
, (3)

where ha2 = ha sin(θh) and ha3 = ha cos(θh).
For the special case N1 = N2 = 0.5, Eq. (3) is more

amenable to analysis, and thus we can find, via MAPLE, implicit
analytic expressions for the Hopf loci that yield synchronized
periodic states for arbitrary arrays of size N . Although the
synchronized periodic oscillation is unstable, we can still
use these analytical expressions to follow, via the automatic
numerical continuation software AUTO [29], the movement
of the Hopf loci as a function of the continuation parameter
s, where N1 = 0.5 + s and N2 = 0.5 − s. For s = 0.5, we
arrive at the physically relevant configuration of easy-plane
anisotropy or x-axis demagnetization. The Hopf loci curves for
s = 0.5 are shown in Fig. 2 (top) for various sizes of networks.
In addition, we determine the criticality of each Hopf loci point
through the Lyapunov constant formula [30] as well as the local
asymptotic stability of the synchronization manifold near the
Hopf point, via AUTO. This process yields, for s = 0.5, the red
Hopf loci curves located in the first quadrant of (Idc,θh) space
from which stable synchronized periodic solutions bifurcate
(see Fig. 2, bottom).

Observe that the location of these curves implies that
less current is required to synchronize larger arrays. This
observation suggests that synchronization in series arrays of
nanopillar STNOs depends more on the dynamical parameters
than on the coupling strength. Similar results have been
observed in studies of power grids, which can also be treated
as Kuramoto oscillator networks [31].

We wish to emphasize that the aim of this paper is strictly the
theoretical analysis to determine regions of existence of stable
synchronization. Effects of noise, such as linewidth reduction,
are briefly addressed in Sec. VII, but a detailed analysis is
ongoing and deferred to a future publication. Next we present
an outline of the analysis that was carried out to obtain the
implicit solutions of the Hopf loci.

III. HOPF BIFURCATION CURVES

This section summarizes the mathematical analysis of how
one can exploit the symmetry of the network to obtain the
main results shown in Fig. 2. Details of these calculations can
be found in Appendix.

Due to the all-to-all coupling that appears in Eq. (3) as
a consequence of Kirchhoff’s law, and the assumption of
identical STNOs, any permutation of the STNOs in the array
leaves the coupling term invariant; thus, the series array has
symmetry group SN , the group of all permutations of N

objects. To find analytical expressions for the Hopf loci of
synchronized solutions we study the linearized system near
the origin. Let z = (z1, . . . ,zN ) ∈ CN and denote Eq. (3) by
żj = fj (z). Since we assume all the STNOs to be identical, we
have f1 = f2 = · · · = fN . We rewrite the system of Eq. (3) in
abbreviated form

ż = f(z), (4)

where f = [f1, . . . ,fN ]T . Let z0 = (z0, . . . ,z0) be an equilib-
rium solution of Eq. (4) with isotropy subgroup SN [20]. Then
the linearization at z0 is given by

L :=

⎡⎢⎢⎢⎢⎣
A B · · · B

B
. . .

. . .
...

...
. . .

. . . B
B · · · B A

⎤⎥⎥⎥⎥⎦, (5)

where A = (dfj j
)z=z0 and B = (dfj k

)z=z0 are 2×2 Jacobian
matrices of fj , with j �= k. Using symmetry methods, we
block-diagonalize L to a form which respects symmetry-
invariant subspaces. Let P be the change-of-coordinates
matrix. Applying P to L, we obtain a block diagonalization of
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the linear part of the coupled STNO array,

L̃ := P −1LP = diag{A + (N − 1)B,A − B, . . . ,A − B}.
(6)

From the diagonal structure, the eigenvalues of the blocks
are also eigenvalues of L̃. It follows that Hopf bifurcations in
Eq. (4) occur if and only if A + (N − 1)B or A − B have purely
imaginary eigenvalues. In the former case, the eigenspace
associated with A + (N − 1)B is v0 = [v, . . . ,v]T and the
symmetry group SN acts trivially on v0. This corresponds
to a symmetry-preserving Hopf bifurcation in which all
STNOs oscillate in synchrony, i.e., the same wave form, same
amplitude, and same phase. In the latter case, the eigenvalues
have, generically, multiplicity N − 1 (from the N − 1 blocks
A − B) and the emerging patterns of oscillations arise via
symmetry-breaking Hopf bifurcations [20]. For instance, the
case reported in Ref. [24], in which two pairs of STNOs are
in phase with one another and half a period out-of-phase with
respect to each pair, corresponds to a Hopf symmetry-breaking
pattern that emerges from the A − B block with N = 4. A
complete description of the possible patterns of oscillations
that can appear for each value of N can be found via equivariant
Hopf bifurcation [20]. The emphasis of this paper is, however,
on the symmetry-preserving synchronization state.

Combining the equilibrium conditions with the trace
condition of purely imaginary eigenvalues for the block
A + (N − 1)B and using polar coordinates, z0 = r(cos θ +
i sin θ ), we get the following set of equations as a function of
(r, cos θ,Idc,θh):

Re(fj ) = 0

Im(fj ) = 0

Tr(A + (N − 1)B) = 0. (7)

To find the desired analytical expressions for the Hopf
boundary curves, we solve Eqs. (7) implicitly for the state
variables (r,θ ) as functions of the parameters Idc and θh. We
set N1 = N2 = 0.5 as a starting point to facilitate the analysis.
Through a series of substitutions we are able to reduce this
system of three equations with four unknowns, (r,θ,Idc,θh),
to a single expression with two variables (r,θh). To plot the
boundary curves, we first extract the coordinate points from
the solution sets, and back-substituting gives the actual point
values (Idc,θh) along the curves. Varying N we can then trace
the movement of the synchronous Hopf bifurcation curves.
We verify along the curves obtained that det(A − B) > 0
and det(A + (N − 1)B) > 0. The results just described are
then extended using AUTO to the case N1 = 1, N2 = N3 = 0
by continuing the Hopf loci curves in (Idc,θh) space using
N1 = 0.5 + s and N2 = 0.5 − s and letting the continuation
parameter s evolve from 0 to 0.5.

IV. STABILITY

The Hopf bifurcation can be supercritical or subcritical,
leading to stable or unstable synchronized oscillations, re-
spectively. Which one appears is determined by the Lyapunov
constant [30]. If the Lyapunov constant is negative, the Hopf
bifurcation is supercritical, whereas if it is positive, it leads to a
subcritical Hopf bifurcation. Now, the stability property of the

synchronization manifold is determined by the eigenvalues
transverse to the manifold. Those eigenvalues are given by
N − 1 copies of the eigenvalues of the block A − B and since
the synchronization manifold is computed near an equilibrium,
then normal hyperbolicity follows from the eigenvalues of the
A − B block. The actual calculations of the Lyapunov constant
and that of the transverse eigenvalues are technical and lengthy
and appear in Appendix under nonlinear analysis.

V. LOCKING INTO SYNCHRONIZATION

Numerical simulations indicate the common equilibrium
state of large arrays has a large basin of attraction for large
values of dc, about 15 mA. This suggests a possible strategy
to achieve synchronization in actual experiments: start the
experiments at high Idc current and let the system lock into
the common equilibrium. Then sweep down Idc until the
common equilibrium vanishes at a saddle-node bifurcation
and stable synchronized oscillations appear, created via Hopf
bifurcation from a coexisting common equilibrium found at
lower Idc values. This strategy was tested with nonhomo-
geneities introduced through variations in the anisotropy field
constant κ . As a consequence of the normal hyperbolicity of
the synchronization manifold, we expect the synchronization
state to be robust under small perturbations, such as the
nonhomogeneities in κ . Indeed, numerical simulations confirm
that the STNOs are able to synchronize with up to ±5%
variations in anisotropy strength if the values are chosen
randomly from a uniform distribution (see Fig. 3), and up
to ±4% with a Gaussian distribution.

VI. FREQUENCY RESPONSE

We now employ the fast Fourier transform (FFT) to
characterize the frequency response in networks of N non-
identical oscillators coupled in series. The plots in Fig. 4 show
the frequency of oscillation for N = 1, 10, 100, and 1000.
The observed “dips” for small values of Idc correspond to the
switch from out-of-plane oscillations to in-plane oscillations.
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FIG. 4. Frequency response of an array of N STNOs connected
in series. The observed dips in frequency correspond to switching
between out-of-plane and in-plane oscillations. Parameters are the
same as in Fig. 2, with θh = 3π/4.
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For θh = 0, the switch is characterized by a gluing bifurcation,
that is, a global bifurcation where a pair of homoclinic loops
(symmetrically related in this case) are connected to a saddle
equilibrium; see Ref. [32] for an example in the context of
STNOs. For θh = 3π/4, which is the value used in Fig. 4, the
switch involves two homoclinic bifurcations. In both cases, the
switch from out-of-plane to in-plane oscillations explains why
the frequency approaches 0 Hz. In general, lines terminating
at nonzero frequency correspond to known Hopf bifurcations,
and lines terminating at or near 0 Hz correspond to suspected
(not verified for every value of N ) homoclinic bifurcations.
These results suggest that the range of Idc values for which
oscillations are present increases with the number of STNOs;
however, the interval of possible frequencies decreases with
increased N .

VII. LINEWIDTH

We now consider (briefly) the effects of thermal noise on
the oscillations of the synchronized solutions by adding a
stochastic thermal field term �Hth to �Heff [33,34] in the original
LLGS Eq. (1), becoming

dm̂

dt
= −γ m̂ × (

−→
H eff + −→

H th) + α m̂ × dm̂

dt

− γ μ Im̂ × (m̂ × M̂), (8)

where
−→
H th = [hx(t),hy(t),hz(t)]T , in which hx(t), hy(t), and

hz(t) are Gaussian distributed random functions, uncorrelated,
of zero mean. The added term also carries to the complex
form of Eq. (3). Linewidth was computed as full width of
the power spectral decomposition (PSD) of the synchronized
oscillations, via FFT, at half maximum of main frequency in
the PSD. The computation was carried out as a function of
Idc, on the same interval of the frequency response of Fig. 4,
and for a few different values of array size N . The results are
shown in Fig. 5.

The spikes in linewidth that are observed near the end
points of the interval of synchronization are due to the
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FIG. 5. Linewidth. The observed dips in frequency correspond to
switching between out-of-plane and in-plane oscillations. Parameters
are the same as in Fig. 2, with θh = 3π/4.

oscillations having different characteristics. More specifically,
for small Idc the spikes are due to a change to out-of-plane
oscillations and for large Idc (and large arrays) the spikes
are due to loss of synchronization; i.e., for large arrays the
synchronized oscillations give way to out-of-phase oscillations
before eventually converging to an equilibrium point. But
for the most part of the interval of synchronization, the
linewidth remains relatively small. These results suggest,
again, that the synchronized solution is significantly robust
against the effects of noise. However, one would have to carry
out a complete analysis of the stochastic properties of the
coupled network equations as a function of coupling strength
and noise intensity, for instance. We also wish to point out
that temperature is assumed to be implicitly included in the
stochastic thermal field. Future experimental works should
provide a more explicit contribution of temperature variations
and material properties towards the stochastic field. Those
issues are important but they are beyond the scope of the
present work. Instead, our emphasis is, mainly, on finding
the conditions for the existence and stability of synchronized
oscillations in the deterministic system. We expect to carry out
the stochastic analysis in future work. In particular, it would be
interesting to obtain theoretical formulas (possibly asymptotic
for large N ) for the half linewidth for serially coupled STNOs
using the theory developed by Slavin and Tiberkevich [34].

VIII. DISCUSSION AND CONCLUSIONS

To date, the strongest microwave power that has been
produced by a single STNO is on the order of 0.28 μW [35].
As mentioned in the introduction, Grollier et al. [1] showed
that for an array of N = 10 electrically coupled STNOs, the
synchronized array microwave power output increases as N2.
Thus, if the N2 law holds in general, 1000 synchronized
nano-oscillators, as simulated in this paper, should produce
about 0.28 W. Communication systems, which require power
on the order of milliwatts, e.g., wireless devices, radar, air
traffic control, weather forecasting, and navigation systems,
would only require about 188 nano-oscillators.

In Ref. [32], we showed computationally the nature of the
bifurcations leading to these attractors and discovered that
changing the angle of the applied magnetization field could
enlarge the basin of attraction of the synchronized oscillations.
In this work we extended the bifurcation analysis of nanopillar-
based STNOs connected in series arrays of arbitrary size.
We use equivariant bifurcation theory to find the region of
existence and stability of the synchronization manifold for
which all STNOs oscillate with the same frequency, phase,
and amplitude. Our approach to achieve synchronization,
via non-Adlerian dynamics, employs only the dc flowing in
each STNO and the angle of the applied magnetic field.
The main results include implicit solutions of the Hopf loci
as a function of the dc and the applied magnetic field.
Normal hyperbolicity of the synchronization manifold implies
robustness of the synchronization state to small perturbations,
such as those caused by nonhomogeneities or imperfections
during the manufacturing process. Computer simulations with
nonidentical STNOs indicate robustness up to ±5% variations,
which is well within typical fabrication processes. It is our
hope that the theoretical results and simulations provided in
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this paper will help guide ongoing experiments. The STNOs
are currently fabricated using the 50-nm technology where
large arrays can be configured on a substrate. Each oscillator
is independently isolated and unconnected at the fabrication
stage. Once the devices are finished, the STNOs are bonded
and connected in a series array. The postfabrication bonding
and connection will afford us the opportunity to verify the
results established in this paper.
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APPENDIX: HOPF CURVES

This appendix describes the mathematical analysis that was
carried out to obtain the boundary curves that lead an array of
STNO into and out of synchronization, as is shown in Fig. 2 in
the main text. We start by considering again the array dynamics
in stereographic coordinates captured by Eq. (3) with the full
network in abbreviated form given by Eq. (4).

1. Linear analysis

Let z0 = (z0, . . . ,z0) be an equilibrium solution of Eq. (4)
with isotropy subgroup SN [20]. Then, as described in the text,
the linearization at z0 is given by

L :=

⎡⎢⎢⎢⎢⎣
A B · · · B

B
. . .

. . .
...

...
. . .

. . . B
B · · · B A

⎤⎥⎥⎥⎥⎦,

where A = (dfj j
)z=z0 and B = (dfj k

)z=z0 are 2×2 Jacobian
matrices of fj , with j �= k. To diagonalize L, we employ the
SN isotypic decomposition of the phase space CN , which is
given by

CN = V1 ⊕ CN,0,

where

V1 = {(z, . . . ,z)|z ∈ C},
CN,0 = {(z1, . . . ,zN ) ∈ CN | z1 + · · · + zN = 0}

are absolutely irreducible representations of SN [20]. Let

vj = [v,ζ j v,ζ 2j v, . . . ,ζ (N−1)j v]T ,

where ζ = exp (2πi/N ) and v ∈ R. The vector v0 is a basis
for V1 while the remaining vectors vj , j = 1, . . . ,N − 1, form
a basis for CN,0. Now let

P = [Re{v0},Im{v0},Re{v̄0},Im{v̄0}, . . . ,
Re{vN−1},Im{vN−1},Re{v̄N−1},Im{v̄N−1}]T .

Applying P to L, we obtain the following block diagonal-
ization of the linear part of the coupled STNO array:

L̃ := P −1LP = diag{A + (N − 1)B,A − B, . . . ,A − B}.
(A1)

From the diagonal structure, the eigenvalues of the blocks
are also eigenvalues of L̃. It follows that Hopf bifurcations in
Eq. (4) occur if and only if A + (N − 1)B or A − B have purely
imaginary eigenvalues. In the former case, the eigenspace
associated with A + (N − 1)B is

v0 = [v, . . . ,v]T ,

where the symmetry group SN acts trivially. This corresponds
to a symmetry-preserving Hopf bifurcation in which all
STNOs oscillate in synchrony, i.e., with the same wave form,
the same amplitude, and the same phase. In the latter case,
the eigenvalues have, generically, multiplicity N − 1 (from the
N − 1 blocks A − B) and the emerging patterns of oscillations
arise via symmetry-breaking Hopf bifurcations [20]. Com-
bining the equilibrium conditions with the trace condition of
purely imaginary eigenvalues for the block A + (N − 1)B (or
equivalently A − B for symmetry-breaking Hopf bifurcation)
and using polar coordinates, z0 = r(cos θ + i sin θ ), we get the
following set of equations as a function of (r, cos θ,Idc,θh):

Re(fj ) = 0,

Im(fj ) = 0,

Tr(A + (N − 1)B) = 0

(A2)

and require

Tr(A − B) < 0,

det(A − B) > 0,

det(A + (N − 1)B) > 0,

on the solution set of Eqs. (A2) to guarantee no eigenval-
ues with positive real parts. To find the desired analytical
expressions for the Hopf boundary curves, we solve Eqs. (A2)
implicitly for the state variables (r,θ ) as functions of the
parameters Idc and θh. We set N1 = N2 = 0.5 as a starting
point to facilitate analysis. Through a series of substitutions
we are able to reduce this system of three equations with
four unknowns, (r,θ,Idc,θh), to a single expression with two
variables (r,θh). Using MAPLE’s implicitplot function 16
times, curves are found in the (r,θh) domain to account for
all possible solutions. Combining results produces the desired
zero solution set of Eqs. (A2). To plot the Hopf curves, we
first extract the coordinate points from the solution sets, and
back-substituting gives the actual point values (Idc,θ ) along
the curves. Then we substitute these points to verify that
det(A − B) > 0 and det(A + (N − 1)B) > 0. By varying N

in the implicit solver, we are then able to trace the movement
of the synchronous Hopf bifurcation curves. As mentioned
above, the Hopf curves are extended using AUTO to the
case N1 = 1, N2 = N3 = 0, and those are the curves plotted
in Fig. 2.

2. Nonlinear analysis

We set again N1 = N2 = 0.5 as a starting point and assume
A + (N − 1)B has a pair of purely imaginary eigenvalues and
translate the equilibrium z0 of Eq. (4) to the origin using v =
z − z0, leading to

v̇ = f(v + z0),
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where fj is given by

fj = γ (1 + iα)

1 + α2

[
iha3(vj + z0) + ha2

2
(1 + (vj + z0)2)

+ iκ
1 − |vj + z0|2
1 + |vj + z0|2 (vj + z0) − μIdc(vj + z0)

−μIdcβ�R

N∑
k=1

1 − |vk + z0|2
1 + |vk + z0|2 (vj + z0)

+ 2πiS0

1 + |vj + z0|2 (vj + z0 − (vj + z0)|vj + z0|2)

]
.

(A3)

To determine criticality of the Hopf bifurcation we set
g(v,v) = (1 + |v + z0|2)−1 and Taylor expand Eq. (A3) at
(0,0) up to cubic order [30], which yields

v̇j = H1(vj ,vj ,v,v) + N (vj ,vj ,v,v), (A4)

where N (vj ,vj ,v,v) = H2(vj ,vj ,v,v) + H3(vj ,vj ,v,v) with
H� a homogeneous polynomial of degree �. That is,

H1(v,v) = a10vj + a01vj +
n∑

k=1

b10vk + b01vk,

H2(v,v) = a20v
2
j + a11|vj |2 + a02v

2
j +

n∑
k=1

b20v
2
k

+ b11|vk|2 + b02vk + c110vjvk + c101vjvk,

H3(v,v) = a30v
3
j + a21|vj |2vj + a12|vj |2vj + a03v

3
j

+
n∑

k=1

b30v
3
k + b21|vk|2vk + b12|vk|2vk + b03v

3
k

+ (
c120v

2
k + c111|vk|2 + c102v

2
k

)
vj .

For brevity, we list only a few of the coefficients:

b10τ = μIdcβ�R(2g(0,0)2|z0|2),

a10τ = iha3 + z0ha2 + iκg(0,0)2(1 − 2|z0|2 − |z0|4) − μIdc

−μIdcβ�Rg(0,0)2(N (1 − |z0|4) − 2|z0|2)

+ 2πiS0g(0,0)2(1 − 2|z0|2 − |z0|4) − b10τ,

b11τ = −2μIdcβ�Rz0(|z0|2 − 1)g(0,0)3,

c101τ = 2μIdcβ�Rz0g(0,0)2,

a11τ = −4z0g(0,0)3

(
iκ + i

2
− μIdcβ�R

)
− b11τ − c101τ,

where τ = (1 + α2)/(γ (1 + iα)).
We now rewrite Eq. (A4) using the same matrix P given

by the decomposition of CN = CN,0 ⊕
V1 into SN irreducible

representations and letting v = Pu, yielding

u̇ = L̃u + P T N(Pu,Pu),

where L̃ = P T LP are the linear terms given by
Eq. (A1) and the nonlinear terms are N(v,v) =
(N (v1,v1,v,v), . . . ,N (vN,vN,v,v))T .

An important observation is that the center manifold is V1 =
Fix(SN ) and so the flow-invariant center manifold is in fact a
subspace for Eq. (4). Thus we can compute the criticality of the
Hopf bifurcation directly from the equation for u̇1 evaluated
at u� = u� = 0 for � = 2, . . . ,N , which yields

u̇1 = G10u1 + G01u1 + G20u
2
1 + G11|u1|2 + G02u

2
1

+G30u
3
1 + G21|u1|2u1 + G12|u1|2u1 + G03u

3
1, (A5)

where

G10 = a10 + Nb10,

G01 = a01 + Nb01,

G20 = [a20 + N (b20 + c110)]/
√

N,

G11 = [a11 + N (b11 + c101)]/
√

N,

G02 = (a02 + Nb02)/
√

N,

G30 = [a30 +
√

N (b30 + c120)]/
√

N,

G21 = [a21 +
√

N (b21 + c111)]/
√

N,

G12 = [a12 +
√

N (b12 + c102)]/
√

N,

G03 = (a03 +
√

Nb03)/
√

N.

Now, at a Hopf bifurcation, Re(G10) = 0 and the eigenval-
ues are ±iρ with

ρ :=
√

|G10|2 − |G01|2.
We use the linear transformation

Q =
(

G01 iIm(G10) − iρ

−iIm(G10) + iρ G01

)
and the change of coordinates [w1,w̄1] = Q[u1,ū1]T to
diagonalize the linear part of Eq. (A5) to diag(iρ,−iρ). Let
H̃�(w1,w1) = Q−1H�(Q(w1,w1)T ) for � = 2,3, then

ẇ1 = iρw1 + ρ + Im(G10)

2G01ρ
(H̃2(w1,w1) + H̃3(w1,w1))

− i

2ρ
(H̃2(w1,w1) + H̃3(w1,w1)). (A6)

We denote by gij the coefficients of the quadratic and cubic
terms; i + j = � and � = 2,3. For the quadratic terms, the
coefficients are

g20 = [ρ + Im(G10)]

2G01ρ

[
4G20G

2
01+G11(−2G10G01i+2iG01ρ)

+G02
(−G2

10 + 2G10ρ − ρ2
)]

− i

2ρ

(
4G20G

2
01 + G11(−2G10G01i + 2iG01ρ)

+G02
(−G2

10 + 2G10ρ − ρ2
))

,

g11 = [ρ + Im(G10)]

2G01ρ

[
8G20G

2
01 + G11(−4G10G01i)

+G02
(−2G2

10 + 2ρ2
)]

− i

2ρ

(
8G20G

2
01 + G11(−4G10G01i)

+G02
(−2G2

10 + 2ρ2
))

,

144412-7



JAMES TURTLE et al. PHYSICAL REVIEW B 95, 144412 (2017)

g02 = [ρ + Im(G10)]

2G01ρ

[
4G20G

2
01 + G11(−2G10G01i − 2iG01)

+G02
(−G2

10 − 2G10ρ − ρ2
)]

− i

2ρ

(
4G20G

2
01 + G11(−2G10G01i − 2iG01)

+G02
(−G2

10 − 2G10ρ − ρ2
))

,

and the cubic coefficient is

g21 = [ρ + Im(G10)]

2G01ρ
W − i

2ρ
W,

where

W := {
12G30G

3
01 + G21

(−6G10G
2
01i + 2iG2

01ρ
)

+G12[4G10G01(−G10 + ρ) − 2G10(G10 − ρ)]

+ 2G01ρ(G10 + ρ)

+G03
[(

G2
10 − 2G10ρ + ρ2

)
(G10 + ρ)i

+ 2i(ρ2 − G2
10)(−G10 + ρ)

]}
.

3. Lyapunov constant and stability

Using the coefficients just listed above, we then obtain the
Lyapunov constant from the formula [30]

Re(c1) = Re

(
i

2ρ

(
g20g11 − 2|g11|2 − 1

3
|g02|2

)
+ g21

2

)
.

(A7)
The Hopf bifurcation is supercritical if Re(c1) < 0 and

subcritical if Re(c1) > 0. However, this condition only de-
termines the stability of the synchronized periodic solution
on the center manifold. Thus, we also need to consider
the eigenvalues transverse to the center manifold. Those
eigenvalues are given by N − 1 copies of the eigenvalues of
the block A − B with real parts 1

2 Tr(A − B) = Re(a10 − b10).
It follows that the synchronized oscillations are asymptotically
stable if Re(a10 − b10) < 0.

For N1 = N2 = 0.5, subcritical Hopf bifurcations are ob-
tained. We change the direction of demagnetization to N1 = 1,
N2 = N3 = 0 by numerical continuation using AUTO and
we obtain that Hopf bifurcation curves in the first quadrant
of (Idc,θh) space are supercritical and the synchronization
manifold is asymptotically stable near z0. This leads to
an asymptotically stable periodic solution near bifurcation.
See Fig. 2.
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