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Non-Hermitian acoustic metamaterials: Role of exceptional points in sound absorption
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Effective non-Hermitian Hamiltonians are obtained to describe coherent perfect absorbing and lasing boundary
conditions. PT symmetry of the Hamiltonians enables us to design configurations which perfectly absorb at
multiple frequencies. Broadened and flat perfect absorption is predicted at the exceptional point of PT -symmetry
breaking while, for a particular case, absorption is enhanced with the use of gain. The aforementioned phenomena
are illustrated for acoustic scattering through Helmholtz resonators revealing how tailoring the non-Hermiticity
of acoustic metamaterials leads to novel mechanisms for enhanced absorption.
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I. INTRODUCTION

In both classical and quantum physics, non-Hermitian
Hamiltonians are being used to describe open systems [1]
and systems featuring energy dissipation and/or gain [2,3].
Most of the interesting phenomena in non-Hermitian systems
manifest close to the exceptional points (EPs) which are spec-
tral singularities appearing when two eigenmodes coalesce
[2–4]. A particular class of non-Hermitian systems, featuring
balanced gain and loss, are calledPT -symmetric [5], and have
attracted considerable attention. Such systems suggest possible
generalization of quantum mechanics and are extensively
studied in diverse areas of physics including Bose-Einstein
condensates [6,7], optomechanics [8], acoustics [9,10], and
mostly in optics [11–19]. Operating around the EPs of PT -
symmetric scattering systems has lead to the observation of
extraordinary wave effects such as unidirectional invisibil-
ity [12,20,21], optical isolation [16,22], unidirectional perfect
absorption [23], the simultaneous appearance of coherent
perfect absorption (CPA) and lasing [24–28], nonreciprocal
light propagation [14], or asymmetric wave transport [29].

Beyond PT -symmetric systems, non-Hermitian configu-
rations featuring unequal amount of loss and gain (or only
losses) also exhibit interesting phenomena, closely related with
the existence of EPs. These include CPA [24], unidirectional
near total light absorption [30], chiral modes and directional
lasing [31], and mode switching [32]. In this context, effective
non-Hermitian Hamiltonians associated with the scattering
matrix have been obtained to describe CPA, both in mi-
crowave [33] and polaritonic [34,35] systems.

Especially in acoustics, the phenomenon of perfect absorp-
tion has attracted great attention the last years due to its direct
applications to numerous noise reduction problems. Many
solutions have been proposed in the low frequency regime
based on subwavelength metamaterial designs, by critically
coupling [36] resonant scatterers to the waveguide, i.e., by
balancing the energy leakage and the internal losses of the res-
onances. Such studies include the use of membranes [37–41],
the concept of slow sound [42,43], and Helmholtz resonators
both in the linear [44–47] and nonlinear [48] regimes.

Here, we show that by properly tuning the non-Hermiticity
of acoustic metamaterials and exploiting the appearance of
EPs is a novel way to control sound absorption. The non-
Hermiticity of acoustic metamaterials has only been exploited
very recently. Specifically, in Ref. [49] a closed system of

resonant cavities was used to study higher order EPs, in
Ref. [50] an open lossy acoustic system is used to achieve high
quality acoustic hologram, and in Ref. [51] the mode coupling
around EPs is studied for a lined waveguide. In this work we
derive, directly from the acoustic equations, a coupled mode
theory (CMT) for the scattering of low frequency waves, in
a waveguide side loaded by N Helmholtz resonators (HR) at
the same position. In Sec. II, we employ the CMT and obtain
two different effective Hamiltonians corresponding to different
boundary conditions of the scattering problem: no outgoing
waves (for CPA) and no incident waves (for laser). For no
outgoing waves, the eigenvalues of the effective Hamiltonian
yield the particular frequencies where CPA is obtained, which
are generally complex since the matrix is non-Hermitian. For
the case of two HRs we show how the avoided crossings around
an EP lead to the appearance of CPA for real frequencies. In
Sec. III, PT symmetry of the effective Hamiltonian is found
to provide the necessary condition for multiple CPAs. For
the case of two resonators the conditions for PT symmetry
coincide with the critical coupling (CC) of each resonator with
the waveguide. Surprisingly, in the case of three HRs, critical
coupling of each resonator does not lead to multiple CPAs.
PT symmetry however can be established for three resonators,
leading to three perfectly absorbed frequencies obtained by the
aid of acoustic gain. At the EPs separating the PT -unbroken
and broken phases, we observe flattened absorption, which
is analytically approximated and is found to be stronger for
higher order EPs.

II. NON-HERMITIAN EFFECTIVE HAMILTONIANS

A. Coupled mode theory for N resonators

We consider the scattering of plane waves by N Helmholtz
resonators, side loaded to an acoustic waveguide at x0 [see
Fig. (1)], which without loss of generality we assume to be
x0 = 0. The HRs can be considered as point scatterers and
are characterized by a resonance frequency ωi , internal losses
Ri , and external coupling strengths �i (i = 1,2 . . . N ). The
conventional way to study the system is by using the scattering
matrix S which relates the incident acoustic pressure p+

1 and
p−

2 (see Fig. 1) with the outgoing ones p−
1 and p+

2 , given by

(
p+

2
p−

1

)
= S(ω)

(
p+

1
p−

2

)
≡

(
t rR

rL t

)(
p+

1
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2

)
. (1)
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FIG. 1. A schematic illustration of the configurations under
consideration, using two (dimer) and three (trimer) point resonant
scatterers side loaded to a waveguide. ω1,2,3 are the resonant
frequencies, r1,2,3 the intrinsic losses, and γ1,2,3 the coupling strengths.
Arrows depict the incoming and outgoing waves in the waveguide.

rL and rR are the complex reflection coefficients for left and
right incidence, and t is the complex transmission coefficient
of the reciprocal system. For the point symmetric scatterers
considered here, rL = rR = r and t = 1 + r [44]. Using these
relations, one can show that the determinant of the scattering
matrix is given by

det(S) = t + r. (2)

Following a different approach which we find convenient,
the scattering properties can also be obtained using the
continuity of pressure and the conservation of acoustic flux
in the waveguide, along with the evolution of the acoustic
field pci in the ith HR. The corresponding CMT is derived in
Appendix A, and the resulting equations are

p+
1 (t) + p−

1 (t) = p+
2 (t) + p−

2 (t), (3)

p+
1 (t) − p−

1 (t) = p+
2 (t) − p−

2 (t) +
∑

i

2
γi

�2
i

ṗci , (4)

�̈P + R �̇P + K �P = �F, (5)

where (̇) denotes differentiation with respect to the normal-
ized time t → ω1t. In Eq. (5), �P = [pc1, . . . ,pcN ]T is the
field amplitude in the N resonators, and �F = [�2

1(p+
1 +

p−
2 ), . . . ,�2

N (p+
1 + p−

2 )] is the external driving force due to the
incoming waves from the waveguide. The matrix K is diagonal
and its elements are the normalized resonant frequencies �2

i .
The matrix R includes the internal losses (ri) and the leakage of
the resonators to the waveguide (γi). Below using Eqs. (3)–(5),
we derive effective Hamiltonians to describe specific boundary
conditions of the scattering problem.

1. Perfect absorption

This boundary condition of special interest is the one of
no outgoing wavesp−

1 = p+
2 = 0, which when used in Eq. (3)

leads to

p+
1 = p−

2 . (6)

Equation (6) shows that, in a two port system with point
scatterers side loaded at the same position, perfect absorption
occurs only when the incoming waves have equal amplitudes
and phase. Under these conditions, we may re-write Eq. (5) in
the usual Hamiltonian matrix form

˙
i �� = L ��, (7)

where �� = [pc1, . . . ,pcN ,ṗc1, . . . ,ṗcN ]T . Assuming har-
monic solutions of Eq. (7) in the form ��(t) = e−iωt ��0, we
obtain the following eigenvalue problem

(L − ωI) ��0 = 0. (8)

In general the eigenvalues of the non-Hermitian matrix L
are complex. When an eigenvalue becomes real, at that
particular frequency the in-phase incoming acoustic waves
will be completely absorbed and this corresponds to a
CPA [24,35,38,39,41,44,48].

2. Laser

Another boundary condition of interest is the one of no
incoming waves, p+

1 = p−
2 = 0 leading to �F = 0. For this

boundary condition, we can also write the corresponding
system of equations and the eigenvalue problem as

˙
i �� = H ��, (H − ωI) ��0 = 0. (9)

The non-Hermitian matrix H can be obtained from L using the
relation

H(ri,γi,�i) = L(ri, − γi,�i). (10)

The complex eigenvalues of matrix H correspond to the
quasibound states of the system. Their real part corresponds
to the resonance frequency and their imaginary part describes
the width of the resonance. When an eigenvalue of H becomes
real, the system appears to have a finite output without any
input (since we have chosen the boundary p+

1 = p−
2 = 0 for

H), and this is a lasing frequency of the system. Equation (10)
describes in a compact way the connection between the two
sets of boundary conditions: Laser frequencies described by
H have a CPA partner which corresponds to changing the
boundary conditions and the sign of the leakage.

A direct connection between the scattering matrix and the
effective Hamiltonians can be established [35] by noting that
the determinant of S can be written as:

det(S) = − det(L − ωI)

det(H − ωI)
. (11)

Equation (11) shows that the eigenvalues of L are the zeros of
the determinant of the scattering matrix, and the eigenvalues
of H are its poles.

B. Exceptional points of the effective Hamiltonians

In this work, we focus on the scattering through an acoustic
waveguide sideloaded with two (dimer) and three (trimer) HRs
as shown in panels (a) and (b) of Fig. 1, respectively. The exact
form of the effective Hamiltonians L for both the dimer and
trimer are given by Eq. (B1) and Eq. (B2) in the appendix,
respectively. The eigenvalues ω of the matrices L can be found
from the corresponding secular equations

fL2 = ω4 − iαω3 + βω2 + iμω + ν = 0, (12)

fL3 = ω6 − iλ′ω5 + y ′ω4 + iα′ω3 + β ′ω2 + iμ′ω + ν ′ = 0,

(13)

for the dimer and trimer, respectively. The polynomials
fL2(ω,ri,γi,�i) and fL3(ω,ri,γi,�i) are functions of ω and
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FIG. 2. (a) A sketch of a realistic setup composed by an acoustical
waveguide of cross-section area S side loaded with two HRs. (b) The
geometrical characteristics of a single HR.

depend on the 3N − 1 parameters ri , γi , and �i (since �1 = 1).
The corresponding equations for the matrices H are given by

fH2 = fL2(ω,ri, − γi,�i), (14)

fH3 = fL3(ω,ri, − γi,�i), (15)

due to Eq. (10). Note that the polynomials also satisfy the
relation fH (ω∗, − ri,γi,�) = fL(ω,ri,γi,�). For the lossless
case (ri = 0) the latter relation recovers the well known fact
that the zeros and poles of the scattering matrix are complex
conjugates due to time reversal symmetry.

An appealing property of non-Hermitian matrices is the
existence of EPs and the associated wave phenomena around
them. Here, we investigate the wave scattering around the EPs
of the non-Hermitian matrix L and their connection with the
emergence of CPA. To start with, we consider the case of a
dimer, as the one shown in Fig. 2(a). The parametric space
of the relevant matrix L is five dimensional (r1,2,γ1,2,�2), and
we simplify the problem by reducing it to the two-dimensional
space of �2 and r2. The coupling coefficients γ1,2 are fixed to
the moderate values of γ1 = 0.15 and γ2 = 0.1, and the losses
of one of the HRs r1 = 0.138.

The aforementioned parameter values, as well as the ones
use in the rest of this work, are relevant to the experiments of
Refs. [44,48]. Namely, a waveguide of cross section S = 20 ×
10−4 m2 loaded by HRs of fixed neck surface Sn = 10−4 m2

and length ln = 0.04 m (see Fig. 2). The section and length
of the HR cavities are of the order of Sc ∼ 10−3 m2 and
lc ∼ 0.05 m, respectively but are considered tunable. For this
setup the HRs have a resonance frequency around 700 Hz,
the values of γi ∼ 0.1 which can be modified by changing
the geometry of the HR, and finally losses ri are usually of
the order of ∼ 10−2 but are easily tuned to higher values by
adding absorbing materials in the cavity.

As is shown in Appendix C, we locate two EPs in the
two-dimensional parameter space (�2,r2). These are found
at ωEP1 ≈ 0.9367 + i0.005 and ωEP2 ≈ 1.0595 + i0.006. For
parameter values close to the EPs, the complex eigenvalues
are enforced to repel each other through an avoided crossing.
An example is shown in Fig. 3(a), where the trajectories of
the two complex eigenvalues of L are plotted with the solid
lines for �2 ∈ [0.8,1.2] and r2 = 0.086. The two eigenvalues,
initially located at points A and B for � = 0.8, repel as they
approach the leftmost EP [leftmost (red) circle in panel (a)],
and one crosses the real axis. Exactly at the point where this
eigenvalue becomes real a CPA emerges. By further increasing

FIG. 3. (a) Solid (dashed) lines show the eigenvalues of L (H) for
the dimer at parameter values γ1 = 0.15, γ2 = 0.1, r1 = 0.1386, and
r2 = 0.085 while the running parameter is � ∈ [0.8,1.2]. Triangles
indicate the eigenvalues corresponding to CPA1. (b) Determinant of
S in the complex frequency plane for parameters corresponding to
the CPA1 of panel (a). The inset depicts the geometry of a HR.

�2, the eigenvalue crosses the real axis around the rightmost
EP, signaling a second CPA, and ends at point B′ when � =
1.2. The dashed lines in Fig. 3(a), depict the corresponding
complex eigenvalues of H (solutions of fH2). Note that the
eigenvalues do not coalesce rather than their trajectories meet
at some point.

Figure 3(b) is presented to visualize the relation between
the eigenvalues of L and H and the zeros and poles of det(S).
In particular we show det(S) in the complex frequency plane
for the parameters corresponding to CPA1 of panel (a). The
(green) triangles indicate the respective eigenvalues from
panel (a).

III. PT -SYMMETRIC EFFECTIVE HAMILTONIANS

In the previous section it was shown that a CPA frequency
appears when an eigenvalue of L, around an EP, is driven across
the real axis and becomes real. It is known however, that when a
non-Hermitian matrix isPT symmetric, it is possible to obtain
regions where all eigenvalues are real. It is very interesting then
thatPT symmetry provides a condition to obtain multiple CPA
frequencies. Also, it ensures the emergence of EPs on the real
axis, which as we will show below, leads to interesting results
regarding broadened flat perfect absorption.

It appears that PT symmetry is enforced quite easily: We
simply require the corresponding secular equations of the non-
Hermitian matrix L to be real [52]. Then, the eigenvalues are
either real or complex conjugates.

A. Dimer

From Eq. (12) we immediately obtain that PT symmetry
requires α = μ = 0 leading to the following equations

r1 − γ1 + r2 − γ2 = 0, (16)

�2
2(r1 − γ1) + r2 − γ2 = 0. (17)
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According to Eqs. (16) and (17), two different PT configura-
tions are possible: (i) �2 = 1 with the rest of the parameters
satisfying Eq. (16), and (ii) each of the resonators is critically
coupled (i.e., ri = γi) and the frequency �2 is freely chosen.
In the former case, the system is always found to be in
the PT -broken phase and the eigenvalues of L are always
complex conjugates exhibiting no CPA. We thus focus our
study in case (ii) where each resonator is critically coupled.
This is an intriguing generalization of the trivial case with one
resonance. It is known that the CPA condition for a single
resonator is satisfied for a critically coupled resonance with
r1 = γ1 [38,41,44–46,48]. Here we have found that by adding
another critically coupled resonator we can obtain two CPA
frequencies. However as we will show below, this pattern is
not valid for more resonators since the interactions between
the eigenvalues become more complex.

Choosing r1 = γ1 and r2 = γ2, we can rewrite the secular
equation (12) as

fL = (ω − ω̃1)(ω + ω̃1)(ω − ω̃2)(ω + ω̃2), (18)

where, ω̃1,2 are the eigenvalues of L given by

ω̃1,2 = 1√
2

√
δ ±

√
δ2 − 4�2

2, (19)

with δ = 1 + �2
2 + γ1γ2. In Fig. 4(a) we show a phase

diagram, indicating the broken and unbroken PT -symmetric
phases. In the unbroken phase [outside the parabola (yellow)]
where δ > 2�2, the eigenvalues ω̃1,2 are real and correspond

FIG. 4. (a) The phase plane indicating the PT -broken and
unbroken phases when both resonators are critically coupled. The
solid line parabola indicates the EPs separating the two phases. (b) A
trajectory of the eigenvalues of matrix L corresponding to the dashed
horizontal line of panel (a) with γ1 = r1 = 0.15, γ2 = r2 = 0.1, and
�2 ∈ [0.8,1.2]. Arrows indicate the direction of the eigenvalues as
�2 increases. EPs points are at �2 = 1 ± √

γ1γ2.

to two different simple CPA frequencies of a particular
configuration. On the contrary, in the broken phase [inside
the parabola (blue)], when δ < 2�2, the eigenvalues ω̃1,2 are
complex conjugates and the system features no CPA. The solid
black line of Fig. 4 corresponds to δ = 2�2 and indicates the
family of EPs separating the two phases, with real eigenvalues
ω̃1 = ω̃2 ≡ ωEP. The EPs correspond to the coalescence of two
CPA frequencies which we, further on, call double CPA.

In Fig. 4(b), we plot the eigenvalues of L for the trajectory
indicated by the horizontal dashed line of panel (a). Initially
the system is in the unbroken phase with two different real
eigenvalues corresponding to two CPA frequencies (points A
and B). As �2 is increased, they approach each other along
the real axis and collide at an EP. Note that in contrast with the
non PT -symmetric case shown in Fig. 3(a), the EP is now on
the real axis. Beyond this EP the PT symmetry is broken and
the system does not have a CPA. As �2 increases, a second EP
appears where the two eigenvalues coalesce and become real
again re-entering the unbroken phase. Note the differences of
Fig. 4(b) with the solid lines in Fig. 3(a) and especially the fact
that the two EPs have been shifted onto the real axis.

The next step is to illustrate what is the influence of
the proposed PT -symmetric configurations in the scattering
properties of the acoustic system. We first note that the
occurrence of CPA and laser frequencies can both be captured
using the ratio between outgoing and incoming field intensity
� defined as

� = |p−
1 |2 + |p+

2 |2
|p+

1 |2 + |p−
2 |2 , (20)

where � → 0 at a CPA frequency while � > 1 signals the
amplification of incoming waves. Note that in a conservative
system � = 1. To achieve CPA we are obliged to satisfy
Eq. (6) by considering scattering with incoming waves of equal
amplitude and phase. In that case Eq. (20) can be written as

� = |p−
1 |2 + |p+

2 |2
2|p+

1 |2 = |t + r|2, (21)

which using Eqs. (2) and (11) is explicitly written as

� = |fL(ω,ri,γi,�i)|2
|fH (ω,ri,γi,�i)|2 . (22)

In Fig. 5, we plot � as a function of frequency when matrix
L is PT symmetric. We show three different cases when
L is in the PT-broken phase [dashed-dotted (black) line], in
the PT-unbroken phase [dashed (black) line], and at an EP
[solid (red) line]. In the broken phase the parameter � is
nonzero for all frequencies (no CPA). In the unbroken phase,
� = 0 at the two real eigenvalues of L showing two simple
CPA. According to Eq. (18) and Eq. (22), around each CPA
frequency the parameter � is analogous to � ∼ |(ω − ω̃1,2)2|
which is quadratic in frequency. For the case of an EP, the
coalescence of the two eigenvalues of L gives rise to a double
CPA point around ω = ωEP (solid red line of Fig. 5).

Around the EP, Eq. (22) can be approximated by

� ≈ |(ω − ωEP)4(ω + ωEP)4|
|fH (ωEP)|2 , (23)
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FIG. 5. The parameter � as a function of frequency for the same
parameters as in Fig. 4(b). The solid (red) line corresponds to the
leftmost EP, the dashed (black) in the PT -unbroken (�2 = 1.2), and
the dashed-dotted (black) line in PT -broken (�2 = 1) regions. The
inset shows a close up of � to illustrate the difference between a
standard CPA and the CPA at the exceptional point. The blue dotted
line indicates the analytical approximation of Eq. (23).

which is plotted in the inset of Fig. 5 by the dotted (blue)
line. The consequence of Eq. (23), which exhibits a quartic
dependence of � with frequency, is that perfect absorption
is flattened, in comparison with the simple CPA [35,38,44].
On the other hand the denominator which depends on
the polynomial fH controls how broadband is the perfect
absorption.

B. Trimer

We now proceed with the case of the trimer which can
display not only three CPAs but also higher order EPs. First
we identify the parameter space where the relevant matrix L
is PT symmetric. The corresponding secular equation for the
trimer is given by Eq. (13) andPT symmetry is enforced when
λ′ = α′ = μ′ = 0, leading to the following conditions

r1 − γ1 + r2 − γ2 + r3 − γ3 = 0, (24)

�2
2(r3 − γ3) + �2

3(r2 − γ2) + �2
2�

2
3(r1 − γ1) = 0, (25)

r2 − γ2 + r3 − γ3 + �2
2(r1 − γ1 + r3 − γ3)

+ �2
3(r1 − γ1 + r2 − γ1) + r2r3(r1 − γ1)

− r1(r2γ3 + r3γ2) = 0. (26)

A surprising result of Eqs. (24)–(26) is the following:
By critically coupling each of the three HRs (i.e., ri =
γi) we do not obtain a PT -symmetric configuration and
cannot have three CPA frequencies. Indeed, choosing ri = γi ,
Eqs. (24) and (25) are satisfied while Eq. (26) is not, due
to a nonvanishing term ∼ r1(r2γ3 + r3γ2). This is a rather
counterintuitive result, since this term does not vanish even
when the resonant frequencies are far away from each other.

Configurations which support three CPAs and also feature
higher order EPs, can be obtained when Eqs. (24)–(26) are
satisfied, and L is PT symmetric. In this case, the eight-
dimensional parameter space of the trimer is reduced to a five-
dimensional one, which exhibits a plethora of regions either in
the broken or unbroken phase. We choose to study a particular
parametric region in order to illustrate both the transition from
the broken to the unbroken phase and also show the existence of

FIG. 6. Trajectories of the eigenvalues of L given by Eq. (13)
with varying parameter � ∈ [0.7,0.9]. The rest parameters chosen
are γ1 = r1 = 0.2, γ2 = 0.2, and γ3 = 0.01. The losses r2 and r3 are
then given by Eqs. (24)–(26) as a function of �. Shaded region depicts
the PT -unbroken regime. The dashed line shows the eigenvalues for
the same parameters but with γ3 = 0.0157, when the system exhibits
a triple EP.

a triple EP. In particular, we chose �2 = �3 ≡ � as a varying
parameter and fix γ1,2,3 and r1. The rest of the parameters (r2

and r3) are given by Eqs. (24)–(26). Note that this choice of
parameters leads to negative values for r3 namely the inclusion
of acoustic gain. Mechanisms for gain in acoustics have been
realized experimentally for example in Ref. [9] by the use of
loudspeakers with tailored electrical circuits.

A PT -symmetric trajectory of the eigenvalues of L is
shown in Fig. 6. At the beginning of the trajectory at � = 0.7,
L is in thePT -broken phase where there is one real eigenvalue
(denoted by triangles) and a complex conjugate pair (denoted
by stars). Thus the corresponding curve of � as a function of
frequency, shown with the solid line in Fig. 7(a), exhibits one
single CPA frequency at ω ≈ 0.95. The additional dip around
ω ≈ 0.72 corresponds to the complex conjugate pair indicated
by the stars in Fig. 6 and the inset of Fig. 7(a). The peak
appearing in Fig. 7(a) emerges due to one of the solutions
of fH3 (i.e., a pole) which is very close to the real axis. At
� = 0.781, two complex conjugate eigenvalues coalesce and
become real. Beyond this EP, L is in the PT -unbroken phase
indicated by the shaded area in Fig. 6. In the unbroken region
there are three real eigenvalues and the system exhibits three
single CPA. An example of � in the unbroken region is shown
in Figs. 7(a) and 7(b) with the dashed line for � = 0.79. By
further increase of �, two eigenvalues coalesce at another EP
and the system returns to the PT -broken phase. At the two
transition points separating the broken and unbroken phases,
shown by the vertical lines in Fig. 6, the system acquires one
EPs and one real eigenvalue. This corresponds to a double
CPA and one single CPA, which are shown in Fig. 7(b) with
the blue dotted curve. Furthermore, an example featuring a
higher order EP is shown in Fig. 6 by the dashed lines, and
it is found for the same parameters as for the solid lines, but
with γ3 = 0.0157. The parameter � at the triple EP is plotted
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FIG. 7. Panel (a): same as in Fig. 5 for the trimer. Solid
line depicts the PT -broken phase for � = 0.7. The dashed line
corresponds to a PT -unbroken case for � = 0.78. The inset depicts
the eigenvalues of L (triangle and stars) and of H (squares). Panel
(b): Dashed line is the same as in panel (a). A zoom at the frequencies
between ω = 0.8 and ω = 1. The dotted (blue) line depicts the case
of � = 0.803 corresponding to a simple EP (rightmost vertical line of
Fig. (6)]. Solid (red) line corresponds to the triple EP with � = 0.803
and γ3 = 0.0157.

with the solid (red) line in Fig. 7(b). Around the triple EP the
parameter � can be approximated as

� ≈ |(ω − ωEP )6(ω + ωEP )6|
|fH (ωEP )|2 , (27)

revealing the fact that the higher order EP displays flattened
absorption with respect to the simple EP.

The significance of Eqs. (23) and (27) and the quintessence
of this section is that broadband flat perfect absorption can be
achieved, by the fine tuning of the system parameters such as
to obtain an EP and a large value of |fH | at the EP.

IV. CONCLUSIONS

Our results display how harnessing the non-Hermiticity
of acoustic metamaterials provides a promising pathway
towards improved acoustic absorbers. Operating around the
EPs of non-Hermitian matrices, associated with the scattering
process, can lead to CPA through the avoided crossing of the
corresponding eigenvalues. Enforcing PT symmetry on the
non-Hermitian matrices leads to multiple CPAs, the number
of which depends on the number of subwavelength resonators.
At the EP separating the PT -unbroken and broken phases,
we find a flattened perfect absorption, which is even enhanced
when the EP is of higher order.
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APPENDIX A: COUPLED MODE EQUATIONS

Here we derive the coupled mode equations describing
the scattering of acoustic waves, in a cylindrical waveguide
side loaded by subwavelength Helmholtz resonators. For
frequencies below the first cutoff frequency of the waveguide,
the propagation is considered one dimensional (namely x

direction). The linearized mass and momentum conservation
laws can be written as:

∂p

∂t
+ c2ρ0

∂u

∂x
= 0, (A1)

ρ0
∂u

∂t
+ ∂p′

∂x
= 0, (A2)

where p and u are the pressure and velocity fluctuations in the
waveguide. Above, we have used the constitutive equation p =
c2ρ with ρ being the density of air and c the speed of sound.
In the low frequency regime the resonators can be considered
as point scatterers located at x = 0, and we decompose the
pressure field in the waveguide as follows

p(x,t) =
{
p+

1 (ξ+) + p−
1 (ξ−) x � 0,

p+
2 (ξ+) + p−

2 (ξ−) x � 0,
(A3)

where ξ± = t ∓ x/c0, while + and − denote right- and left-
going waves, respectively.

The continuity of pressure at x = 0 for both configurations
is the following

p+
1 (t) + p−

1 (t) = p+
2 (t) + p−

2 t) ≡ p0. (A4)

FIG. 8. Panels (a) and (b) depict a sketch of the configurations
considered in this work consisting of a cylindrical waveguide side
loaded with two (a) or three (b) Helmholtz resonators. Panels (c) and
(d): schematic of the continuity of acoustic flux as the waves pass
through the point scatterers.
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The conservation of flux at x = 0 [illustrated in panels (c) and
(d) of Fig. 8] can be written as

Sρ0u

∣∣∣∣
x=0−

= Sρ0u

∣∣∣∣
x=0+

+
∑

i

Sniρ0uni, (A5)

where i takes values from 1, . . . ,N for a total number of N
resonators. S and Sni are the cross sections of the tube and
the neck of the ith resonator, respectively, while uni is the
particle velocity in the neck of each Helmholtz resonator. The
velocities at the resonators neck are given by

uni = − Vi

c2ρ0Sni

∂pci

∂t
. (A6)

where Vi is the volume of the cavity of the ith resonator. Finally
it can be shown that the conservation of mass can be written
as

p+
1 (t) − p−

1 (t) = p+
2 (t) − p−

2 (t) +
∑

i

Vi

Sc0

∂ṗci

∂t
. (A7)

For sufficiently low frequencies, the dynamics of the
pressure in each cavity of the resonators pci(t), can be
described by the following approximate equations (see for
example Refs. [53–55]):

∂2pci

∂t2
+ ω2

i pci + Ri

∂pci

∂t
= ω2

i p0, (A8)

where p0 is the pressure at the entrance of the resonator, and
ω2

i = c2
0Sn/lni

Vi is the resonance frequency of each HR. The
resistance factor Ri is a parameter which quantifies the linear
viscothermal losses in the resonator [54]. Furthermore, using
both Eqs. (A4)–(A7) we replace the pressure at the neck of the
resonator connected with the waveguide with the following:

p0 = p+
1 + p−

2 −
∑

i

�i

ω2
i

ṗi , (A9)

where �i = cSni/2lniS quantifies the coupling with the waveg-
uide. We use a normalized time coordinate t → ω1t , and the
normalized parameters become ri = Ri/ωi , γi = �i/ωi and
�i = ωi/ω1.

The coupled mode theory is then described by the following
normalized set of equations used in the main text

p+
1 (t) + p−

1 (t) = p+
2 (t) + p−

2 (t), (A10)

p+
1 (t) − p−

1 (t) = p+
2 (t) − p−

2 (t) +
∑

i

2
γi

�2
i

ṗci , (A11)

�̈P + R �̇P + K �P = �F, (A12)

where (̇) denotes differentiation with respect to the nor-
malized time, �P = [pc1, . . . ,pcN ]T and �F = [�2

1(p+
1 +

p−
2 ), . . . ,�2

N (p+
1 + p−

2 )]. The matrix R has elements

Rii = ri + γi, Rij = γj

�2
i

�2
j

(A13)

while K is diagonal with elements Kii = �2
i . Note that the

above derived CMT is valid for any number of N resonators,
as long as the evanescent coupling between the resonators is
negligible.

APPENDIX B: EFFECTIVE MATRICES END SECULAR
EQUATIONS FOR THE DIMER AND TRIMER

The non-Hermitian matrix L for the dimer has the following
form

L =

⎛
⎜⎜⎝

0 0 i 0
0 0 0 i

−i 0 −i(r1 − γ1) −iγ2/�2
2

0 −i�2
2 −iγ1�

2
2 −i(r2 − γ2)

⎞
⎟⎟⎠. (B1)

On the other hand, for the trimer it takes the form

L =
(

0 iI3

L31 L32

)
, (B2)

where I3 is the 3 × 3 identity matrix, while L31 and L32 are
given by the following expressions

L31 =
⎛
⎝−i 0 0

0 −i�2
2 0

0 0 −i�2
3

⎞
⎠,

L32 =
⎛
⎝−i(r1 − γ1) −iγ2/�2

2 −iγ3/�2
3

−iγ1�
2
2 −i(r2 − γ2) −iγ3�

2
2/�2

3
−iγ1�

2
3 −iγ2�

2
3/�2

2 −i(r3 − γ3)

⎞
⎠. (B3)

The corresponding characteristic polynomials are

fL2 = ω4 − iαω3 + βω2 + iμω + ν = 0, (B4)

fL3 = ω6 − iλ′ω5 + y ′ω4 − iα′ω3 + β ′ω2 + iμ′ω + ν ′ = 0.

(B5)

The coefficients for the dimer are the following

α = r1 − γ 1 + r2 − γ 2, (B6)

β = γ1γ2�
2
2 − �2

2 − 1 + (r1 − γ1)(r2 − γ2), (B7)

μ = �2
2(r2 − γ2) + r1 − γ1, (B8)

ν = �2
2, (B9)

and for the trimer

λ′ = r1 − γ 1 + r2 − γ2r3 − γ3, (B10)

y ′ = − (
1 + �2

2 + �2
3 + r1(r2 + r3 − γ2γ3

)
+ r2(r3 − γ1 − γ3) − r3(γ1 + γ 2),

α′ = r2 − γ2 + r3 − γ3 + �2
2(r1 − γ1 + r3 − γ3)

+ �2
3(r1 − γ1 + r2 − γ1) + r2r3(r1 − γ1)

− r1(r2γ3 + r3γ2), (B11)

μ′ = �2
2(r2 − γ2) + r1 − γ 1, (B12)

ν ′ = �2
2. (B13)

APPENDIX C: EXCEPTIONAL POINTS FOR THE DIMER

To locate the exceptional points of matrix L given by
Eq. (B3) we solve the corresponding eigenvalue problem
numerically. Since the matrix is non-Hermitian, the left and
right eigenvectors |φr〉 and |φl〉 are generally different and
satisfy the following equations

L|φr〉 = ω|φr〉, 〈φl|L = 〈φl|ω. (C1)
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These two vectors are biorthogonal satisfying the relation

〈
φl

i

∣∣φr
j

〉 = δij , (C2)

and the phase rigidity σi for the ith eigenvector is defined as

σ = 1

〈φr |φr〉 . (C3)

When the matrix is away from an exceptional point, the
eigenvectors are almost orthonormal with σi → 1. On the
other hand, approaching the exceptional point the eigenvectors
coalesce and σ → 0. The quantity |σ − 1| is then an appro-
priate indicator to identify EPs when it becomes unity. In
our case, we fix the parameters to γ1 = 0.15, γ2 = 0.1, and
r1 = 0.138 and scan the two parameter space of �2 and r2

to find the EPs. For each point in this surface we calculate
the quantity |σ − 1| and we plot the results in Fig. 9. As is
shown, two EPs are found, EP1 = {0.8775,0.09} and EP2 =
{1.123,0.0872}. Furthermore in Figs. 9(b) and 9(c) we plot the
eigenvalues of L (solid lines) and H which pass through the two
EPs.

FIG. 9. Panel (a): A contour plot showing the parameter |σ − 1|
in the �, r2 plane. The arrows indicate the position of the two EPs.
Panels (b) and (c): The eigenvalues of the matrices L (solid lines) and
H (dashed lines) for a trajectory with �2 ∈ [0.8,1.2] and r2 = 0.0872
for panel (b) and r2 = 0.09 for panel (c). The rest of the parameters
are γ1 = 0.15, γ2 = 0.1, and r1 = 0.138.
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