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Our research presents theoretical and numerical investigations of the dynamics and thermal transport properties
in various locally resonant nanophononic metamaterials. Using finite element analysis, we show that the
hybridization between the local resonances of the branched nanopillars and the bulk phonon modes of the
host nanostructure can alter the phonon dispersion spectrum and greatly reduce the group velocities, leading
to significant thermal conductivity reduction. According to the configuration of the periodic nanostructure, we
propose a cantilever-in-mass model to theoretically analyze and control the resonance hybridization band. The
influence of nanopillar number and size on the resonance hybridization frequency is systematically explored
by both theoretical analysis and numerical simulation. Excellent agreement between theoretical results and
numerical simulations reveals that the locally resonant frequencies can be accurately predicted by the proposed
analytical model. Remarkably, the thermal conductivity of the resonant branched nanostructure can be tailored
close to zero at the vicinity of local resonances with flat dispersion curves.
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I. INTRODUCTION

Tremendous effort has been devoted to control the heat
flow using nanostructured materials due to their promising
prospect and broad applications in energy conversion and flux
manipulation [1,2]. One of the pivotal quests in thermoelectric
material engineering is to reduce the thermal conductivity k by
man-made nanostructures [3]. The most common approach to
reducing the thermal conductivity is to enhance the phonon
scattering at boundaries and interfaces in nanostructured
materials such as superlattices, nanowires, or nanocomposites
[4-7]. By virtue of various phononic scattering elements
such as inclusions, holes, or interfaces incorporated into
semiconducting materials, reduction of the mean free path is
possible, which leads to lowering of the thermal conductivity.
However, an open challenge in thermoelectric materials is to
realize a significant reduction in thermal conductivity, but
meanwhile without negative effect on electronic transport.
Although superlattices and nanophononic crystals are robust
candidates to alter the thermal properties, unfortunately most
of these systems also have an undesired negative impact on the
electrical conductivity and Ohmic heating, which restrains the
thermoelectric performance [8—10].

Different from the common route, an emerging concept
of nanophononic metamaterials (NPMs) at the nanoscale has
been proposed recently to circumvent this restriction [11]. A
periodic array of nanopillars is built on the surface of a host
membrane. This configuration of branched nanowire makes the
nanopillars exhibit numerous local resonances. Hybridizing
with the bulk phonon modes of the host nanostructures,
the local resonances in NPMs directly modify the phonon
dispersion relation and reduce the average group velocity.
Without relying on the inclusion of phonon scattering, the
resonance hybridization in NPMs can reduce the thermal
conductivity, and meanwhile does not cause undesirable
obstruction to the electron transport and thermoelectric con-
version efficiency. Analogous anomalous resonance phonon
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reflection by periodic resonator chains in connection with
heat transport in branched nanowires has been previously
discussed by Kosevich [12]. Based on the phonon dispersion
spectrum obtained by the atomic-scale lattice dynamics (LD)
calculations, Davis and Hussein demonstrated that nanopil-
lared films reduce the thermal conductivity of a uniform
film by a factor of 2 [11]. Using molecular dynamics (MD)
simulations, Xiong et al. [9], Wei et al. [13], and Honarvar
and co-workers [10,14] also verified the thermal conductivity
reduction induced by the resonance hybridizations. Xiong et al.
[9] proposed a further combination of the local resonance
and scattering effects to slow down the thermal transport
at both low- and high-frequency ranges. Honarvar et al
[14] investigated the influence of size parameters on the
performance of thermal conductivity reduction induced by the
local resonance. Iskandar et al. [8] presented an experimental
verification of the change of thermodynamic properties of
NPMs induced by phonon hybridization effects.

These recent findings on NPMs are still at the preliminary
conceptual design stage. Little work about the analytical model
of this emerging nanostructure has been reported. In this
work, we report a theoretical model to analyze the resonance
hybridization mechanisms in various branched nanowires. The
dynamics and thermal transport properties in these locally
resonant nanostructures are systematically investigated. The
effect of nanopillar number and dimension on the resonance
hybridization is theoretically and numerically discussed where
excellent agreements between theoretical results and numer-
ical simulations are obtained at the low-frequency range.
Particularly we report on near-zero thermal coefficients at local
resonances with flat dispersion curves.

II. RESONANCE HYBRIDIZATION AND ANALYTICAL
MODEL

A. Phonon dispersion relations

To tailor the thermal conductivity in NPMs, we first
investigate the phonon dispersion spectra of various branched
nanowires using the finite element method (FEM). The sketch
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FIG. 1. (a) Side view of a two-side branched nanowire and (b) 3D FEM model after meshing. Phonon dispersions obtained by (c) MD
calculation [9] and (d) FEM simulation (green curves correspond to theoretical predictions). (e) Transmittance-frequency profile in a two-side

branched nanostructure consisting of ten unit cells.

of a two-side branched periodical nanowire is shown in
Fig. 1(a). For each periodic unit cell, the cross section of the
host nanowire is a square with an edge length of L,. The cross
section of each branched nanopillar is a square with a pillar
width a. The height of each nanopillar is L;. The thickness
of each unit cell is L,. The phonon dispersion for a two-side
branched silicon nanowire has been obtained by MD simula-
tions in Ref. [9] and is shown here in Fig. 1(c), where L, =
434nm, L, = 2.17nm, L;, = 3.26nm,anda = 1.085nm.
The phonon spectrum for a same-sized three-dimensional (3D)
continuum model of nanowire built by a commercial FEM
software, COMSOL MULTIPHYSICS, is calculated in this research
and depicted in Fig. 1(d). The boundary condition of Floquet
periodicity is applied to the periodical nanoscale unit cell to
evaluate the dispersion relations by the Bloch theorem [15].
The Young’s modulus £ = 90 GPa, Poisson’s ratiov = 0.26,
and density p = 5600kg/m? are utilized in the FEM model
[16]. A normalized frequency fy = L,/A is introduced to
evaluate the comparison between MD and FEM calculations
[see the right y axis in Fig. 1(e)]. A is the wavelength and is
expressed as A = ¢;/f, where ¢; = /G /p and G is the shear
modulus, G = E/[2(1 + v)].

It is shown from Figs. 1(c) and 1(d) that except for a flat
band around 0.17 THz, the phonon dispersion emerging from
the FEM calculations matches very well with that obtained by
the MD simulations in the low-frequency range (0-0.3 THz),
where the wavelength is much larger than the size of a
periodic unit cell. The first two main resonance hybridization
bands (around 0.06 and 0.26 THz) induced by the local
resonances of nanopillars are clearly observed in the phonon
spectra calculated by both sets of simulations. In addition, the

theoretical dispersion curves for this periodical nanostructure
are also calculated and depicted in Fig. 1(d) (solid green lines)
based on an equivalent spring mass-in-mass model, where
the material properties are utilized to obtain the equivalent
spring stiffness and mass. It is observed that the first resonance
hybridization band in the theoretical dispersion spectrum
agrees well with the numerical calculations, but the flat band
around 0.17 THz is not predicted by theoretical analysis, either.
The details relevant to the theoretical analysis and various flat
bands will be discussed in the following section.

To explore the effect of resonance hybridization on the
phonon transport, a finite-size nanostructure consisting of
ten two-side branched unit cells is constructed and the
FEM model after meshing is illustrated in Fig. 1(b). A
low-reflecting boundary condition is applied to one end
surface of this nanostructure to avoid the wave reflection
while the other end surface is input by a time harmonic
excitation at a sweep frequency range. The output dynamic
response at the surface next to the low-reflecting boundary
is captured, and the transmittances along the input direction
at different frequencies are calculated by the ratio of output
displacement to input displacement. As distinctly shown in
Fig. 1(e), the transmittance has two obvious band gaps at the
frequency ranges of resonance hybridization. The blocking
effect of resonance hybridization on the phonon transport is
verified.

B. Cantilever-in-mass model

To theoretically investigate the resonance hybridization,
we propose a cantilever-in-mass model to describe the one-
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FIG. 2. (a) Equivalent cantilever-in-mass and mass-in-mass models for a one-side branched nanowire. (b) Deflection distribution of a
cantilever beam and a discrete beam-tip mass model. (c) 3D FEM models, (d) theoretical normalized mass-frequency profiles and (e) numerical
transmittance-frequency profiles for various branched nanostructures. (f) An enlarged view of the transmittance band gap.

side branched nanowire. As illustrated in Fig. 2(a), the host
nanowire can be represented by an outer mass of m;, and
the side branched nanopillar can be enacted by a massless
cantilever beam with an effective length of L. and an inner
mass of mj. The values of m; and m, can be calculated by
the density and relevant volume; i.e., m; = pLgL pand my =
pa’L;,. We can further transform this cantilever-in-mass model
into a classic spring mass-in-mass model. In the cantilever-in-
mass model depicted in Fig. 2(a), we use Euler-Bernoulli beam
theory to calculate the deflection of the beam [17]. Then, based
on the deflection, we derive the equivalent spring stiffness of
the cantilever beam as k = 3E I, /L3, where I is the moment
of inertia about the bending z axis or y axis, and I, = a*/12
[18]. On the basis of the spring mass-in-mass model [see
Fig. 2(a)], we can obtain the equations of the motion for the
outer and inner “masses” under a longitudinal harmonic force
excitation as

d2M1
F +k(uy — uy) —mj—- =0,
+ k(uz —u1) —my 2
d*u
Ky =) —my— 5" =0, )

Substituting F(t) = Foe ' andu;(t) = Uje™*", j = 1,2
into Eq. (1), we obtain

wznl
Fo+ <m1+—22 22>w2U1 =0, @
w; —

where w is the input frequency and w, = +/k/ms is the locally
resonant frequency of the internal resonator [19,20]. If the unit
cell of a one-side branched nanowire is further represented by
a single effective mass mesr;, we can calculate the effective
mass using Eq. (2) as

2

wim

112

Mty =my + —=——. (3
0} —w

Using the equivalent spring stiffness and mass of the can-
tilever beam, we can describe the locally resonant frequency
wy as

Ea?

— “4)
ALz L

Wy =

The effective length L.g can be approximately estimated
based on the continuum beam theory and dynamic analysis
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[17,21]. Considering a uniform cantilever beam subjected to
a point load P at the free end, as depicted in Fig. 2(b), the
deflection distribution along the beam, Y (x), is given as

Px? Yinax

BLy—x) = —=@Lpx* = x%),  (5)

Y =
) 6EI, 2L;

where Y.« is the deflection at the free end and Y.« =
PL,31 J/(3EI,). The length of the beam is L, and the width of the
square cross section is a. Using Eq. (5), the velocity variation
for the small element dx at distance x [see the shaded region
in Fig. 2(b)] is given by

(3th2 - x3) . Vinax 2 3
ZLZ Yiax = 2L2 BLpx™ —x7). (6)

V(x) =

The maximum value for the kinetic energy of the small
element can be obtained as

1 v, 2
_ 2 max 2 3
dK = Epa |:2L,3; (BLpx” —x )] dx. @)

For the whole uniform beam, the maximum kinetic energy
is expressed as

1 rh 2| Vmax 2 3 ?
Ko = = a‘l —BLyx“ —x dx
/o Iy [2L3 (BLy )}
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When a cantilever beam is subjected to free vibration, the
system can be considered as a discrete system as illustrated
in Fig. 2(b). The beam is treated as a massless cantilever
beam with the same length of L, but the whole beam mass
is concentrated as an equivalent tip mass of my, at the free
end. For this equivalent system, the maximum kinetic energy
equation is written as

Kinax = %mZE Vix- ©

According to Egs. (8) and (9), the equivalent tip mass is
approximately calculated as m,, = 0.24m,, and the natural
frequency of the discrete system can be described as w;, =

\/ 1.06 Ea? /(Lfl,oLh). Comparing the natural frequency with
Eq. (4), the effective length L.y in the cantilever-in-mass
model can be estimated as Leg = 0.62L,.

Similarly, for the two-side branched and four-side branched
nanowires as shown in Fig. 2(c), we can utilize analogous
cantilever-in-mass and mass-in-mass models to deduce the
equations of motion. For two-side branched nanowire,

2wim
Fo+ <ml +wz#)w2w =0. (10)

— 2
5 w

For four-side branched nanowire,

4 2
Fo+ <m1 —|—2w;mzz)w2U1 —0. (11
s — W

2
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The relevant effective mass meg, and megr4 for the two-side
branched and four-side branched nanowires can be obtained,
respectively, as

2w2m 4ewim

2102 2112

Mefiy =M + ————, Mefig =My + ———.  (12)
w5 — w5 —

Using Eqgs. (3) and (12), we can plot the effective mass-
frequency profiles for various side branched nanowires, as
presented in Fig. 2(d). The total mass my = m; + m, and
the frequency ratio w/w, are utilized for normalization. It is
clearly shown that the effective mass is negative when the
input frequency is close to the locally resonant frequency
of the cantilever beam. The frequency band of the negative
mass (shaded region) is enlarged with the increase of side
branched nanopillars. The relevant transmittances for various
side branched nanostructures consisting of ten unit cells
[see Fig. 2(c)] are numerically calculated and compared in
Fig. 2(e). The sweep frequency is normalized by the theoretical
resonance frequency of w,. Compared with the no-side branch
nanowire, side branched nanopillars lead to a band gap around
the theoretical locally resonant frequency of w,, which blocks
the phonon transport. An enlarged view of the transmittance
band gap is shown in Fig. 2(f). It is clearly observed that
the band gap becomes wider and deeper when we increase
the number of branches, which matches very well with the
theoretical prediction.

It is noticed in Fig. 2(f) that the predicted locally resonant
frequency of w; is a little higher than the numerical band
gap. There are two main reasons for this overestimation.
Firstly, the length-to-width ratio of the nanopillars discussed
in this research is relatively small, where L;/a < 10. The
continuum beam theory used here is more suitable for a thin
and long beam. Secondly, the boundary condition for the
clamped end of the nanopillar is considered as a completely
clamped connection in the proposed cantilever-in-mass model.
However, the host nanostructure in the numerical simulations
is not a completely fixed “ground.” The slight simplification on
the boundary condition may also overestimate the resonance
frequencies. Therefore, to enhance the accuracy, a weight
factor ¢ (0 < ¢ < 0.05) is introduced and the effective
length is further expressed as Legs = [0.62/(1 — ¢ Y2]1L),. In the
following discussion, ¢ is taken as 0.035.

III. RESULTS AND DISCUSSION

A. Control of resonance hybridization

To more deeply understand the mechanisms of phonon
resonance hybridization, we calculated the phonon dispersion
spectra of different kinds of side branched structures. The com-
parisons of dispersion relations between host nanowire and
various side branched nanowires are exhibited in Figs. 3(a)—
3(d), respectively. The height of the branched nanopillar
used here is L, = 3nm. The comparison illustrates that the
periodical nanopillars built on the surface of the host structure
modify the original phonon spectrum and generate a series of
flat resonant hybridization bands. We also find that adding
additional branches enlarges the number of flat hybridiza-
tion bands. The resonant modes at several representative
frequencies are snapshot to visually present the coupling and
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FIG. 3. (a) Phonon dispersion in the frequency range [0, 0.5] THz for (a) the host nanostructure (b) one-side, (c) two-side, and (d) four-side
branched nanostructures. Various resonance modes at the frequencies of I-VI for (e) a two-side and (f) a four-side branched nanowire.

hybridization effect between the host and branched structures.
We chose six representative frequencies within or outside
the resonance hybridization bands [see Fig. 3(c), I-VI], and
captured the relevant resonance modes for the two-side and
four-side branched nanowires, as illustrated in Figs. 3(e)
and 3(f), respectively. Below the hybridization bands (I and
II), the resonance modes resemble a propagating phononic
response. However, within the flat bands (III and IV), the
branched nanopillars exhibit distinct resonant profiles whereas
the host wire does not confine any vibrations. In other words,
the phononic modes are localized within the nanopillars alone.
Strong resonance coupling and hybridization between host
structure and nanopillars occur around the flat bands and result
in a distinct reduction in group velocity.

In addition, the vibration modes at the other two higher-
order flat bands (V and VI) are also discussed. The corre-
sponding resonance mode at point V shows a distinct localized
twisting motion that we have not been able to capture by
the theoretical analysis and MD calculations as we discussed
in Figs. 1(c) and 2(d). We understand this by the superior
degrees of freedom of mechanical motions in FEM 3D mod-
eling as compared to simulations based on MD calculations
and lumped equivalent models. As visualized in Figs. 3(e)
and 3(f), the resonance hybridization around the frequency VI
is induced by the second bending mode of the nanopillars.
The massless beam and lumped mass model used in this
research is a single degree of freedom (DOF) system. It is
therefore not adequate to predict the torsional and higher-order
transverse vibration. A FEM-based multiple-DOF system [22]
or the dynamic Euler-Lagrange equations [21] for a cantilever

beam can be further applied for the approximate estimation
of the higher-order resonance hybridization bands (see the
Appendix).

A series of models with various nanopillar dimensions is
further investigated to discuss the effect of geometric tuning
of the resonance hybridization band, and also to verify the
reliability of the theoretical model. As shown in Fig. 4,
we predict the change of the first hybridization band with
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FIG. 4. Comparisons between theoretical and numerical reso-
nance hybridization frequencies for branched nanostructures with
different dimensions of nanopillars.
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FIG. 5. Comparison of thermal conductivities as a function of frequency for a host nanowire and (a) branched nanowires with various

heights of L, and (b) various pillar widths of a.

the pillar height L, and the pillar width a. We observe
from Fig. 4 that the locally resonant frequency of the first
hybridization band downshifts with the increase of nanopillar
height. As the expression for the resonance suggests, enlarging
the pillar width a also increases the resonance frequency.
To verify the theoretical results, we numerically calculated
the hybridization bands using a series of FEM models and
compared them with theoretical values in Fig. 4. It is clearly
illustrated that numerical results agree very well with the
theoretical analysis, especially at the low-frequency range.
It is, therefore, demonstrated that the theoretical model is
very effective to analyze the locally resonant frequency of the
branched nanopillars. The relevant resonance hybridization
bands can be theoretically controlled and modified by the
proposed cantilever-in-mass model.

B. Control of thermal conductivity

To offer direct evidence to the influence of resonance
hybridization on the reduction of the thermal conductivity, we
calculate and compare the thermal conductivities of the host
and branched nanostructures using the Callaway-Holland (CH)
model [23,24], where thermal conductivity 7, is expressed as

1

T. =
¢ L,m

w/Le

[ cterniprterde a3
0

Y

where C, vg, 7, k, and y are specific heat, group velocity,
scattering time, wave number, and branch index, respectively.
The specific heat is written as C(x,y) = kg[hiw(k,y)/kgT1?

f(k,y), where kg, h, T, and w are the Boltz-
mann constant, reduced Planck’s constant, tempera-
ture, and the frequency, respectively, and f(k,y) =

ehowVlksT fohow)ksT _ 11> The group velocity can be
calculated by the derivation of the dispersion curve as
vg(k,y) = dw(k,y)/dk. The scattering time is expressed
as T(i,y) = [tule,y) ™ + 10e,y) ™" + 15k, y) 17", where
Ty is umklapp scattering, 7; impurity scattering, and tp

boundary scattering, which can be obtained by 7y (x,y)~! =
AT (k,)e BT 1;(k,y)™" = Dw*(x,y), and t5(k,y)"! =
|vg|/L, respectively. L is the effective boundary scattering
length, which is defined as L = L, /(1 — p). p is a surface
specularity parameter between O and 1. In this research,
p=0kp=1381 x 1073 JK!, i =1.055 x 1073*Js, and
T =300 K. The parameters A, B, and D are obtained
empirically as A =4.14 x 1075 s/K, B=899 K, D =
1.32 x 107 52 [11].

We compute Eq. (13) by evaluating the group velocity
spectrally out of the dispersion relations. In order to normalize
T., we first compute for the case of a bare unstructured
nanowire, L, = 0, and use its maximal thermal conductivity
as a reference for NPMs containing various heights L, [see
Fig. 5(a)]. The results observed from the comparison of
thermal conductivities are remarkable thanks to the phononic
localized modes of zero group velocity. It is concluded that
compared with the host nanowire, the thermal conductivities
of the branched nanostructures are close to zero around the
flat resonance hybridization bands. These extraordinary low-
thermal-conductivity bands, which depend on the dimensions
of the branched nanopillars, can be controlled and modified as
predicted by the theoretical model proposed in this work. We
also explore how the nanopillar width influences the resonance
hybridization bands in Fig. 5(b). As expected, when increasing
the pillar width a we also increase the resonance hybridization
frequency. The thermal conductivities around these bands are
also close to zero. It is evident that the existence of resonance
hybridizations has an inherent contribution to the reduction
in thermal conductivities that can be tailored through the
geometrical parameters of the NPMs as suggested by the
theoretical prediction.

IV. CONCLUSIONS

In conclusion, we presented a theoretical and numerical
investigation of the thermal conductivity of locally resonant
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NPMs. For wavelengths that are larger than the geometrical
parameters of the structured nanowire we show that MD com-
putations can be reproduced by FEM calculations that compare
qualitatively well to theoretical predictions. We demonstrated
for the first time a theoretical cantilever-in-mass model to
effectively analyze and control the resonance hybridization
bands in side branched NPMs. On the basis of the proposed
analytical model, the resonance frequency can be accurately
predicted in the low-frequency range. The analytical insight
that we acquired confirms that the hybridized local resonances
of the branched nanopillars are a powerful approach to reduce
the thermal conductivity to extremely low values. By modify-
ing the resonator size the thermal conductivity of the NPMs
can be further theoretically manipulated and tailored, which
could be potentially significant in thermoelectric conversion.
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APPENDIX: HIGHER-ORDER RESONANCE
HYBRIDIZATION

The higher-order flat bands in the phonon dispersion spectra
of side branched NPMs are mainly induced by the higher-order
local resonance of the nanopillars. We can apply dynamic
Euler-Lagrange equations to approximately estimate these flat

PHYSICAL REVIEW B 95, 144305 (2017)

frequency bands. For a dynamic Euler-Bernoulli beam with
a length of Lj, and a square cross section (width of a), the
following differential equation can be derived according to the
Euler-Lagrange equation [21]:
d*yY (x) 4 . pata?
o AT =0 p =5
The deflection distribution along the beam, Y(x),
can be generally written as Y(x) = ¢; sin Bx + ¢ cos Bx +
c3 sinh Bx 4 ¢4 cosh fx and ¢ 34 are constant coefficients.
For a cantilever beam, the boundary conditions are readily
obtained as

(AD)

dY(x)
Y(0) =0, =0,
dx |,_
d2Y (x)
-0, (A2)
dx? =L,
a3y
@y
dx3 =L,

Using Eqs. (Al) and (A2), the frequency equation is
derived as

cosB,LycoshB, L, +1=0, n=1,2,3,.... (A3)

The first natural frequency of a cantilever beam, wp;,
can be calculated according to B;Lj, and the higher-order
natural frequency can be approximately estimated by wpy =

(ﬂNLh)Z‘ / Eaz/(IZpLﬁ), N > 1.However, the present NPM is
made out of nanopillars of small length-to-width ratio which
currently only gives a rough estimation of the hybridization
modes at high frequencies. More efforts to acquire a better
estimation of the higher-order modes are currently under way.
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