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Quantum and thermal melting of stripe forming systems with competing long-range interactions
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We study the quantum melting of stripe phases in models with competing short-range and long-range
interactions decaying with distance as 1/rσ in two space dimensions. At zero temperature we find a two step
disordering of the stripe phases with the growth of quantum fluctuations. A quantum critical point separating a
phase with long-range positional order from a phase with long-range orientational order is found when σ � 4/3,
which includes the Coulomb interaction case σ = 1. For σ > 4/3 the transition is first order, which includes
the dipolar case σ = 3. Another quantum critical point separates the orientationally ordered (nematic) phase
from a quantum disordered phase for any value of σ . Critical exponents as a function of σ are computed at one
loop order in an ε expansion and, whenever available, compared with known results. For finite temperatures it
is found that for σ � 2 orientational order decays algebraically with distance until a critical Kosterlitz-Thouless
line. Nevertheless, for σ < 2 it is found that long-range orientational order can exist at finite temperatures until a
critical line which terminates at the quantum critical point at T = 0. The temperature dependence of the critical
line near the quantum critical point is determined as a function of σ .
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I. INTRODUCTION

Quantum systems with fluctuating stripe order have re-
ceived increasing attention of the condensed matter commu-
nity in recent years [1–3]. Different quasi-two-dimensional
systems such as quantum Hall systems [4–7], cuprates, and
iron-based superconductors [8–10] as well as heavy fermion
compounds [11,12] present inhomogeneous and/or anisotropic
electronic/spin structures at very low temperatures. A common
feature of these systems is the possible existence of a quantum
critical point (QCP) separating phases that break translational
and/or rotational symmetries [13].

With growing temperature stripe patterns melt, typically
by the proliferation of dislocations and disclinations. The
theory of thermal melting of stripes is reasonably well
understood [14–16]. When quantum fluctuations play a role,
as in the electronic systems cited above, the phenomenology
of anisotropic phases may be much more complex than in
the corresponding thermal or classical counterpart. On general
grounds it is expected that upon lowering the temperature
a crossover must occur between thermal and quantum dom-
inated fluctuations. Eventually, quantum fluctuations may be
responsible for a true T = 0 quantum critical point (QCP). The
behavior of thermodynamic and electronic transport properties
must be strongly influenced by the proximity of the QCP,
and then it is important to characterize the different possible
universality classes of quantum phase transitions [17–19]. A
quantum theory of stripe melting which can account for this
rich phenomenology is still under development.

A model for continuous stripe quantum melting in metals,
driven by a particular type of topological defect, double
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dislocations, was recently proposed in connection with the
physics of cuprate superconductors [20]. This model considers
the simultaneous presence of charge and spin stripes. As a
consequence, it is argued that single charge stripe dislocations
(which would lead to frustration in the spin stripes) remain
gapped, justifying that the physics of charge stripe melting
should be mainly governed by the proliferation of double
dislocations. Upon disordering, this leads to a “stripe loop
metal” phase, different from the usual Fermi liquid phase.
When spin order is not considered, the model leads to similar
results as we reach in the present study, which only deals with
one type of degrees of freedom.

In the context of quantum Hall phases, the condensation
of lattice defects was recently studied [21]. A very general
framework of a gauge field theory of quantum liquid crystals at
T = 0 in continuum space has also been proposed and recently
reviewed in Ref. [22].

Another context in which the results of the present work can
be relevant is in the field of atomic gases [23] and in particular
in ultracold dipolar Fermi gases [24,25]. The experimental
realization of ultracold atom systems is progressing rapidly
and promises to be an ideal testing ground for the physics
of quantum strongly correlated systems. Several electronic
liquid crystalline phases are predicted to be present in
these systems [26–29]. Recently the thermal melting of two-
dimensional dipolar Fermi gases was addressed in Ref. [30].
When all the dipoles are at a generic tilting angle � with respect
to the xy plane of the system, the thermal melting of stripes is
found to be driven by the proliferation of dislocations, leading
to an effective anisotropic XY model, which then allows us
to predict the elastic and critical properties straightforwardly.
Nevertheless, for tilting angle � = 0, i.e., when all dipoles are
oriented perpendicular to the xy plane, the system recovers
rotation invariance on the plane, and then long-range stripe
order is forbidden at finite T [16,31–34]. While long-range

2469-9950/2017/95(14)/144209(15) 144209-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.144209


MENDOZA-COTO, BARCI, AND STARIOLO PHYSICAL REVIEW B 95, 144209 (2017)

positional order is forbidden, orientational order of stripes
survives to dislocations proliferation, leading to a nematiclike
phase [30]. In the present paper we show that, for dipolar
interactions in a rotationally symmetric system, only quasi-
long-range nematic order in the orientation of stripes is
possible at finite temperatures.

It is worth mentioning that while most properties of a
quantum phase transition are dictated by symmetry, dynamical
properties depend essentially on microscopy. In the context of
Fermi liquids, Landau damping could produce over-damped
modes with dynamical exponent z = 3 [35] near the isotropic-
nematic phase transition. In the presence of a tetragonal lattice,
Ising-nematic fluctuations could renormalize the dynamical
exponent as well [36], which adds to the complexity of the
observed phenomenology.

The emergent phenomenology related to striped phases is
supposed to come from the competition between short-range
attractive interactions and long-range repulsive ones [37–39]
at a microscopic level. In this perspective, the relevance of
residual long-range interactions is an interesting and important
problem and, to the best of our knowledge, an open one.
For instance, in quantum Hall systems, it is known that
long-range Coulomb interactions change the nature of the
smectic phase [40]. Moreover, in the context of charged
cold atoms, Coulomb as well as dipole interactions play a
relevant role [30,41]. Recently, the effects of long-ranged
interactions in classical two-dimensional stripe melting was
considered [32–34]. It was shown that, consistent with com-
mon assumptions, for sufficiently short-ranged interactions,
positional correlations are short ranged while a Kosterlitz-
Thouless transition from an isotropic to a quasi-long-range
nematic phase takes place. Interestingly, it was found that for
sufficiently long-ranged repulsive interactions a second order
phase transition occurs between a disordered isotropic phase
and a truly long-range orientationally ordered nematic phase.
This result implies that, for classical models, the lower critical
dimension depends on the range of the interaction: the larger
the range of the repulsive interaction, the smaller the lower
critical dimension.

In this work we extend the approach to orientational phases
in systems with long-ranged competing interactions to the
realm of quantum melting of stripe patterns. The starting point
is a coarse-grain effective Hamiltonian for isotropic, compet-
ing short-range and long-range interactions which decay with
distance as 1/rσ . This action is a well known continuum limit
of a large family of truly microscopic Hamiltonians, and in this
sense the connection of our results with specific microscopic
models is straightforward. Then, starting from the well known
stripe ground states of the effective model, we promote the
displacement field of the stripe modulation to a quantum
time dependent operator, introduce dislocations, and obtain the
relevant dispersion relations for the quantum elasticity theory
with long-range competing interactions. At finite temperatures
the mean squared fluctuations of the displacement field diverge
with the size of the system independently of the range of
interactions, and then positional order can be strictly short
ranged, a result well known in models with short-range
interactions. A more interesting scenario emerges for the
orientational degrees of freedom which are stable to Gaussian
fluctuations. Then, after introducing dislocations, the relevant

topological defects in stripe forming systems, we consider
the interaction between two far apart portions of the striped
pattern through a multipolar expansion of the relevant density
(electronic or magnetic density). This leads to a model of
quantum rotors in the plane of the system with generalized
dipolar interactions [32]. Analysis of this model shows that,
when temperature fluctuations dominate over quantum ones,
the well known Kosterlitz-Thouless type phase transition
driven by disclination unbinding is restricted to sufficiently
short-ranged competing interactions, σ � 2. If the interactions
are long ranged enough, σ < 2, a genuine second order phase
transition to a phase with long-range orientational order may
exist at finite T .

At T = 0 the conclusions from the quantum elastic theory
are different: For sufficiently weak quantum fluctuations the
mean square fluctuations of the displacement field may be
finite, while they diverge for strong enough fluctuations. This
indicates the existence of a quantum phase transition from a
smecticlike phase to a nematiclike one at a critical value of the
strength of quantum fluctuations. In the context of a McMillan-
deGennes theory this phase transition turns out to be of first
order for σ > 4/3 and second order for sufficiently long-range
repulsive interactions σ � 4/3. Subsequently, at higher values
of the quantum fluctuations, orientational order also breaks
down leading to a fully disordered phase. For short-range
interactions, σ � 2, the quantum nematic-isotropic transition
in d = 2 is in the universality class of the thermal XY model
in d = 3. For sufficiently long-ranged interactions, σ < 2,
the critical exponents depend continuously on the interaction
range. Finally, the critical line emerging from the quantum
critical point at the T = 0 isotropic-nematic transition is
obtained for sufficiently low temperatures. No critical line
emerges from the nematic-smectic transition point because
positional order is completely absent at finite temperatures.

These results are summarized in Figs. 4 and 5. In Fig. 4,
we show a qualitative phase diagram for σ � 2 in two
dimensions. At T = 0, we show two quantum phase transition
points. At r1c, a first order transition, from a quantum smectic
phase (“long-range positional order, L.R.P.O”) to a quantum
nematic phase (“long-range orientational order, L.R.O.O”),
takes place. rc

2 is a quantum critical point, separating the
nematic phase from the quantum disordered phase (short-range
orientational order, S.R.O.O). As we have been anticipating,
at finite temperature there cannot be true long-ranged order,
then there is a Kosterlitz-Thouless line separating a disorder
region (S.R.O.O) from a quasi-long-range orientational order
region (Q.L.R.O.O) at lower temperatures. The results for
strong long-range interactions, σ < 2, are shown in Fig. 5.
The main important difference is that long-range interactions
stabilize a true long-range orientational order (L.R.O.O) at
finite temperatures. The critical exponents associated with the
quantum critical point rc

2 are summarized in Table I.
The organization of the paper is as follows: In Sec. II

we briefly introduce the model for competing interactions at
different scales and proceed in Subsection II A to a presentation
of the quantum elastic theory of stripe melting in a pedagogical
way. In Subsection II B we introduce the model of quantum
rotors in the plane, from which most of the results will be
extracted. Then, in Sec. III we describe the main results for the
isotropic-nematic phase transitions at T = 0. Two subsections
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TABLE I. Critical properties of the O(N ) model with generalized dipolar interactions [Eq. (36)] at fixed d � 3. For T = 0 the critical
exponents γ,ν,η,α,β are shown as a function of the interaction range parameter σ . There are two main columns: models with short-ranged
interactions (σ � 2) and long-ranged interactions (σ < 2). The short-ranged case (last column) shows the exponents of the local O(N ) model
in d + 1 dimensions, computed at linear order in an ε expansion around the upper critical dimension d = 3 [52]. In the long-ranged case
σ < 2, the upper critical dimension is du = 3σ/2 leading to two different regimes. In the first column, σ < 2d/3, the system is always above
the upper critical dimension and then the exponents are dominated by the Gaussian fixed point and are exact. In the second column, we show
the critical exponents computed by means of the scaling properties of the susceptibility [Eq. (42)] which coincide with a direct perturbative
RG calculation [53]. η,α,β have been computed invoking the scaling and hyperscaling relations of Eqs. (46)–(48). The lower part of the table
displays the finite T behavior of the correlation length and the susceptibility at the critical point for T → 0. The last column shows the results
for the local model [19]. The first two columns display the results of the long-ranged interacting model computed from the scaling behavior of
Eq. (42). The behavior of the critical line δr(T ) very near the QCP is also shown.

Long-range interactions Short-range interactions

σ � 2d

3
2d

3 < σ < 2 σ � 2

γ 1 1 + 1
σ

(
N+2
N+8

)(
3σ

2 − d
)

1 + 1
2

(
N+2
N+8

)
(3 − d)

T = 0 ν 1
σ

1
σ

+ 1
σ 2

(
N+2
N+8

)(
3σ

2 − d
)

1
2 + 1

4

(
N+2
N+8

)
(3 − d)

η 2 − σ 2 − σ 0

β 1
2

1
2

[
1 − 1

σ

(
3σ

2 − d
)]

1
2

[
1 − 1

2 (3 − d)
]

α 0 1
σ

(
3σ

2 − d
)[

1 − 1
σ

(
N+2
N+8

)(
d + σ

2

)] (3−d)
2

[
1 − (

N+2
N+8

) (d+1)
2

]
ξ (T ,r = rc) T

− 1
σ

(
2d
σ −1

)
T − 2

σ T −1

T �= 0 χ (T ,r = rc) T
−
(

2d
σ −1

)
T −2 T −2

δr(T ) = rc − r −T

(
2d
σ −1

)
−T 2 −T 2

describe, respectively, the behavior for σ � 2 and σ < 2.
Complementing the discussion of the T = 0 phase diagram, in
Sec. IV the nematic-smectic phase transition is described. In
Sec. V the results for the finite T phase diagrams are presented
for both σ � 2 and σ < 2. Finally, a discussion of the results
and some conclusions are presented in Sec. VI.

II. QUANTUM THEORY OF STRIPE MELTING

The simplest model to describe the effect of competing
interactions at different scales in two spatial dimensions can
be cast in the following coarse-grained Hamiltonian [32]:

H[φ(�x)] = 1

2

∫
d2x ( �∇φ(�x))2

+ 1

2

∫
d2x

∫
d2x ′ φ(�x)J (�x − �x ′)φ( �x ′)

+ 1

2β

∫
d2x V (φ(�x)). (1)

φ(�x) represents a density field or scalar order parameter and,
in the absence of external fields, the Hamiltonian has the
Ising symmetry φ → −φ. J (�x − �x ′) is a repulsive long-ranged
isotropic interaction which decays as a power law of the
distance in the form J (�x) = J/|�x|σ . Although it is convenient
to work with an arbitrary exponent σ , physically relevant
examples are the Coulomb interaction in charged systems
(σ = 1) and the dipolar interaction between out-of-plane
magnetic moments (σ = 3) in magnetic films. Additionally,
entropic contributions generate a local potential V (φ) which,
for simplicity, we consider to be a degenerate double well

potential of the form V (φ) = − a
2 φ2 + b

4φ4, with a > 0 and
b > 0. Finally, β = (kBT )−1 is the inverse temperature.

A. Stripe fluctuations and melting

In the absence of long-range interactions, the system
tends to form condensate states, with φ = ±√

a/b. Due to
the Ising symmetry, both condensates are equally probable
and the system tends to phase separate. The long-range
repulsion J (|�x|) frustrates this tendency and the ground state
ends being inhomogeneous and/or anisotropic. The simplest
and most commonly found configuration of this type is a
unidirectional modulation characterized by a single wave
vector �k0 [14,38,42,43]. In this case, the order parameter can
be written in the form φ(�x) = ∑

n φn cos(n�k0 · �x), where the
Fourier coefficients φn determine the profile of the modulation.
Long wavelength fluctuations can be parametrized by a
displacement field u(x,y) in the form

φ(x,y) =
∑

n

φn cos (n k0[x + u(x,y)]), (2)

where x is the average direction of the modulation and k0 stands
for the modulus of �k0. The displacement field u(x,t) should be
interpreted as the projection of the vector displacement �u on
the ordering vector �k0, i.e., u = �u · �k0. A typical configuration
is illustrated in Fig. 1. The shaded area represents regions with
φ(�x) > 0 while in the white regions φ(�x) < 0.

The Fourier spectrum φn can be computed, in principle,
using a mean-field approximation.

Replacing (2) into Eq. (1), we can compute an effective
Hamiltonian in terms of the displacement field u. Making a
long wavelength approximation (a gradient expansion) and
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X

X − X '

X '
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A2

FIG. 1. Schematic representation of a smoothly deformed striped
pattern. The red, dashed arrows indicate the orientation of the domain
walls and define local dipolar moments. The interaction between two
far apart elementary stripe dipoles is shown.

keeping the leading quadratic terms we obtain the elastic
energy [32]

H = H0 + 1

2

∫
d2k

(2π )2

(
γxk

2
x + γyk

4
y + γnlk

σ−2ky
4)

× û(�k)û(−�k), (3)

where H0 represents the energy of the unperturbed stripes
configuration, û(�k) is the Fourier transform of u(�x), and the
γ ’s are stiffness coefficients. γx measures the local elastic
response of the stripes to compression or elongation of the
pattern, while γy is the local elastic response to bending of the
stripes. γnl comes from the long-range repulsive interaction,
which generates a nonlocal interaction between far apart pairs
of layers, as illustrated in Fig. 1. Equation (3) in the σ → 2
limit is the usual elastic energy of a smectic phase [44,45].
In Eq. (3), it is assumed the existence of an ultraviolet cutoff
|�k| � k0, where the elastic theory makes sense. For σ � 2,
the nonlocal term results are irrelevant in the long wavelength
limit [32]. Therefore, in this case, we can fix σ = 2. On the
other hand, nonlocalities become important when σ < 2. Thus,
after rescaling of the stiffness coefficients, it is equivalent to
work with the simpler effective Hamiltonian:

�H = B

2

∫
d2k

(2π )2

(
k2
x + l2kσ−2ky

4
)
û(�k)û(−�k), (4)

which interpolates between the different possible cases.
For σ < 2, the long-range tail of the repulsive interaction
dominates at long wavelengths and consequently the sigma
depending term must be kept. On the other hand, for fast
enough decaying repulsive interaction (σ � 2) the appropriate
k4
y contribution is recovered by just fixing σ = 2.

Building upon the classical effective Hamiltonian (4),
which has already been studied in Ref. [32], our goal is to
build a theory of quantum stripe melting, where quantum

fluctuations are considered on an equal footing as thermal
fluctuations, and long-range interactions are appropriately
taken into account. The well known classical theory of stripe
melting [14] has to be recovered as the high temperature limit
of the present formalism when σ � 2.

To promote the classical Hamiltonian (4) to the quantum
realm it is necessary to introduce density fluctuations δφ in the
form:

�Ĥ =
∫

d2k

(2π )2

{
1

2ρ
|δφ|2 + B

2

(
k2
x + l2kσ−2ky

4)|û|2
}
, (5)

where the parameter ρ is the system compressibility [23].
The density fluctuations δφ and the displacement û are now
operators acting on a Hilbert space. In the absence of a
time reversal or a parity breaking field, such us a magnetic
field, they can be considered as canonically conjugate vari-
ables, [δφ(x),û(x ′)] = iδ(x − x ′). Equation (5) with canonical
commutation relations completely defines a quantum model
of stripe fluctuations. Although it is difficult to have an
explicit expression for the compressibility ρ in terms of more
microscopic parameters, it is clear that it codifies quantum
fluctuations of the system. For instance, for ρ → ∞, the
first term in equation (5) vanishes. The result is a classical
Hamiltonian. In the other incompressible limit ρ → 0, the
energy contribution of density fluctuations is much larger that
the displacement field, thus the system is in a deep quantum
regime. In this way, the compressibility interpolates between
a classical (ρ → ∞) and a quantum regime (ρ → 0).

To study a quantum system at finite temperature, it is
convenient to rewrite the theory in the imaginary time
coherent-state path integral formalism [19]. After integration
over δφ, the action in terms of the displacement û reads,

S = B

2

∫
û(0)=û(β)

dτ

∫
d2k

(2π )2

[
ρ ∂τ û(�k,τ )∂τ û(−�k,τ )

+ (
k2
x + l2kσ−2ky

4
)
û(�k,τ )û(−�k,τ )

]
, (6)

where we have conveniently rescaled the fields. The inverse
temperature β enters in the periodic boundary conditions of
the displacement field along the imaginary time axes: û(0,�k) =
û(β,�k). In this formalism, the density fluctuations are δφ ∼
ρ ∂τ û.

Defining the Fourier transform of the field û(�k,τ ) in the
imaginary time direction in the form

û(�k,iωn) = 1

β

∫ β

0
dτe−iωnτ û(�k,τ ), (7)

with the frequencies given by ωn = 2πn/β satisfying the
periodicity condition in the interval [0,β], the action (6) can
be recast as:

S = Bβ

2

∫
d2k

(2π )2

∑
n

(
ρω2

n + k2
x + l2kσ−2ky

4
)

× û(�k,iωn)û(−�k, − iωn). (8)

This is a Gaussian action for which the correlator is:

〈û(�k,iωn)û(−�k,−iωn)〉 = (Bβ)−1

ρω2
n + k2

x + l2kσ−2ky
4 . (9)
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From this we can obtain the mean square fluctuations (MSF)
of translation and orientation degrees of freedom at a Gaussian
level, which inform us on the stability of the possible phases
in a system of stripes, depending on the range of the repulsive
interactions σ , the strength of quantum fluctuations ρ, and
temperature β−1. The MSF of the displacement field u are
given by:

〈u2〉 =
∞∑

n=−∞

∫
d2k

(2π )2

(Bβ)−1

ρω2
n + k2

x + l2kσ−2ky
4 . (10)

Additionally, considering that in the small deviation limit the
angular orientation of the stripe pattern is given by θ (�r) =
∂yu(�r)), we get for the MSF of the angular orientation:

〈θ2〉 =
∞∑

n=−∞

∫
d2k

(2π )2

(Bβ)−1k2
y

ρω2
n + k2

x + l2kσ−2ky
4 . (11)

For finite temperatures β−1 > 0 one can conclude that po-
sitional order is always short ranged. Even at zero quantum
fluctuations (ρ → ∞), the zero frequency mode causes the
MSF of the displacement field to diverge with the linear size
of the system for any σ . On the other hand, orientational order
is always stable within this approximation for weak enough
quantum fluctuations (ρ → ∞) and low enough temperatures
(β−1 → 0). Conversely, for high enough temperature or strong
enough quantum fluctuations the orientational MSF grow
monotonically without limit. Under such conditions some
orientational phase transition is expected at intermediate
values of T and ρ. This picture may change (and indeed
changes) under the effects of topological excitations [32]. The
previous qualitative picture changes at zero temperature, since
in this case it is possible to have long-range positional order.
Indeed, the MSF of the displacement field, Eq. (10), becomes
finite for weak enough quantum fluctuations, independently
of the value of σ . This is because in the limit T → 0 the
sum over Matsubara frequencies turns into an integral, which
adds one effective dimension to the system, regularizing the
integrals. On the other hand, for strong enough quantum
fluctuations (ρ → 0) the MSF of the displacement field grow
without limit, an observation which suggests the existence of
a quantum phase transition at some intermediate value of the
strength of the quantum fluctuations. This is a transition from a
positionally ordered smectic phase to a positionally disordered
nematic phase. The nature of the quantum smectic-nematic
phase transition will be discussed in Sec. IV. The qualitative
picture just described is based on the elastic action (8)
where only the contribution of small and smooth displacement
fields were considered. The situation changes if we also take
into account the contribution of topological defects. In the
following, we will complete the description by the inclusion of
dislocations, which are essential to obtain qualitatively correct
phase diagrams.

A dislocation in the kind of systems considered can be seen
as a pair of stripes of opposite densities coming to an end in
the middle of the stripe pattern, as shown in Fig. 2.

The strength of a dislocation is characterized by the line
integral over a closed counterclockwise path around the
dislocation core, as shown in Fig. 2. The double arrowhead
signals the difference in the number of (pairs of) stripes at the

−2 −1 0 1 2
−6

−4

−2

0

2

4

6

FIG. 2. Schematic representation of a dislocation. The drawn
contour illustrates the jump in the value of the contour integral∮ �∇u · d�s when the integration path encloses the dislocation core.
The length of the dashed line corresponds to the value of the line
integral. The parameter “λ” corresponds to the modulation length of
the stripe pattern 2π/k0.

top and the bottom of the drawn contour. This condition can
be expressed in the form:

∮
�∇u(�r,τ ) · d�s = zλ, ∀ τ, (12)

where z is an integer number and λ stands for the modulation
length (see Fig. 2). Here, it is important to note that we
are dealing with a global neutral system, i.e.,

∫
d2x φ(x) =

0. For instance, if φ(x) represents a local magnetization
perpendicular to the plane, we are dealing with zero global
magnetization phases. This implies that dislocations should
be formed by an even number of stripes in order to keep
neutrality. In this context, the parameter λ represents the whole
modulation length. From a more technical point of view, we
are dealing with phases that preserve global Z2 symmetry. The
smectic and nematic phase transitions break translation and
rotational invariance, however, they do not break the internal
symmetry φ → −φ. Dislocations formed by an odd number
of stripes violate this constraint. This fact has important
consequences on the dynamic of the topological defects. For
instance, odd stripe dislocations, if they exist, are forbidden
to move along the stripe directions, due essentially to charge
conservation; this effect is known as “glide constraint” [46].
In our case, we have no such constraint since even dislocations
automatically preserve neutrality.

As discussed above, the action of Eq. (8) describes smooth
fluctuations of the displacement field u(�r,τ ). In order to write
an effective action including the presence of dislocations, we
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split the displacement field in the form u(�r,τ ) = ureg(�r,τ ) +
uD(�r,τ ), where ureg stands for the regular or smooth contri-
bution and uD is the dislocation contribution. Then, the total
action can be written as

S[u] = Sreg[ureg] + SD[uD]. (13)

Sreg coincides with Eq. (8) and contains the smooth long
wavelength deformations of the displacement u(�r,τ ). SD is
the dislocation contribution to the action that we will compute
in the following. The first step is to have an expression for
a single dislocation profile. At long distances, far away from
the dislocation core, the displacement u(�r,τ ) should be locally
smooth. Then, in order to compute the profile we need to
minimize (8), with u(�r,τ ) satisfying the global constraint (12).
The Euler-Lagrange equation in momentum and frequency
space amounts to:

− δS
δû(−�k,−iωn)

= 0,

− (
ρω2

n + k2
x + l2ky

4kσ−2
)
û(�k,iωn) = 0. (14)

On the other hand, Eq. (12) implies that (through Stokes
theorem) �∇ × �∇u(�r,τ ) = zλδ2(�r − �r ′), where �r ′ is the posi-
tion of the dislocation center. Thus, there is no smooth and
single valued solution for this problem. Then, without loss of
generality, we look for solutions with a discontinuity going
from the dislocation center to infinity, for instance, along the
y axis (Fig. 2). In this way, the displacement field should
satisfy limx→0+ u(x,y) − limx→0− u(x,y) = zλ, for y > 0 and
0 < τ < β. The usual way to solve this problem [14,45] is to
introduce a singular source in the Euler-Lagrange equation that
has the form zλ∂xδ(x − x0(τ ))�(y − y0(τ )) in configuration
space. x0(τ ),y0(τ ) is the position of the dislocation core that
can be generally considered a function of τ . Notice that this
is a very localized source, i.e., it is zero away from the
dislocation core and automatically implements the required
discontinuity of the solution. Now, it is immediate to solve
Eq. (8) with the dislocation source in Fourier space. Turning

back to configuration space we find,

uD(�r,τ ) = −
∫ β

0

dτ ′

β

∫
d2�r ′zδ(�r ′ − �r0(τ ′))

×
∫

d2�k
(2π )2

∑
n

ei�k·(�r−�r ′)+iωn(τ−τ ′)

× λ
kx

ky

1(
ρω2

n + k2
x + l2ky

4kσ−2
) , (15)

from which one can read the Green function for a single
dislocation:

G(�k,iωn) = −λ
kx

ky

1(
ρω2

n + k2
x + l2ky

4kσ−2
) . (16)

Equation (16), in the limit of ωn = 0 and σ = 2, coincides with
the known result of a dislocation’s Green function in classical
smectic phases [44,45].

The generalization of this result to the case of N disloca-
tions is straightforward. The topological constraint now reads:

�∇ × �∇uD(�r,τ )|z = m(�r,τ ) = λ

N∑
n=1

znδ
2(�r − �r ′

n(τ )), (17)

where zn with n = 1, . . . ,N are arbitrary integers, and �r ′(τ ) are
the trajectories of each of the N dislocations cores. Moreover,
we could also consider m(�r,τ ) as a smooth function for a
finite density of dislocations. For an arbitrary distribution of
dislocations, the displacement profile should be computed as:

uD(�r,τ ) =
∫

d�r ′dτ ′ G(�r − �r ′,τ − τ ′)m(�r ′,τ ′), (18)

where G(�r − �r ′,τ − τ ′) is the Fourier transform of Eq. (16).
Taking into account Eq. (18) and Eq. (6) we followed standard
procedures [14,44,45,47] to obtain SD[uD] in terms of m(�r,τ ).
In Fourier space we find:

SD = Bβ

2

∫
d2k

(2π )2

∑
n

(
1(

ρω2
n + k2

x

) l2λ2k2
xk

2
yk

σ−2(
ρω2

n + k2
x + l2ky

4kσ−2
) + 2Eda

2

)
m̂(�k,iωn)m̂(−�k,−iωn). (19)

In this equation we have added the energetic contribution of a screened isolated dislocation, Ed , which is finite and it is not
contained in the long wavelength treatment. a is the short distance cutoff representing the dislocation core diameter.

The correlation function of the angular variable θ (�r) = ∂y(u(�r)) = ∂y(ureg(�r) + uD(�r)) is written in Fourier space as:

〈θ̂ (�k,iωn)θ̂(−�k,−iωn)〉 = k2
y〈û(�k,iωn)û(−�k,−iωn)〉 (20)

and can be computed from the actions Eq. (8) and Eq. (19) using Eq. (18) to relate uD(�r,τ ) with m(�r,τ ). The leading order in the
long wavelength (k → 0) and low temperature (ωn → 0) limits is:

〈θ̂ (�k,iωn)θ̂(−�k,−iωn)〉 = kBT

4Eda2ρω2
n/λ

2 + Bl2k2
yk

σ−2 + 2Eda2k2
x/λ

2
. (21)

This is a generalization of the corresponding results for classical smectic systems [14], taking into account the effects of long-range
repulsive interactions and quantum fluctuations. From here, it is straightforward to infer the form of the corresponding orientational
action:

S = β

2

∫
d2k

(2π )2

∑
n

(
4Eda

2

λ2
ρω2

n + 2Eda
2

λ2
k2
x + Bl2kσ−2ky

2

)
θ̂ (�k,iωn)θ̂(−�k,−iωn). (22)
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This action is not rotationally invariant, since it represents
angular fluctuations around a stripe pattern oriented along the
x axes. Thus, it is a good starting point to study the stability
of the orientational ordered phase under long wavelength
fluctuations. However, in order to study critical properties of
the stripe system, we need to build the most general effective
action that preserves local rotational symmetry, having the
action (22) as the one obtained in the spin wave approximation.
To this end, instead of tracking back the effects of the higher
order contributions in the original action, which could be rather
intricate, one can rebuild the full orientational Hamiltonian
considering the symmetries of the stripe pattern. To identify
the real symmetries of the system we should notice that the
basic cell of any stripe system is composed by a double layer of
opposite densities with a small longitudinal width, as shown in
Fig. 1. In principle, any low energy configuration of the system
of stripes can be built from these basic cells. In Ref. [32] a
model which takes into account the interactions between near
and distant striped cells was introduced. In the next section
we will discuss the qualitative aspects of the model in more
detail, stressing the particular choice of observables for the
identification of the different phase transitions.

B. A plane rotors model

The orientation of each basic cell can be defined by
means of a local director vector �N (�x) ≡ �∇φ(�x). In general,
the director �N points perpendicular to the iso-density curves
φ(�x) = constant, and in the case of sharp interfaces it is peaked
at the domain walls as shown in Fig. 1. However, it is simple to
realize that stripe configurations have no vectorial order since
integrating over the whole sample gives 〈 �N〉 = 0. Notice that
in two adjacent domain walls the directors always point in
opposite directions. Moreover, if �N is globally rotated by
π , the final state is exactly the same as the original one.
Therefore, the orientational order is generally characterized
by a quadratic function of �N , say a symmetric traceless tensor
Qij = NiNj − N2δij /2, where the index i,j = 1,2 refers to
two orthogonal directions. This is a nematic order parameter,
which by construction is invariant under global rotations by π .
An orientationally ordered phase is characterized by 〈Q〉 �= 0,
while for a completely disordered (isotropic) phase, 〈Q〉 = 0.
To completely characterize possible phase transitions it is
necessary to compute fluctuations: 〈Qij (x)Q�m(x ′)〉. From a
technical point of view, this is a difficult calculation since
it is a four point correlation function, 〈Qij (x)Q�m(x ′)〉 ∼
〈∇iφ(x)∇jφ(x)∇�φ(x)∇mφ(x ′)〉. From a physical point of
view, this means that the nematic order parameter is not
obtained as a linear response to a homogeneous external field,
but instead it is necessary to compute a quadratic response.
Within this approach, the minimum approximation to compute
the nematic order parameter is the “self consistent screening
approximation”, where infinite sets of two-loop diagrams can
be computed self consistently [48].

Here we propose an alternative observable to characterize
the isotropic-nematic phase transition [32]. Note that in the
stripe phase, the directors are ordered in an “antiferromag-
netic” structure. Each block of two adjacent domain walls are
characterized by two directors pointing in opposite directions
and separated by half a stripe period. Thus, the system is

FIG. 3. The “two sublattice” structure of a stripe pattern. The
black arrows indicate the local directors. Orientational order is
quantified by the mean orientation of the directors in one of the
two sublattices. The small circles in the background illustrate the
reference state of the stripes where maximum orientational order is
attained.

structured in two interpenetrated sublattices, both of them
ferromagnetically ordered with opposite directions. We can
define a sublattice director �Ni , where i = a,b is the sublattice
index. This is illustrated in Fig. 3. Then, similarly to what is
done to describe antiferromagnetic order, it is useful to work
with two linear combinations of the sublattice directors

�N (x) = 1
2 ( �Na(x) + �Nb(x + λ/2)), (23)

�Ns(x) = 1
2 ( �Na(x) − �Nb(x + λ/2)), (24)

where λ = 2π/k0 is the stripe period. In the stripe phase
〈 �N〉 = (〈 �Na〉 + 〈 �Nb〉)/2 = 0, reflecting the fact that there is
no dipolar or vector order. In turn, the staggered order
parameter, Eq. (24), reflects the vectorial order of one of the
sublattices, 〈 �Ns〉 = 〈 �Na〉. It can be noted that if 〈Ns〉 �= 0 the
system is orientationally ordered. For the sake of characteriz-
ing the isotropic-nematic phase transition one can work either
with the tensor order parameter Qij or with the vector one
�Ns . Both of them characterize the same phase transition. On

the other hand, the critical exponents can be quite different
because Qij and �Ns are different observables. While Qij is a
quadratic response to an external uniform field, �Ns is a linear
response to a staggered conjugate field. In this sense, the latter
is easier to compute since it is a linear function of the density
gradient �∇φ(x). From the point of view of the symmetry, the
nematic order is characterized by its invariance under rotations
by π . This is obvious in the tensor order parameter since Q̂ is
a quadratic function of �N . On the other hand, �Ns changes sign
under rotation by π . However, from Eq. (24) and Fig. 1 it is
clear that a change of sign in �Ns represents a change from high
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density (shaded areas) to low density (white areas) regions, and
vice versa. Then, �Ns and − �Ns represent the same state in the
thermodynamic limit, as it should be. To describe the nematic
transition using the staggered director we will assume that one
sublattice is slaved to the other. Thus, we are not considering
compression fluctuations, which can be treated perturbatively.

In the following, orientational order will be characterized
by a space-time dependent unit director, given by

�n(�x,τ ) =
�Na(�x,τ )

| �Na|
. (25)

The Hamiltonian for this order parameter can be expressed as
the sum of two contributions:

H [�n] = Hsr [�n] + H�r [�n], (26)

where Hsr is a local function describing the effect of short-
ranged interactions between the unit cells and H�r codify the
long-ranged interactions and it is in general nonlocal. From
symmetry considerations, the effective local Hamiltonian
should have the form [14,44,47]:

Hsr = 1

2

∫
d2x[g1( �∇ · �n)2 + g2( �∇ × �n)2], (27)

since this is the more general quadratic form that is local and
rotational invariant. Of course, it could contain nonquadratic
local terms that we will treat perturbatively in a renormaliza-
tion group approach. The coupling constants g1 and g2 will be
defined later in terms of the stripe melting parameters such as
the stripe stiffness and dislocation’s energy.

To evaluate the contribution of the long-ranged interactions
we start by coarse graining the system, covering the plane
with small rectangles of area Ai ∼ λa with a � λ, centered
at positions xi corresponding to a domain-wall sublattice as

indicated in Fig. 1. Considering two well separated rectangles
of areas A1 and A2, located at a distance |x − x ′| � λ, the
interaction between them can be expressed in the form:

�H1,2 = 1

2

∫
A1

dx

∫
A2

dx ′φ(x)J (x − x ′)φ(x ′). (28)

Performing a multipolar expansion of the interaction J (x) =
J/|x|σ , summing over all possible pairs of rectangles and
retaining only the leading dipole contributions, the long-range
part of the Hamiltonian can be written in the form:

Hlr = g

2

∫
d2x

∫
d2x ′�(|�x − �x ′|)

( �n(�x) · �n(�x ′)
|�x − �x ′|σ+2

− (σ + 2)
�n(�x) · (�x − �x ′)�n(�x ′) · (�x − �x ′)

|�x − �x ′|σ+4

)
, (29)

where g = σJP 2, the dipolar moment is given by P =
1
λ

∫
λ
dxxφ(x) and �(x) is a short distance cutoff [32].

Since we are interested in the classical as well as in the
quantum behavior of this system, it is convenient to work in
the Euclidean effective action formalism, in which we write
the partition function as a functional integral of the form:

Z[�h,β] =
∫

Dn̂ e−Sg [�n(�x,τ )]+∫
d2xdτ �h(�x)·�n(�x), (30)

where the unitary vector n̂(�x,τ ) is a function of position
and Euclidean time, satisfying the periodic boundary condi-
tions n̂(�x,0) = n̂(�x,β). �h is the conjugate field of the order
parameter. For static configurations, �n(�x,τ ) ≡ �n(�x), Sg[�n] =
βH [�n], where H is given by Eq. (26). As described above,
H is strongly constrained by symmetry. Conversely, the
order parameter dynamics cannot be deduced by means
of symmetry properties only. As discussed in the previous
section, for the present case we consider a conservative local
dynamics that preserves time reversal. Then, the Euclidean
action can be written as:

Sg = 1

2

∫ β

0
dτ

∫
d2x

[
g0(∂τ �n)2 + g1( �∇ · �n)2 + g2( �∇ × �n)2

]

+ g

2

∫ β

0
dτ

∫
d2x

∫
d2x ′�(|�x − �x ′|)

( �n(�x,τ ) · �n(�x ′,τ )

|�x − �x ′|σ+2
− (σ + 2)

�n(�x,τ ) · (�x − �x ′)�n(�x ′,τ ) · (�x − �x ′)
|�x − �x ′|σ+4

)
. (31)

Sg[�n] describes the orientational order properties of a stripe forming system due to competing interactions at different scales. �n
represents the director of one sublattice, as described above, and 〈�n〉 is the linear response to a staggered conjugate field with
a periodicity λ. In Eq. (31) there are three local terms, given by the coupling constants g0,g1,g2. g0 measures the intensity of
the quantum fluctuations, while g1 and g2 are stiffness coefficients. The effects of long-ranged interactions are contained in the
last two nonlocal terms, both proportional to the coupling constant g. Notice that these terms are a generalization of a dipolar
interaction, with an isotropic component as well as an anisotropic one. Both components decay as 1/|x|σ+2. It can be shown that
the Euclidean action (31) matches the one obtained in the spin wave limit, Eq. (22), when the coupling constants are given by:

g0 = 4Eda
2

λ2
ρ g1 = γy g2 = 2Eda

2

λ2
g = cγnl. (32)

The classical isotropic-nematic transition is governed by the fixed point g1 = g2. Any small deviation from this situation will flow
towards the fixed point when the renormalization group is implemented [45]. Since at high temperatures we should reproduce the
classical result, we expect that, at length scales much longer than the modulation length, the anisotropy in the spatial stiffnesses
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vanishes. This leads to a simpler effective action given by

Sg = 1

2

∫ β

0
dτ

∫
d2x

⎡
⎣g0(∂τ �n)2 + g1

∑
μ=1,2

|∂μ�n|2
⎤
⎦

+ g

2

∫ β

0
dτ

∫
d2x

∫
d2x ′ �(|�x − �x ′|)

( �n(�x,τ ) · �n(�x ′,τ )

|�x − �x ′|σ+2
− (σ + 2)

�n(�x,τ ) · (�x − �x ′)�n(�x ′,τ ) · (�x − �x ′)
|�x − �x ′|σ+4

)
. (33)

As anticipated in Sec. II A, at T = 0 there can be two different kind of orders: positional and orientational. However, only
orientational order survives upon inclusion of thermal fluctuations. Thus, in the following sections we will consider first the zero
temperature phase transitions and then the finite T phase diagram. In Sec. III we will study the isotropic-nematic quantum phase
transition. Then, in Sec. IV the smectic-nematic quantum phase transition will be analyzed. Finally, in Sec. V we will consider
the effects of thermal fluctuations and complete the phase diagrams of the system.

III. NEMATIC ORDER AT ZERO TEMPERATURE: QUANTUM CRITICALITY

It has been shown [49] that the universality class does not change if the anisotropic dipolar interaction is replaced by an
attractive isotropic term, decaying with the same power law as the original interaction. Then, as far as universality is concerned,
the action can be further simplified to read:

Sglr = 1

2

∫ β

0
dτ

∫
d2x

⎡
⎣g0(∂τ �n)2 + g1

∑
μ=1,2

|∂μ�n|2
⎤
⎦ − g

2

∫ β

0
dτ

∫
d2x

∫
d2x ′ �(|�x − �x ′|) �n(�x,τ ) · �n(�x ′,τ )

|�x − �x ′|σ+2
, (34)

which is a nonlinear sigma model with long-range interactions. As we have discussed in previous sections, we expect a phase
transition controlled by g0 ∼ ρ [see Eq. (32)]. Thus, it should exist a critical value gc

0 ∼ ρc separating an ordered phase (g0 > gc
0)

from a quantum disordered one for g0 < gc
0. To compute critical properties, instead of working with a nonlinear sigma model,

it is simpler to work with the linear sigma model, since both models belong to the same universality class, provided the
order parameters share the same symmetry properties and the interactions of both models have the same long wavelength
behavior. [19,50,51] There is an intuitive way to understand this fact. It is possible to eliminate g0 and g1 from the action, by just
rescaling space-time coordinates and the field �n. The result is an isotropic rotor model in three dimensions, with �n · �n = g

1/2
0 g1.

We see that the net effect of g0 is to control the modulus of the vector field �n. Thus, the phase transition can be tuned by controlling
the strength of the vector field. Then, we can relax the constraint of fixed modulus by adding, instead, a potential, V (|�n|2), with
deep minima at �n · �n = g

1/2
0 g1. We can write,

Sglin = 1

2

∫ β

0
dτ

∫
d2x

⎡
⎣(∂τ �n)2 +

∑
μ=1,2

|∂μ�n|2 + r �n(�x,τ )2 + 2u

4!
�n(�x,τ )4

⎤
⎦

− g̃

2

∫ β

0
dτ

∫
d2x

∫
d2x ′ �(|�x − �x ′|) �n(�x,τ ) · �n(�x ′,τ )

|�x − �x ′|σ+2
, (35)

where the restriction on the modulus of the vector �n has
been lifted. Equations (34) and (35) represent very different
models. The former is a rotor model, i.e., there is a hard
constraint on the modulus of the vector field. On the other
hand, the latter is an O(2) model without any constraint. The
connection between both models resides in the fact that the
degrees of freedom of the nonlinear sigma model [Eq. (34)]
are the Goldstone modes of the linear model [Eq. (35)] in
the broken symmetry phase where 〈�n · �n〉 = −6r/u = g

1/2
0 g1.

The longitudinal fluctuations are gapped, being irrelevant in
the renormalization group sense. Thus, both models, even
having quite different behaviors, share the same critical
properties, i.e., they are in the same universality class. The
equivalence of both models at criticality can be rigorously
shown by using a Hubbard-Stratonovich transformation to lift
the constraint [52]. Very near the critical point, it can be shown
that (r − rc)/rc ∼ (gc

0 − g0)/gc
0 = (ρc − ρ)/ρc, where rc, g

c
0,

and ρc are the corresponding critical values and in the last

equality we have used Eq. (32). In this way, the parameter
r in the linear model controls the mean value of the vector
modulus, in the same way that g0 does in the nonlinear
sigma model. Therefore, the parameter r controls quantum
fluctuations equivalently to the compressibility ρ. However,
increasing values of r correspond to decreasing values of ρ.
Thus, the classical limit is described by r � rc, while the
strong quantum regime corresponds to r � rc.

To analyze critical properties, we found it convenient to
re-write Eq. (35) for an N -dimensional vector �n(�x,τ ) in Fourier
space for general spatial dimension d and a long-ranged
interaction decaying as |�x − �x ′|−(σ+d):

So = 1

2

∑
n

∫
ddk

(2π )d
(
ω2

n + kσ + r
)
n̂α(�k,ωn)n̂α(−�k,−ωn)

+ u

4!

∫ β

0
dτ

∫
ddx �n(�x,τ )4, (36)
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where ωn are the Matsubara frequencies and a sum over
the vector component indexes α = 1 . . . N is understood. We
recall that in Eq. (36), in a more similar way than Eq. (4), if σ �
2, we should consider k2 as the dominant contribution to the
dispersion. On the other hand, for σ < 2, kσ is the dominant
term. By fixing d = 2,N = 2, we recover the original model.
The critical properties of the model (36) at T = 0 have
been studied by means of the epsilon expansion technique
in Ref. [53]. In the following subsections we summarize
the results, offering an alternative way to compute critical
exponents, especially useful at finite temperature which we
present in the next section. As we have already discussed, the
behavior of positional and orientational fluctuations allow us
to classify the models according to the range of the interaction,
whether σ � 2 or σ < 2.

A. σ � 2

When σ � 2 the interactions are effectively short ranged
and the nonlocal terms in (35) are irrelevant in the renormaliza-
tion group sense. Then, one can simply fix σ = 2 in Eq. (36),
which at T = 0 reads:

S = 1

2

∫
dωddk

(2π )d
(ω2 + k2 + r) n̂α(�k,ω)n̂α(−�k, − ω)

+ u

4!

∫ ∞

0
dτ

∫
ddx �n(�x,τ )4. (37)

This is the well known classical O(N ) model in effective
dimension deff = d + 1 [52]. Its critical behavior is very well
established and very good approximations for the critical
exponents are known. The upper critical dimension is deff = 4,
or equivalently the spatial upper critical dimension is du = 3.
While for du > 3 the Gaussian fix point is stable and mean field
gives the correct critical behavior, for d = 2 it is necessary to
make an ε = 3 − d expansion. It turns out that there is a non-
trivial fixed point of order ε at r = rc

2 = −ε(n + 2)/(n + 8)
and u = uc

2 = 4ε/(n + 8). The susceptibility, χ ∼ |r − rc|−γ ,
and correlation length, ξ ∼ (r − rc)−ν , are characterized by
the exponents

γ = 1 + 1

2

(
N + 2

N + 8

)
(3 − d) (38)

ν = 1

2
+ 1

4

(
N + 2

N + 8

)
(3 − d). (39)

In the special case of interest in this work, N = 2, d =
2 at T = 0 is equivalent to a classical XY model in three
dimensional space at finite temperature. The temperature in
the classical system plays the role of the inverse coupling
constant in the quantum system at T = 0 [54]. It is known that
the classical model has a critical point driven by spin wave
fluctuations at a finite Tc and several critical exponents for the
d = 3 XY universality class have been computed numerically
with great precision [55]. These results are compatible with
more recent ones on the quantum d = 3 O(2) model [56]. This
quantum critical point (QCP) is depicted in Fig. 4.

FIG. 4. Qualitative phase diagram for the orientational order
parameter for σ � 2 in d = 2. rc

1 marks a T = 0 first order phase
transition between a phase with long-range positional order (L.R.P.O)
and a long-range orientationally ordered one (L.R.O.O). A quantum
critical point at rc

2 separates the orientational long-range ordered
phase from a quantum disordered one also called short-ranged
orientational ordered (S.R.O.O). At finite temperature only quasi-
long-range orientational order (Q.L.R.O.O) is present ending at a KT
critical line.

B. σ < 2

In this case the generalized dipolar interaction, last term
of Eq. (35), is generally a relevant interaction depending on
the space dimension d. Starting from the action (36), the
susceptibility at one loop order reads:

χ (k,ω,d,σ,r,u)−1 = kσ + ω2 + r + 2
u

4!
N

〈
n̂2

α

〉
, (40)

where 〈n̂2
α〉 is determined self-consistently from

〈
n̂2

α

〉 =
∫

ddk dω

(2π )d+1

1

kσ + ω2 + r + 2 u
4!N

〈
n̂2

α

〉 . (41)

By performing the change of variables:

k′ = kσ/2,

d ′ = 2

σ
d,

u′ = uf (d,σ ), (42)

where f (d,σ ) = (2π )d−d ′
(2/σ )(Sd/Sd ′ ) and Sd is the area of

a d-dimensional sphere, we find that

χ (k,ω,d,σ,r,u) = χ (k′,ω,d ′,2,r,u′), (43)

where χ (k′,ω,d ′,2,r,u′) is the susceptibility of the short-
range interacting case (σ = 2), computed from Eq. (37), with
renormalized values of k, u, and d. This relation allows us to
compute the critical exponent of the long-ranged interacting
models from the knowledge of the local models, at least at the
one loop approximation. For instance, the critical exponent
of the susceptibility should satisfy γ (σ,d) = γ (2,d ′). Then,
using Eq. (38) we immediately find,

γ (σ,d) = 1 + 1

σ

(N + 2)

(N + 8)

(
3σ

2
− d

)
, (44)
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which coincides with the result obtained by a direct calculation
within the perturbative renormalization group at linear order
in an ε expansion [53].

The upper critical dimension du for σ < 2 is obtained
from the well known value d ′

u = 3 for σ = 2, and the scaling
relations of Eq. (42), giving du = 3σ/2. We note that the upper
critical dimension depends continuously on σ . This is a direct
consequence of the fact that the dynamical exponent z = σ/2
also depends on σ , since the dispersion relation of the lowest
energy modes is ω ∼ kz ∼ kσ/2. Of course, z → 1 when we
take the limit σ → 2.

A second critical exponent for σ < 2 can be obtained by
noticing that the scaling of the wave vectors k = (k′)2/σ implies
that any length scale � in the original system is related to the
length scale �′ in the local σ = 2 system by l = (l′)2/σ . In
particular, the correlation length should satisfy ξ = (ξ ′)2/σ ,
implying that the associated critical exponent will be given by
ν(σ,d) = 2

σ
ν(2,d ′). Using Eq. (39) and the scaling relations of

Eq. (42), we find

ν(σ,d) = 1

σ

[
1 + 1

σ

(N + 2)

(N + 8)

(
3σ

2
− d

)]
, (45)

which coincides with the expression computed by means of
a linear expansion in ε = 3σ/2 − d [53]. It is interesting to
note that, the larger the interaction range, the smaller the
upper critical dimension. As a consequence, for σ < 2d/3, the
exponents coincide with the mean-field ones γ = 1, ν = 1/σ .
In particular, these exponents are exact for the Coulomb
interaction (σ = 1) in d = 2.

Once two critical exponents are known, other ones like
η,α,β can be immediately obtained by scaling and hyperscal-
ing relations [18]:

ν(2 − η) = γ (46)

α + 2β + γ = 2 (47)

2 − α = ν(d + z), (48)

taking into account that, at one loop approximation, z = σ/2.
In Table I we summarize the results obtained for different
values of the interaction range parameter σ . The corresponding
phase diagram is shown in Fig. 5.

IV. SMECTIC-NEMATIC QUANTUM PHASE TRANSITION

Although positional order is destroyed at any finite temper-
ature already at the level of Gaussian fluctuations, as shown
in Sec. II A, it can actually exist at T = 0. From Eqs. (20)
and (21) it can be inferred that, at T = 0, the proliferation of
unbounded dislocations destroys positional order in a region
where orientational order is still possible. Then, besides the
isotropic-nematic transition described in Sec. III, the system
also displays a nematic-smectic quantum phase transition.

A theory of the thermal nematic-smectic phase transi-
tion was developed by McMillan and de Gennes [44,57].
Some generalizations to quantum systems were considered
in Refs. [58–60]. Here, we follow similar procedures to
understand the nature of the smectic-nematic quantum phase
transition as a function of the interaction range parameter

FIG. 5. Qualitative phase diagram for the orientational order
parameter for σ < 2 in d = 2. rc

1 marks a T = 0 phase transition
between a phase with long-range positional order (red line) (L.R.P.O)
and a long-range orientational ordered one (L.R.O.O). For 4/3 <

σ � 2 the transition is of first order induced by quantum fluctuations,
while for σ � 4/3 it is of second order. A quantum critical point
at rc

2 separates the long-range orientational ordered phase (L.R.O.O)
from a quantum disordered one or short-ranged orientational ordered
(S.R.O.O). The finite temperature critical line (red) separates a
long-range ordered phase from a disordered one, ending at the QCP.

σ . The theory starts from an orientationally ordered state
characterized by the director �n(x), pointing for instance in
the x direction: �n(x) = nx . On top of this we consider
a positional order parameter given by a complex function
ψ(�x,τ ) = ρ(�x,τ ) exp ( − ik0u(�x,τ )). ρ is the smectic order
parameter, indicating the presence of a density modulation.
The phase is proportional to the displacement field u(�x,τ ).
To build a rotationally invariant action, the smectic order
parameter and the nematic fluctuations should be coupled by a
“covariant derivative” Dx = ∂x and Dy = ∂y − ik0ny(�x,τ ) (x
is the coordinate along the director �n, while the coordinate y is
transversal). Then, the action for the smectic order parameter
coupled to nematic fluctuations is given by:

S[ψ,ny] =
∫

d2x dτ

{
a

2
| ψ |2 +b

4
| ψ |4

+ Cx

2

∣∣∣∣∂ψ

∂x

∣∣∣∣
2

+ Cy

2

∣∣∣∣
(

∂

∂y
− ik0ny

)
ψ

∣∣∣∣
2
}

+
∫

d2k

(2π )3
dω

(
g0ω

2 + gkσ
)
n̂y(�k,iω)

× n̂y(−�k, − iω). (49)

In this equation, a controls the phase transition, while
b > 0. Cx and Cy are smectic elastic constants. Since the
system is anisotropic, they are generally different. The last
term of Eq. (49) represents the nematic dynamics, where
g0 and g are couplings associated to the small angular
fluctuations of the director, which can be traced back to
the action (34). Equation (49) resembles the effective
free energy for smectic-nematic transition in 3D liquid
crystals and the metal-superconductor transition in type 1
superconductors [44,61,62].
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From the first line of Eq. (49), it is simple to conclude that,
in the absence of nematic fluctuations, the phase transition is
second order, driven by the sign of the parameter a. However,
nematic fluctuations can change the nature of the transition
depending on the range of the interactions. To see this, we can
integrate out the Gaussian transverse nematic fluctuations in
ny . This leads us to an effective action Sef[ψ], such that:

exp(−Sef[ψ]) =
∫

D[ny] exp(−S[ψ,ny]). (50)

The derivative of Sef[ψ] with respect to ψ lead us to:

δSef[ψ]

δψ
= aψ + bψ3 + Cyk

2
0

〈
n2

y

〉
ψ, (51)

where

〈
n2

y

〉 =
∫

d2kdω

(2π )3

1

g0ω2 + gkσ + Cyk
2
0ψ

2
. (52)

Computing the integral in Eq. (52) at leading order in ψ and
replacing the result in Eq. (51), we obtain:

δSef[ψ]

δψ
=

{
ãψ − C̃yk

2
0ψ

4
σ + b̃ψ3, 4

3 � σ � 2

ãψ + b̃ψ3, σ � 4
3

,

(53)

where ã, b̃ and C̃y are renormalized couplings.
The first line of Eq. (53) implies that the system has a first

order smectic-nematic transition induced by fluctuations for
4
3 < σ � 2. This result includes the short-range interaction
case σ = 2. Moreover, it is clear from the second line
of Eq. (53) that for σ � 4

3 the transition is second order,
provided the nematic fluctuations are weak enough to keep
the renormalization of the quartic coupling b̃ positive. If this
condition is not satisfied, it is necessary to include higher order
powers of ψ in the calculation.

Summarizing, we expect that the two-dimensional smectic-
nematic quantum phase transition is discontinuous for short-
range as well as long-range interaction models, provided
4
3 < σ � 2. The dipolar interaction is included in this regime.
On the other hand, for extremely long ranged interactions
σ � 4

3 (including the Coulomb case), the transition is of
second order. The transitions are shown in Figs. 4 and 5.
It is interesting to note that there is no critical line ending
at the quantum transition point since any finite tempera-
ture completely destroys positional order. This fact could
change in the presence of a substrate where the translation
invariance is broken to a discrete group. In this case, the
smectic phase could be stabilized at finite temperature.

V. THERMAL FLUCTUATIONS

In order to understand the T − r phase diagram, we analyze
in this section thermal fluctuations. Similarly to the T = 0
case, there are two very distinct behaviors depending on the
range of interactions, which we proceed to describe separately.

A. σ � 2

In this case, the model of Eq. (36) coincides with the
quantum rotor model in d dimensions and finite T , extensively

discussed in the literature [19]. d = 2 is a special case,
because at finite T , it is the lower critical dimension. Thus,
for negligible quantum fluctuations a Kosterlitz-Thoules (KT)
classical phase transition takes place at a critical TKT. Near
the critical line, we expect that thermal fluctuations dominate
(except at the QCP). So, there should be a KT line that connects
the classical and the quantum critical points as shown in
Fig. 4. The long-range orientational order at T = 0 is destroyed
by temperature fluctuations, producing a quasi-long-range
ordered (QLRO) phase, characterized by a power law decay
of the order parameter correlation functions. This expectations
are supported by numerical simulations of the XY model in
three dimensions, with a finite third dimension [54]. Although
we do not expect that an ε = 3 − d expansion could produce
sensible results for d = 2, they will be useful for the long range
interaction regime (σ < 2) where the lower critical dimension
is d = σ . In general, the inverse susceptibility very near the
QCP is expected to be of the form:

χ−1(k,δr) = k2 + R(δr,T ), (54)

where R(δr,T ) is the gap opened when one moves away from
the QCP. δr = r − rc is the distance to the critical point. This
gap can be computed in the limits δr/r � 1 and T � δrν ,
leading to the following results [17,19]:

R(δr,T ) =
{
δr + c1T

2 for d � 3
δr + c1T

d−1 for d > 3
, (55)

where c1 is a nonuniversal constant.

B. σ < 2

This long ranged interacting regime is very different from
the previous one. The lower critical dimension is d = σ ,
then for d = 2 we have a classical thermal second order
phase transition for relatively small quantum fluctuations [32].
Consequently, a second order line connects the classical and
the quantum critical point, producing a whole region of the
phase diagram of truly long-ranged order, depicted in Fig. 5.

To compute the low temperature behavior near the QCP we
closely follow the methods of Ref. [17]. First, by summing
up over the high frequency modes, we obtain an effective
action for the zero frequency mode. The result is an effective
“classical” theory whose parameters are renormalized by
quantum fluctuations. Starting from the model of Eq. (36)
we obtain:

ST = β

2

∫
ddk

(2π )d
(kσ + R)n̂α(�k) · n̂α(−�k)

+βU

∫ 4∏
i=1

ddki

(2π )d
δ

(
4∑

i=1

�ki

)

× n̂α(�k1)n̂α(�k2)n̂β(�k3)n̂β(�k4), (56)

where the couplings R and U are given by:

R(d,σ,r,u,β) = r + 4u(N + 2)

× 1

β

∑
n�=0

∫
ddk

(2π )d
1

ω2
n + kσ + r

, (57)
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U (d,σ,r,u,β) = u − 4u2(N + 8)

× 1

β

∑
n�=0

∫
ddk

(2π )d
1(

ω2
n + kσ + r

)2 . (58)

From Eq. (56) it is straightforward to compute the inverse
susceptibility at one loop approximation:

χ (k,d,σ,R,U )−1 = kσ + R + 2
U

4!
N

〈
n̂2

α

〉
, (59)

where 〈
n̂2

α

〉 = 1

β

∫
ddk

(2π )d
1

kσ + R + 2 U
4!N

〈
n̂2

α

〉 . (60)

These equations R and U are given by Eqs. (57) and (58),
respectively.

Before proceeding with the computation of the integrals
it is interesting to investigate how the susceptibility scales
with the transformation (42). Form Eqs. (57) and (42) the gap
parameter at σ < 2 is related to the one computed at σ = 2 as:

R(d,σ,r,u,β) = R(d ′,2,r,u′,β). (61)

Moreover, performing the same transformation on Eq. (58) we
find,

U (d,σ,r,u,β) = 2

σ
f (d ′,σ )U (d ′,2,r,u′,β). (62)

Using these results we can show that, in the context of one loop
approximation, the susceptibility for σ < 2, given by Eqs. (59)
and (60), is related to the one computed with the short-ranged
interaction model by the expression

χ (k,d,σ,R,U,β) = χ (k′,d ′,2,R,U ′,β), (63)

where the scaling relations are given by Eq. (42). Interestingly,
the same scaling properties satisfied by the susceptibility at
T = 0 are satisfied at finite, albeit small, temperatures.

Equation (63) can be used to compute several critical
properties of the long-ranged interaction model at finite
temperature. The inverse susceptibility for σ < 2 at finite
temperature has a similar expression as in the local case,

χ−1(k,δr) = kσ + R(δr,T ). (64)

However, the gap parameter R is now computed using the local
model result (55) and the scaling relations (42). We find,

R(δr,T ) =
{
δr + c1T

2 for d < 3σ
2

δr + c1T
2d
σ

−1 for d > 3σ
2

. (65)

The condition R(δr(T ),T ) = 0 determines the critical line
near the QCP:

δr(T ) =
{−c1T

2 for d < 3σ
2

−c1T
2d
σ

−1 for d > 3σ
2

. (66)

Moreover, the correlation length at the QCP (δr = 0) as T → 0
can be obtained from ξ (T ) = R(0,T )−1/σ , giving:

ξ (T ) ∼
{
T −2/σ for d < 3σ

2

T − 1
σ

( 2d
σ

−1) for d > 3σ
2 .

(67)

These results are summarized in Table I and Fig. 5.
Let us conclude this section by discussing the validity of

the approximations made, for the particular case d = 2 with

σ � 2. In the usual O(N ) model in deff = d + 1 the upper
critical dimension is du = 3 (deff = 4), while the lower critical
dimension is dl = 2. For this reason, Fig. 4 displays a KT line,
there is no symmetry breaking across the critical line, and the
low temperature phase is actually a QLRO phase. Evidently,
an ε expansion around the upper critical dimension fails in this
limit. However, when σ < 2, the upper as well as the lower
critical dimensions depends on σ and they are actually given
by dl = σ, du = 3σ/2. Consequently, the two-dimensional
system is always above the lower critical dimension. For this
reason, the critical line depicted in Fig. 5 is truly second order
and an ε expansion produces qualitatively good results. Of
course, as usual, the numerical values computed at order ε

have growing errors when we move away from the upper
critical dimension du = 3σ/2. It is interesting to note that
for d = 2 with Coulomb interactions (σ = 1), d > du = 3/2
and then the critical exponents are dominated by the Gaussian
fixed point and therefore are exact. The perturbative, finite
T calculations provide the correlation length as well as the
susceptibility diverging as T −3 at the QCP, while the critical
line behaves as δr ∼ T 3 while T → 0.

VI. DISCUSSION AND CONCLUSIONS

In this paper we developed a theory for the melting of stripe
phases in two-dimensional quantum systems with competing
interactions of variable range, considering both quantum and
thermal fluctuations. Our main conclusion is that the nature
of the phase transitions as a consequence of the melting
process can be very different depending on the range of the
competing repulsive interactions σ , extending considerably
the known results which, almost exclusively, were restricted
to short-range interactions. A mapping of the problem to
a model of quantum rotors in the plane with generalized
dipolar interactions allowed us to obtain several interesting
properties of the phase transitions and universality classes of
the models. At T = 0 we showed that the melting of stripes
proceeds through a two step process, which can produce two
quantum critical points for sufficiently long-ranged repulsive
interactions, σ � 4/3, while when σ > 4/3 the smectic-
nematic transition turns out to be of first order. At finite
temperatures only some kind of orientational order is possible.
When σ � 2 the well known critical phase with algebraic
orientational correlations is present, ending at a KT line.
But for sufficiently long-range repulsive interactions σ < 2,
a phase with long-range nematic order is possible, ending at a
second order critical line. At T = 0, critical exponents can be
computed due the equivalence of the quantum d = 2 problem
at T = 0 with the classical model of rotors in d + 1 = 3
dimensions at finite temperature, for which properties of
short range interactions are well known. An approximate
treatment for finite temperatures allowed us to compute the
behavior of thermodynamic quantities near the QCP, especially
the temperature dependence of the uniform susceptibility,
the correlation length, and the critical line, summarized in
Table I.

In this work the melting of stripes defined by a scalar
density order parameter was studied. Our results could be
tested, e.g., in ultracold dipolar Fermi gases in the case
where the dipoles point perpendicular to the plane of the
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system, in which case the system of dipoles recovers space
rotational invariance [30]. Important extensions for future
work are the consideration of a vector order parameter,
e.g., inclusion of different spin components, and also an
interaction among different degrees of freedom, which is
important for the physics of high Tc superconductors and
other strongly correlated electronic systems in which electron
and spin density waves are intertwined, as considered, e.g., in
Ref. [20]. Lattice anisotropies can also be important perturba-
tions in real situations which deserve to be studied in future
work.
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[47] L. Golubović, T. C. Lubensky, and C. S. O’Hern, Phys. Rev. E
62, 1069 (2000).

[48] D. G. Barci, A. Mendoza-Coto, and D. A. Stariolo, Phys. Rev.
E 88, 062140 (2013).

[49] P. G. Maier and F. Schwabl, Phys. Rev. B 70, 134430
(2004).

[50] E. Brézin and J. Zinn-Justin, Phys. Rev. B 14, 3110 (1976).
[51] E. Brézin, J. C. Le Guillou, and J. Zinn-Justin, Phase Transitions

and Critical Phenomena (Academic Press, London, 1976),
Vol. 6.

[52] D. J. Amit, Field Theory, the Renormalization Group, and Crit-
ical Phenomena (McGraw-Hill International Book Company,
New York, 1978).

[53] A. Dutta and J. K. Bhattacharjee, Phys. Rev. B 64, 184106
(2001).

[54] C. Hooley, S. Carr, J. Fellows, and J. Schmalian, JPS Conf. Proc.
3, 016018 (2014).

[55] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E.
Vicari, Phys. Rev. B 63, 214503 (2001).

[56] K. Langfeld, Phys. Rev. D 87, 114504 (2013).
[57] W. L. McMillan, Phys. Rev. A 4, 1238 (1971).
[58] K. Sun, B. M. Fregoso, M. J. Lawler, and E. Fradkin, Phys. Rev.

B 78, 085124 (2008).
[59] K. Sun, B. M. Fregoso, M. J. Lawler, and E. Fradkin, Phys. Rev.

B 80, 039901(E) (2009).
[60] D. G. Barci and E. Fradkin, Phys. Rev. B 83, 100509 (2011).
[61] W. L. McMillan, Phys. Rev. A 6, 936 (1972).
[62] W. L. McMillan, Phys. Rev. A 7, 1673 (1973).

144209-15

https://doi.org/10.1080/14786430600636328
https://doi.org/10.1080/14786430600636328
https://doi.org/10.1080/14786430600636328
https://doi.org/10.1080/14786430600636328
https://doi.org/10.1103/PhysRevE.62.1069
https://doi.org/10.1103/PhysRevE.62.1069
https://doi.org/10.1103/PhysRevE.62.1069
https://doi.org/10.1103/PhysRevE.62.1069
https://doi.org/10.1103/PhysRevE.88.062140
https://doi.org/10.1103/PhysRevE.88.062140
https://doi.org/10.1103/PhysRevE.88.062140
https://doi.org/10.1103/PhysRevE.88.062140
https://doi.org/10.1103/PhysRevB.70.134430
https://doi.org/10.1103/PhysRevB.70.134430
https://doi.org/10.1103/PhysRevB.70.134430
https://doi.org/10.1103/PhysRevB.70.134430
https://doi.org/10.1103/PhysRevB.14.3110
https://doi.org/10.1103/PhysRevB.14.3110
https://doi.org/10.1103/PhysRevB.14.3110
https://doi.org/10.1103/PhysRevB.14.3110
https://doi.org/10.1103/PhysRevB.64.184106
https://doi.org/10.1103/PhysRevB.64.184106
https://doi.org/10.1103/PhysRevB.64.184106
https://doi.org/10.1103/PhysRevB.64.184106
https://doi.org/10.7566/JPSCP.3.016018
https://doi.org/10.7566/JPSCP.3.016018
https://doi.org/10.7566/JPSCP.3.016018
https://doi.org/10.7566/JPSCP.3.016018
https://doi.org/10.1103/PhysRevB.63.214503
https://doi.org/10.1103/PhysRevB.63.214503
https://doi.org/10.1103/PhysRevB.63.214503
https://doi.org/10.1103/PhysRevB.63.214503
https://doi.org/10.1103/PhysRevD.87.114504
https://doi.org/10.1103/PhysRevD.87.114504
https://doi.org/10.1103/PhysRevD.87.114504
https://doi.org/10.1103/PhysRevD.87.114504
https://doi.org/10.1103/PhysRevA.4.1238
https://doi.org/10.1103/PhysRevA.4.1238
https://doi.org/10.1103/PhysRevA.4.1238
https://doi.org/10.1103/PhysRevA.4.1238
https://doi.org/10.1103/PhysRevB.78.085124
https://doi.org/10.1103/PhysRevB.78.085124
https://doi.org/10.1103/PhysRevB.78.085124
https://doi.org/10.1103/PhysRevB.78.085124
https://doi.org/10.1103/PhysRevB.80.039901
https://doi.org/10.1103/PhysRevB.80.039901
https://doi.org/10.1103/PhysRevB.80.039901
https://doi.org/10.1103/PhysRevB.80.039901
https://doi.org/10.1103/PhysRevB.83.100509
https://doi.org/10.1103/PhysRevB.83.100509
https://doi.org/10.1103/PhysRevB.83.100509
https://doi.org/10.1103/PhysRevB.83.100509
https://doi.org/10.1103/PhysRevA.6.936
https://doi.org/10.1103/PhysRevA.6.936
https://doi.org/10.1103/PhysRevA.6.936
https://doi.org/10.1103/PhysRevA.6.936
https://doi.org/10.1103/PhysRevA.7.1673
https://doi.org/10.1103/PhysRevA.7.1673
https://doi.org/10.1103/PhysRevA.7.1673
https://doi.org/10.1103/PhysRevA.7.1673



