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Counter-rotating standing spin waves: A magneto-optical illusion
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We excite perpendicular standing spin waves by a laser pulse in a GaMnAsP ferromagnetic layer and detect
them using time-resolved magneto-optical effects. Quite counterintuitively, we find the first two excited modes
to be of opposite chirality. We show that this can only be explained by taking into account absorption and optical
phase shift inside the layer. This optical illusion is particularly strong in weakly absorbing layers. These results
provide a correct identification of spin waves modes, enabling a trustworthy estimation of their respective weight
as well as an unambiguous determination of the spin stiffness parameter.
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I. INTRODUCTION

Since pioneering work on nickel [1], laser-induced magne-
tization dynamics has been widely used to investigate ultrafast
magnetic processes not only in magnetic metals [2,3] but
also in magnetic semiconductors [4–9] and insulators [10,11],
exploring the fundamentals of light-spin interaction in view of
a full and ultrafast optical control of magnetic order.

Ultrashort pulses can trigger a wide variety of processes,
including ultrafast demagnetization [1], full magnetization
reversal [12], as well as coherent precession [2,4,10]. In mag-
netically ordered materials, ferro- and ferrimagnets, as well
as in antiferromagnets, the coherent magnetization dynamics
arises from collective spin excitations, spin waves (SW) (or
magnons, their quanta), which attract considerable interest
motivated by their possible use as information carriers in
magnonics applications [13,14]. Magnons are versatile excita-
tions since their dispersion curves, comprising magnetostatic
and exchange modes [15], can be tuned by a magnetic field
or by micro- or nanostructuring the material in any of its
dimensions [14]. For instance, perpendicular standing spin-
wave (PSSW) modes in a single nanometric layer of thickness
L with free boundary conditions (no surface anisotropy) will
have their wave vector quantized by an integer p (k = pπ/L),
and their energy by p2, proportionally to the spin stiffness D.

SWs can be studied in the frequency domain by, e.g.,
ferromagnetic resonance (FMR) experiments or Brillouin light
scattering as well as in the time domain by time-resolved laser
pump-probe experiments using magneto-optical effects. The
latter distinguish themselves in various ways from the former.
The coherent excitation of several PSSWs with different fre-
quencies, from the sub-GHz to the THz range, is made possible
by the wide frequency spectrum of the pulsed excitation
induced by the femtosecond pump laser pulses. In a single
time scan pump-probe experiments can detect several coherent
SW modes and provide their time period, their respective
phases, and their damping. Coherent control experiments using
two pump beams can be performed [16,17]. Furthermore the
possibility to fully reconstruct the magnetization trajectory
using two different magneto-optical effects [18,19] brings a
deep insight into magnetization dynamics.
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Whereas the excitation mechanism of SWs by optical,
acoustical, or magnetic field pulses [14,20–22], has been
thoroughly discussed, their optical detection has been much
less addressed [4,23]. In particular, in contrast to the cavity
FMR detection of SWs which was modeled a long time
ago [24], the respective amplitudes of optically detected
SWs remained unexplained [2,9,14,25]. In this paper, we
provide a comprehensive model to explain the large amplitude
of these nonuniform SWs that should not be detectable in
the framework of simple models [4]. We moreover present
intriguing experimental results of apparent different chiralities
for SWs of different parities. We show that they can only be
explained by our theoretical description of the magneto-optical
detection through the Kerr and Voigt effects that takes into
account the absorption depth and the optical phase shift inside
the layer. Important consequences are expected when the SW
wavelength (determined by the layer thickness) becomes a few
tenth of the wavelength of light in the material, λ/η, where η

is the refractive index. In particular, ignoring this effect can
lead to an erroneous determination of the SW stiffness, and
of the relative mode amplitude, a signature of the up-to-now
elusive magnon excitation mechanisms. We show that the
optical phase shift can lead to a striking and nonintuitive
optical effect in the detection of SWs: an apparent reversal
of the magnetization rotation direction for SWs of odd parity
with respect to the layer midplane. A key result of this paper
is that the optical phase shift provides a unique tool for the
determination of the SW mode number, or in other words its
parity.

II. SAMPLES AND EXPERIMENTAL SETUP

We study thin layers of the ferromagnetic semiconductor
alloy GaMnAsP. Most samples show only one PSSW mode
in the FMR spectra while one or two modes are optically
detected in the TRMO signal [8,26]. The results presented
here are obtained in an in-plane magnetized GaMnAsP layer
with thickness L = 50 nm and phosphorus concentration 4.3%
grown on a (001) GaAs substrate by molecular beam epitaxy
and annealed 1 hour at 250 ◦C. The effective Mn concentration
is 4% and the Curie temperature is 85 K. The anisotropy
constants were determined by FMR. Pump-probe experiments
are carried out at T = 12 K in zero external magnetic field
after a 60 mT in-plane initialization of the magnetization
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FIG. 1. (a) Reference frame. (b) Dependence of the TRMO
signal δβ on the probe beam linear polarization with respect to
the sample crystallographic axes. (c) Time dependence of δθexp and
δφexp. Inset: Fourier transform amplitude of δθexp. (d) Optically
detected magnetization trajectory. (e), (f), (g) Decomposition of
the experimental magnetization trajectory (d) into two oscillating
signals at frequencies f0 = 2.36 GHz and f1 = 3.90 GHz and a
nonoscillating signal, respectively.

direction. The laser source is a 76 MHz Ti:Sapphire laser at a
wavelength λ = 700 nm. To limit thermal effects, low pump
and probe fluence are used (1 μJ cm−2 and 0.4 μJ cm−2,
respectively) [27]. The pump beam is modulated at 50 kHz.
The pump-induced magnetization dynamics is detected as a
function of the pump-probe delay through the rotation of the
probe beam linear polarization detected by a balanced optical
diode bridge and a lock-in amplifier. The static rotation and
ellipticity signals are obtained with the probe beam only.

III. EXPERIMENTAL RESULTS

The existence of circular and linear magnetic birefrin-
gence/dichroism [28] makes the TRMO signal sensitive to
both the out-of-plane δθ and the in-plane δφ components
of the transient magnetization [Fig. 1(a)]. This allows for
the reconstruction of the magnetization trajectory using the
expected dependency of the rotation angle δβr on the probe
polarization angle β (Ref. [19] and Appendix):

δβexp
r (t) = Krδθexp(t) + 2Vrδφexp(t) cos 2(β − φ0)

−2Vr

δM(t)

M
sin 2(β − φ0), (1)

where Kr and Vr are the static Kerr and Voigt rotation
coefficients, M is the magnetization vector modulus, and φ0 is
the in-plane equilibrium angle of the magnetization.

Figure 1(b) shows the dependence of the TRMO signal
on the incident probe polarization. The signal is fitted

with u(t) + v(t) sin 2β + w(t) cos 2β from which we obtain
the δθexp(t) and δφexp(t) functions taking into account the
magnetization equilibrium angle φ0 (M close to [100]) as
shown in Fig. 1(c) (see Appendix). The plot of the trajectory,
δθexp(t) versus δφexp(t) shown in Fig. 1(d), reveals a very
complex dynamics that actually results from the contributions
of two SWs that clearly appear in δθexp(t) and δφexp(t) and
their Fourier transform [Fig. 1(c) and inset]. Let us note the
large ratio (≈ 0.6) of the amplitude of the second SW with
respect to the first one. δθexp(t) and δφexp(t) are fitted with
two damped oscillating signals and a sum of two exponentials
that reflects the shape of the laser-induced pulsed excitation
(τ1 = 0.03 ns, τ2 = 1 ns). Plotting separately the trajectory for
each SW (f0 = 2.36 GHz and f1 = 3.90 GHz) in Figs. 1(e)
and 1(f) results in a much clearer picture of the magnetization
precession. Surprisingly, the magnetization seems to rotate in
opposite directions for the two SWs. As we shall see below,
this is an “optical illusion” resulting from an optical phase shift
inside the layer. To demonstrate this, we first describe the SW
excitation by a laser pulse using the Landau-Lifshitz-Gilbert
(LLG) equation and appropriate boundary conditions at the
top and bottom interfaces. We then calculate the detected
magneto-optical signal using a multilayer and transfer matrix
model, which we show to be indispensable to recover the
observed SWs chiralities.

IV. MODEL

The SW space and time profiles are obtained by solving the
LLG equation within the small precession angle approxima-
tion for in-plane static magnetization:

˙δφ = γ

(
Fθθ δθ − D

∂2δθ

∂z2

)
+ αGδ̇θ

δ̇θ = −γ

(
Fφφ δφ − D

∂2δφ

∂z2
+ δBexc(z,t)

)
− αG

˙δφ. (2)

F is equal to E/M where E is the magnetic anisotropy
energy [29]. αG is the Gilbert damping. Fi,j = ∂2F

∂i∂j
are the

second derivatives of F with respect to the angles (i,j ). Since
it was shown that in thin (Ga,Mn)(As,P) layers the lowest
frequency PSSW is a nearly uniform mode, independent of
the layer thickness [8,9], the boundary conditions at z = 0
and z = L were chosen to ensure very weak surface pinning,
giving nearly flat δθ (z) and δφ(z) profiles at any t for this
mode (see Appendix Sec. 4). Under symmetric conditions
the p-PSSW eigenmodes (p = 0, 1, 2...) are even (odd) with
respect to the layer midplane for even (odd) p. δBexc(z,t)
is the optically induced effective field that launches the
magnetization precession. It arises from the in-plane rotation
of the magnetic easy axis induced by transient thermal effects
or by the optical spin-orbit torque [30]. δBexc(z,t) is taken
as a product of time and space functions f (t)g(z). f (t)
is chosen so that the calculated δθ (t) and δφ(t) match the
experimental ones. g(z) is taken as a Fourier series over
the PSSW eigenmodes (see Appendix Sec. 4). The depth
dependence of the magnetization trajectory for the p = 0, 1, 2
SW modes [with time dependence cos(2πfpt + φp)] is shown
in Figs. 2(a)–2(c), respectively. It is seen that inside the layer
the direction of rotation is the same for the three modes. For
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FIG. 2. (left) Magnetization trajectory in the depth of the ferromagnetic layer for the p = 0 (a), p = 1 (b), p = 2 (c) PSSW modes and
corresponding detected trajectory in (g), (h), (i) assuming that the optical signal would result from a depth-averaged amplitude. (right) (d),
(e), (f) Theoretical effective magnetization trajectory in the depth of the ferromagnetic layer taking into account the optical phase factor and
corresponding optically detected trajectory in (j), (k), (l). L = 50 nm, λ = 700 nm, and the other parameters are given in the Appendix.

modes 1 and 2 the magnetization vector experiences a π shift
at each node, but its direction of rotation does not change with
z [Figs. 2(b) and 2(c)].

The TRMO signal is then calculated using a multilayer
and transfer matrix model to obtain the Kerr and Voigt
rotation angle and ellipticity. The magnetic layer of thickness
L is divided in N sublayers with magnetization components
M(mx,y + δmx,y,z(zi,t)) (Fig. 4 in the Appendix). The calcu-
lation is performed for normal incidence of light along the z

direction and linear polarization making an angle β with the x

axis. The theoretical dynamical polarization rotation δβ th
r (t) is

obtained by taking the limit of an infinite number of sublayers
(N → ∞). δβ th

r (t) is the sum of the Kerr and Voigt rotation
angles, δβ th

r (t) = δβ th
Kr

(t) + δβ th
Vr

(t) cos 2(β − φ0) with:

δβ th
Kr

(t) = −4π

λ
Re

[
n2Q

n2 − 1

∫ L

0
ei 4πnz

λ δθ (z,t)dz

]

δβ th
Vr

(t) = 4π

λ
Im

[
n2B

(n2 − 1)

∫ L

0
ei 4πnz

λ δφ(z,t)dz

]
, (3)

where B = B1 + Q2. Q (∝ M) and B1 (∝ M2) are the
elements of the dielectric permittivity tensor describing the
Kerr and Voigt effects, respectively (see Appendix Sec. 1).
n = η + iκ is the layer mean complex refractive index and
ei 4πnz

λ = e−αzei
4πηz

λ with α = 4πκ
λ

the absorption coefficient.

V. DISCUSSION

The important result is the modulation of the spatial depen-
dence of the δθ (z,t) and δφ(z,t) magnetization components
by the optical phase factor ei

4πηz

λ that reflects the propagation
of light from the surface to the depth z and back. The phase
factor is damped by the e−αz absorption factor. Therefore, in
the case of strong absorption as in metallic layers, the TRMO
signal will be sensitive only to the SW amplitude very close
to the surface within the absorption depth. In the case of weak
absorption and layer thickness L comparable to a fraction of

the light wavelength inside the material λ/η, the optical phase
shift plays a crucial role. It is precisely the case of the sample
studied here where L ≈ λ/4η.

Actually, for static magnetization, the importance of a phase
shift factor that makes the magneto-optical effects sensitive to
the magnetization at a specific depth inside single or multiple
ferromagnetic layers was theoretically pointed out [31,32]
and evidenced experimentally in the 90s [33] and recently
in GaMnAs layers [34]. Similar ideas were at play when
conceiving magneto-optical sensors using magnetic quantum
wells in optical cavities [35] or magnetophotonic crystals with
enhanced Faraday rotation [36,37]. However, these ideas had
so far not been applied to the time-resolved optical detection
of PSSWs in ferromagnetic layers.

The dynamical rotation angles δβ th
Kr

(t) and δβ th
Vr

(t) are
calculated according to Eq. (3) with the real and imaginary
parts of Q and B extracted from the static rotation and
ellipticity using Eqs. (A11) and (A19) of the Appendix.
In order to compare the optically detected magnetization
trajectory and the theoretical one we define δθopt(z,t) and
δφopt(z,t) so that:

δβ th
r (t) = Kr〈δθopt〉z(t) + 2Vr〈δφopt〉z(t) cos 2(β − φ0) , (4)

where 〈· · · 〉z = (1/L)
∫ L

0 · · · (z)dz denotes the average value
over the layer thickness, Kr and Vr are given by Eqs. (A11)
and (A19) of the Appendix, respectively, and

δθopt(z,t) = − 1

Kr

Re

[
φoptnQ

(n2 − 1)
ei 4πnz

λ

]
δθ (z,t), (5)

δφopt(z,t) = 1

2Vr

Im

[
φoptnB

(n2 − 1)
ei 4πnz

λ

]
δφ(z,t) , (6)

with φopt = 4πnL/λ the complex optical phase. Figures 2(d)–
2(f) show the depth dependence of the (δφopt,δθopt) parametric
plot. The effect of the phase factor ei 4πnz

λ is clearly observed
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when compared to the (δφ,δθ ) trajectory shown in Figs. 2(a)–
2(c). Despite the difference between Figs. 2(a) and 2(d), for
a uniform SW mode the optically detected trajectory is the
same as the simple average of the magnetization dynamics
over the layer as expected from the expression of (Kr , V r)
[Eqs. (A11), (A19)] and the definition of (δθopt, δφopt). This is
indeed verified in Figs. 2(g)–2(j). The quasiuniform mode 0
is detected as rotating clockwise (CW) with time as dictated
by the sign of the gyromagnetic factor. An opposite rotation
direction can be expected for a nonuniform SW mode if the
sign of either 〈δθopt〉 or 〈δφopt〉 is changed with respect to that
of 〈δθ〉 or 〈δφ〉. This is indeed what is found for the p = 1
odd mode, which rotates counterclockwise (CCW) as shown
in Fig. 2(k). The p = 2 mode rotates CW like the p = 0 mode
[Fig. 2(l)].

In order to explain why odd modes may exhibit
an apparently inverted direction of rotation when de-
tected optically, we take a simplified model and calcu-
late the sign of the amplitude ratio δθopt(t)/δφopt(t). The
damped p-PSSW mode at frequency fp is expressed as
δθp(z,t)=aθ

p exp(−χpt) cos(2πfpt) cos(pπz/L), δφp(z,t)=
a

φ
p exp (−χpt) sin (2πfpt) cos (pπz/L). Neglecting absorp-

tion, the optical precession amplitudes normalized to the
excitation amplitudes aθ

p and a
φ
p are:

δθopt
p = −4π

Kr

η

η2 − 1

∫ �

0
Re[Q ei4πu] cos (pπu/�)du

δφopt
p = 4π

2Vr

η

η2 − 1

∫ �

0
Im[B ei4πu] cos (pπu/�)du , (7)

where � = L/(λ/η). It is straightforward to show that for
even p (even modes) the ratio rp = δθ

opt
p /δφ

opt
p is positive

and equal to 1. For odd modes, rp can on the contrary be
positive or negative depending on the layer thickness and the
ratios Bi/Br and Qi/Qr of the imaginary and real parts of B

and Q, respectively. It is moreover independent of p and is
given by:

rodd
p = −

(
Bi

Br
Cl + Sl

)(
Qi

Qr
Cl + Sl

)
(
Cl − Bi

Br
Sl

)(
Cl − Qi

Qr
Sl

) , (8)

with Cl = cos(2π�) and Sl = sin(2π�). Therefore the pos-
sibility to change the sign of only one of the δθ and δφ

components (rp < 0) and hence to observe a change of the
direction of rotation is achieved exclusively for the odd SW
modes. This result is not fully conserved when taking into
account absorption as can be seen in Fig. 3 where the direction
of rotation (CW, CCW) given from the sign of rp is plotted
in (dark/light) grayscale. However, given our parameters, r1 is
always negative for L in the range 26–72 nm encompassing
the layer thickness of our sample (50 nm) while r0 and r2 are
positive. This is an important result of this paper as it provides
a tool to identify PSSW modes.

This model also accounts very well for the large amplitude
ratio of the high/low frequency modes observed experimen-
tally. If the optically detected signal were proportional to the
average of δθ or δφ over the layer thickness [4], 〈δθ〉z and
〈δφ〉z, only the uniform PSSW mode should be detected in the
case of free boundary conditions, all the higher ones having
zero integral. This is illustrated in Figs. 2(h) and 2(i) where

FIG. 3. Theoretical optically detected direction of rotation of the
magnetization vector for p = 0, 1, and 2 PSSWs modes from the
amplitude ratio rp of δθopt

p and δφopt
p (see text). The dashed line

indicates the layer thickness. λ = 700 nm, η = 3.67, κ = 0.1.

the calculated (〈δθ〉,〈δθ〉) signal is zero for the odd p = 1
mode and very small for the p = 2 mode (it would be strictly
zero for zero surface anisotropy). In order to observe higher
modes a strong surface pinning would be necessary to give
them a nonzero integral. Even then, only the even modes
would be detectable since the odd ones would keep a zero
integral for symmetric boundary conditions [4]. Our results
definitely prove that the high-frequency mode is the first odd
mode. This reconciles results obtained by different groups
on the determination of the spin stiffness constant that differ
by a factor of 4 depending on whether the high-frequency
PSSW mode is identified as the p = 1 or p = 2 mode [8,26].
Furthermore it explains why the TRMO signal can show PSSW
modes that are not observed in FMR spectra.

VI. CONCLUSION

In this work we have highlighted the role of the optical
phase shift in the amplitude of optically detected SW modes.
This solves the mystery of counter-rotating SWs but, more
importantly, provides a definite assignment of SW mode
number, thereby enabling a reliable determination of the spin
stiffness constant with only two optically detected modes. The
comprehensive model developed here, which comprises both
Kerr and Voigt effects, provides useful guidelines [through
Eq. (3)] for optimizing the optical detection of SWs. It may
also explain varying SW amplitude ratios observed in different
layers/materials [2,26]. It can be straightforwardly extended to
longitudinal Kerr and Faraday effects, for which similar effects
of the complex optical phase are expected, and therefore be
applied to any kind of experimental geometry and magnetic
layer, whether ferro-, ferri-, or antiferromagnetic, from metals
to insulators.
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APPENDIX

1. Magneto-optical Kerr and Voigt effects

Following Ref. [38], the dielectric tensor for a magnetic
cubic crystal is taken as:

[εij ] = ε

⎛
⎜⎝

⎡
⎢⎣

1 −imzQ imyQ

imzQ 1 −imxQ

−imyQ imxQ 1

⎤
⎥⎦ +

⎡
⎢⎣

B1m
2
x B2mxmy B2mxmz

B2mxmy B1m
2
y B2mymz

B2mxmz B2mymz B1m
2
z

⎤
⎥⎦

⎞
⎟⎠, (A1)

with (x,y,z) the standard axes of the cubic lattice, Q the
Kerr coefficient (proportional to the saturation magnetization
M), and B1,B2 the Voigt coefficients (proportional to M2). Q

describes the magnetic circular birefringence and dichroism.
(B1,B2) describe the magnetic linear birefringence and dichro-
ism. The difference between B1 and B2 reflects the deviation
from the spherical symmetry. m = (mx,my,mz) is the unit
magnetization vector. ε is the background dielectric constant.
The corresponding complex refractive index will be defined
as n2 = (η + iκ)2 = ε. The sample plane is the (x,y) plane
[Fig. 4(a)]. We consider a light beam with normal incidence
along the z axis and linear polarization making an angle β

with the x axis. The rotation angle δβr and ellipticity δβe are
calculated from the ratio χ = by/bx of the reflected electric
field amplitudes as [39]:

tan 2δβr = 2Re(χ )/(1 − |χ |2) (A2)

sin 2δβe = 2Im(χ )/(1 + |χ |2). (A3)

For small rotation and ellipticity the above expressions reduce
to:

χ = tan β + (tan2 β + 1)(δβr + iδβe). (A4)

2. Kerr and Voigt rotation and ellipticity for a depth-dependent
magnetization

a. Multilayer and transfer matrix model

A multilayer and transfer matrix model is used to calculate
the Kerr and Voigt rotation angle and ellipticity in the case
of a depth-dependent magnetization. The magnetic layer of
total thickness L is divided in N sublayers with thickness
δz = L/N and magnetization unit vector m(zi) (Fig. 4).

FIG. 4. (a) Reference frame: light propagates along z, M is the
magnetization vector, β denotes the angle or the linear incident
polarization with the x axis. (b) Multilayer scheme.

In the first approach we neglect the Voigt effect (B1 = B2 =
0). We calculate the Kerr rotation and ellipticity assuming
a constant static magnetization in the (x,y) plane and a
depth-dependent dynamic magnetization component mz(zi) in
sublayer i. Because of the low frequency of magnetization pre-
cession (GHz) with respect to the light frequency we can regard
the problem as a quasistatic one. In each sublayer we consider
forward electromagnetic waves propagating as exp[−i(ωt −
kiz)] with an electric field amplitude Fi = (fix ,fiy ), an angular
frequency ω, and a wave vector ki = niω/c = 2πni/λ, where
λ is the light wavelength. The backward propagating waves
are denoted as Biexp[−i(ωt + kiz)] with Bi = (bix ,biy ). The
goal of the calculation is to obtain an expression for the
reflected amplitudes (b0x

,b0y
) from which the Kerr rotation

and ellipticity can then be derived. The propagation equation
is solved to obtain the eigenmodes and their corresponding
refractive indices. The amplitude of the incoming and reflected
waves in layer 0 (vacuum) are related to the amplitude of the
outgoing waves into the substrate (layer s) by:

⎛
⎜⎜⎜⎝

f0x

b0x

f0y

b0y

⎞
⎟⎟⎟⎠ =

(
N−1∏
i=0

Mi,i+1Pi+1

)
MNs

⎛
⎜⎜⎜⎝

fsx

0

fsy

0

⎞
⎟⎟⎟⎠. (A5)

The transfer matrices Mij relate the amplitudes of the
forward and backward propagating waves for the electric field
on each side of the interface between layer i and layer j

[Fig. 4(b)]:

Mij = 1

tij

⎛
⎜⎜⎜⎝

1 rij −i Qij i Qij

rij 1 i Qij −i Qij

i Qij −i Qij 1 rij

−i Qij i Qij rij 1

⎞
⎟⎟⎟⎠, (A6)

with Qij = (mz(zi) − mz(zj )) Q tji/4. The amplitude re-
flection and transmission coefficients are rij = (ni − nj )/
(ni + nj ) and tij = 2ni/(ni + nj ) with n0 = 1, ni = n for
i = 1 to N with n = η + iκ and nN+1 = ns for the substrate.
The amplitudes at the left and right interfaces of layer i are
related by the transfer matrix Pi [Fig. 4(b)]:

Pi =

⎛
⎜⎜⎝

e−iφi 0 0 0
0 eiφi 0 0
0 0 e−iφi 0
0 0 0 eiφi

⎞
⎟⎟⎠, (A7)
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with φi = niωδz/c = 2πniL/(Nλ). From the calculation of
the reflected waves the complex quantity δβK = δβKr

+ iδβKe

is obtained. Its expression to the first order in the Kerr
coefficient Q and layer-substrate reflexion coefficient rls =
(n − ns)/(n − ns) is:

δβK = 2nQ

n2 − 1
sin

(
2πnL

λN

)(
N∑

i=1

mz(zi)e
4iπnzi

λ

)

×
(

1 + 2(n2 + 1)ei 2πnL
λ rls

n2 − 1

)
. (A8)

In the limit N → ∞ it gives:

δβK = 4π

λ

n2Q

n2 − 1

(∫ L

0
mz(z)e

4iπnz
λ dz

)

×
(

1 + 2(n2 + 1)ei 2πnL
λ rls

n2 − 1

)
(A9)

The Kerr rotation angle δβKr
and ellipticity δβKe

can then be
calculated as δβKr

= Re[δβK ] and δβKe
= Im[δβK ].

In the following, for the sake of simplicity, we will
neglect the correction arising from the layer-substrate reflexion
coefficient rls , which for our samples will be negligible
(rls ≈ −8 × 10−3). Concerning the mz dependence of the Kerr
signal the result is then the same for a static magnetization
aligned along z or a static magnetization in the (x,y) plane
with a small dynamical component along z.

b. Static and dynamic Kerr rotation and ellipticity

In the case of spatially uniform magnetization component
mz = cos θ0, the static Kerr rotation δβs

Kr
and ellipticity δβs

Ke

are obtained from:

δβs
Kr

+ iδβs
Ke

= −(Kr + iKe) cos θ0 , with (A10)

Kr + i Ke = −i nQ

n2 − 1
(1 − eiφopt ) (A11)

= −i nQ

n2 − 1
(1 − e−αLeiϕopt ), (A12)

with φopt = 4πnL/λ the complex optical phase, ϕopt =
4πηL/λ, and α = 4πκ/λ the absorption coefficient. These
expressions can also be obtained from a standard two-layer
interference model [34,35]. For strong absorption (αL 	 1),
typically in thin metallic layers, or more generally for a mag-
netic layer much thicker than the absorption length, the Kerr
coefficients Kr and Ke for rotation and ellipticity, respectively,
take the form calculated for a semi-infinite magnetic medium
[39]: K∞

r = Im[ nQ

n2−1 ] and K∞
e = −Re[ nQ

n2−1 ]. For a thick layer
(L 	 α−1) but in the case of weak absorption (κ 
 η), these
Kerr coefficients can be written as:

K∞
r = (η2 − 1)η Qi − (η2 + 1)κ Qr

(η2 − 1)2

K∞
e = − (η2 − 1)η Qr + (η2 + 1)κ Qi

(η2 − 1)2
, (A13)

with Qr (Qi), the real (imaginary) part of Q.

For weak absorption, typically in semiconductors, and/or
for a thin layer with respect to the absorption length, the Kerr
coefficients are modulated by the optical phase factor ϕopt and
therefore depend on the layer thickness. Taking κ 
 η, one
obtains:

Kr = K∞
r + exp (−αL)(−K∞

r cos ϕopt + K∞
e sin ϕopt)

Ke = K∞
e − exp (−αL)(K∞

e cos ϕopt + K∞
r sin ϕopt).

(A14)

We see that the Kerr rotation and ellipticity coefficients
of a layer with finite thickness are expressed as a linear
combination of those for the infinitely thick layer. From the
experimental static Kerr rotation and ellipticity, the real and
imaginary parts of Q can be obtained using Eqs. (A13) and
(A14) provided the complex refractive index is known.

In the case of a static equilibrium magnetization in the
(x,y) plane (θ0 = π/2) and small time- and depth-dependent
magnetization along z (perpendicular standing spin waves for
instance) then mz = −δθ and the dynamic Kerr rotation and
ellipticity are written:

δβKr
(t) + i δβKe

(t) = −4π

λ

n2Q

n2 − 1

∫ L

0
ei 4πnz

λ δθ (z,t)dz.

(A15)

In the case of a z-independent (flat) profile δβKr
(t) and δβKe

(t)
are simply expressed as: δβKr

(t) = Krδθ (t) and δβKe
(t) =

Keδθ (t). In order to compare the dynamics of spin waves with
z-independent and z-dependent profiles we define an apparent
(optical) δθ whose average over the layer thickness L is:

〈δθopt〉z(t) = − 1

Kr

4πL

λ
Re

[
n2Q

n2 − 1

1

L

∫ L

0
ei 4πnz

λ δθ (z,t)dz

]
.

(A16)

c. Static and dynamic Voigt rotation and ellipticity

The magnetic linear birefringence and dichroism (Voigt
effect) can be calculated along the same lines. The static Voigt
rotation and ellipticity for a depth-independent magnetization
are:

δβs
Vr

+ i δβs
Ve

= − n

2(n2 − 1)
[(B1 + Q2) sin 2β cos 2φ0

−(B2+Q2) cos 2β sin 2φ0] sin2 θ0(1 − eiφopt ).

(A17)

In the following we will neglect the small deviation from the
spherical approximation arising from the cubic symmetry and
take B2 = B1. We then have

δβs
Vr

+ i δβs
Ve

= −(Vr + i Ve) sin2 θ0 sin 2(β − φ0) with
(A18)

Vr + i Ve = nB

2(n2 − 1)
(1 − eiφopt ), (A19)

where we have defined as Vr and Ve the Voigt coefficients
related to rotation and ellipticity, respectively, and we have
set B = B1 + Q2. For an in-plane spatially uniform static
equilibrium magnetization and a small δφ(z,t) component the
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Voigt rotation and ellipticity are expressed as:

δβVr
(t) + i δβVe

(t) =
(

− i 4π

λ

n2B

(n2 − 1)

∫ L

0
ei 4πnz

λ δφ(z,t)dz

)
× cos 2(β − φ0). (A20)

Given that in the case of a z-independent spin wave amplitude
δβVr

(t) is simply expressed as δβVr
(t) = 2Vrδφ(t) cos 2(β −

φ0), we also define an optical δφ by

〈δφopt〉z(t) = 1

2Vr

4πL

λ
Im

[
n2B

(n2 − 1)

1

L

∫ L

0
ei 4πnx

λ δφ(z,t)dz

]
.

(A21)

d. Total static and dynamic polarization rotation

To summarize, taking into account the Kerr and Voigt
effects the static polarization rotation is expressed as:

δβs
r = δβs

Kr
+ δβs

Vr

= −Kr cos θ0 − Vr sin2 θ0 sin 2(β − φ0) . (A22)

For in-plane static magnetization (θ0 = π/2) the dynamic
polarization rotation is the sum of the Kerr and Voigt
contributions and reads:

δβr (t) = δβ th
Kr

(t) + δβ th
Vr

(t) cos 2(β − φ0)

= 4π

λ

(
Re

[ −n2Q

n2 − 1

∫ L

0
ei 4πnz

λ δθ (z,t)dz

]

+ Im

[
n2B

2(n2−1)

∫ L

0
ei 4πnz

λ δφ(z,t)dz

]
cos 2(β−φ0)

)
= Kr〈δθopt〉z(t) + 2Vr〈δφopt〉z(t) cos 2(β − φ0).

(A23)

3. Magnetization precession from the magneto-optical signal

The experimental dynamic magneto-optical signal δβ
exp
r (t)

contains δθ exp(t) and δφexp(t) contributions but also a nonoscil-
lating δM(t) contribution from the dependence of Kr and Vr

on the modulus M of the magnetization (Q ∝ M and B ∝ M2)
[9]. The δφexp(t) and δM(t) contributions both depend on the
angle between the linear polarization and the magnetization
(β − φ0). We then have:

δβexp
r (t,β) = Krδθ

exp(t) + 2Vrδφ
exp(t) cos 2(β − φ0)

−2Vr

δM(t)

M
sin 2(β − φ0) . (A24)

The experimental signal δβ
exp
r (t,β) is then fitted by a com-

bination of polarization-dependent and independent terms:
u(t) + v(t) sin 2β + w(t) cos 2β. One then has δθ exp(t) =
u(t), δφexp(t) = [w(t) cos 2φ0 + v(t) sin 2φ0]/2Vr , δM(t)/
M = [w(t) sin 2φ0 − v(t) cos 2φ0]/2Vr . The φ0 angle that
provides a nonoscillating δM(t)/M signal (φ0 ≈ 0) is in good
agreement with the one calculated from the minimization of
the magnetic energy (φ0 = 5◦) (see below).

4. Optical excitation of spin waves

The magnetization precession is calculated by solving the
small-angle approximation of the Landau-Lifschitz-Gilbert
(LLG) equation for in-plane static magnetization.

˙δφ = γ

(
Fθθ δθ + Fθφ δφ − D

∂2δθ

∂z2

)
+ αGδ̇θ

δ̇θ = −γ

(
Fφθ δθ+Fφφ δφ−D

∂2δφ

∂z2
+δBexc(z,t)

)
−αG

˙δφ,

(A25)

with δθ and δφ the time-dependent parts of the polar and
azimuthal angles of the magnetization vector M, respectively
(Fig. 4). F is equal to E/M where E is the magnetic anisotropy
energy taken as [29]

E =
(

μ0M
2

2
− K2⊥

)
cos2 θ − K2‖ sin2 θ sin2

(π

4
− φ

)

−K4‖
8

sin4 θ (3 + cos 4φ) − K4⊥
2

cos4 θ, (A26)

where K2⊥, K2‖ are the uniaxial out-of-plane and in-plane
anisotropy constants, respectively, and K4⊥, K4‖ describe the
biaxial anisotropy. Fi,j = ∂2F

∂i∂j
are the second derivatives of

F with respect to the angles (i,j ). αG is the Gilbert damping
parameter. D = 2A/M is the spin stiffness constant with A the
exchange constant. δBexc(z,t) is the optically induced effective
field that launches the magnetization precession. It arises from
the transient in-plane change of the magnetic easy axis [30].
δBexc(z,t) is chosen as a product of time and space functions.
The transient time behavior of δBexc is chosen as a normalized
sum of rising and decaying exponentials with time constants
0.03 ns and 1 ns, respectively, so as to give the best match to
the experimental dynamical Kerr and Voigt signals and to be
consistent with the time behavior of δM(t). The spatial profile
of δBexc(z,t) is taken as a Fourier series over the eigenmodes
of the perpendicular standing spin waves with amplitude
apδB0

exc/p! for mode p. Equation (A25) is solved using
Rado-Weertman boundary conditions [8,40] with a very small
surface anisotropy energy Ks = −1 μJm−2 so as to match
the mode 0 experimental frequency with the one calculated
using the magnetic anisotropy constants. These anisotropy
constants and the magnetization used in the calculation are
determined by ferromagnetic resonance and superconducting
quantum interference device experiments, respectively. At
the working temperature T = 12 K, the anisotropy constants
are K2⊥ = −239 J m−3, K2‖ = 214 J m−3, K4⊥ = 977 J m−3,
K4‖ = 1210 J m−3, the magnetization is M = 38.4 kA m−1,
the g factor is g = 1.92 [41]. We take η = 3.67 [42],
κ = 0.1, Kr = −7 mrad, Ke = 7 mrad, Vr = −0.7 mrad,
Ve = 0.6 mrad. The best fit with experimental results is ob-
tained for values of the parameters A = 0.28 pJm−1, δB0

exc =
−0.34 mT,a0 = 1, |ap| = 1.58 for p > 0.
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