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Effect of interactions and disorder on the relaxation of two-level systems in amorphous solids
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At low temperatures the dynamical degrees of freedom in amorphous solids are tunneling two-level systems
(TLSs). Concentrating on these degrees of freedom, and taking into account disorder and TLS-TLS interactions,
we obtain a “TLS glass,” described by the random-field Ising model with random 1/r3 interactions. In this paper
we perform a self-consistent mean-field calculation, previously used to study the electron-glass (EG) model [A.
Amir et al., Phys. Rev. B 77, 165207 (2008)]. Similarly to the electron glass, we find a 1

λ
distribution of relaxation

rates λ, leading to logarithmic slow relaxation. However, with increased interactions the EG model shows
slower dynamics whereas the TLS-glass model shows faster dynamics. This suggests that given system-specific
properties, glass dynamics can be slowed down or sped up by the interactions.
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I. INTRODUCTION

At low temperatures amorphous solids show anomalous
behavior with respect to their ordered counterparts. As was
first noted by Zeller and Pohl [1] the equilibrium properties
of amorphous solids have different temperature dependance
than predicted by the Debye model; some examples are the
temperature dependencies of the heat capacity cv ∝ T α , and
the thermal conductivity κ ∝ T β where α ≈ 1 and β ≈ 2.
Moreover, phonon attenuation is qualitatively and quantita-
tively universal in a large variety of disordered and amorphous
materials. Shortly after, Anderson et al. [2] and Phillips
[3] independently developed the standard tunneling model
(STM), a phenomenological model which quite successfully
accounts for many of the low-temperature characteristics of
amorphous solids. The STM states that at low temperatures
the dominant dynamical degrees of freedom are two-level
systems (TLSs); each TLS represents an atom or a group of
atoms that occupy one of two localized configuration states
that result from an asymmetric double-well potential. TLSs are
defined by their asymmetry energy � and tunneling amplitude
�0 ∼ e−�. Given the random nature of the system, � and
� are assumed to be distributed uniformly leading to the
distribution P (�,�0) = P0

�0
[2–4]. TLSs reach thermal equi-

librium with the phonon bath through a linear coupling
to the local strain. Whereas in its basic form the STM
considers noninteracting TLSs, TLSs interact via acoustic
and electric dipole interactions. TLS-TLS interactions result
in, e.g., spectral diffusion [5], delocalization of low energy
pair excitations [6], and slow relaxation of dielectric and
acoustic response at very low temperatures [7,8] suggesting
the formation of a TLS glass (TG).

Recent work on microfabricated devices caused a renewed
interest in TLSs, both for harnessing them for technological
applications, for example quantum memory [9], and for
avoiding their destructive influence as a source of noise. In
particular, superconducting quantum bits (qubits) have shown
extreme sensitivity to even a single TLS [10,11]. This coupling
of the qubit system to TLSs was then used to investigate the
characteristics of individual TLSs [9,12–14] and specifically
the nature of TLS-TLS interactions up to the accuracy of a
single interacting pair [15].

The thermodynamic and the dynamic properties of sin-
gle noninteracting TLSs have been studied thoroughly
[2,4,14,16–18]. The many body dynamics of interacting TLSs
is, however, more complicated. It was studied, e.g., with regard
to the relaxation of the dielectric response of the interacting
TLSs system [7,8,19,20] and to the relaxation and decoherence
of resonant TLS pairs [6,21]. In this paper we are interested in
the relaxation dynamics of the occupations of the interacting
TLS glass in a large parameter regimes, and in its dependence
on the strength of the interaction, strength of disorder, and
system size.

To obtain the relaxation dynamics of the TLS glass we
follow a similar method to that used previously for the
electron-glass (EG) model [22]. We calculate numerically the
density of states of the interacting TLS system in the mean-
field approximation and use it to determine the TLS-phonon
transition rates. The total relaxation of the system is then
calculated by taking the norm of the occupation vector, which
is the solution of the linearized Pauli rate equation. Taking
the rates to the continuum and using the 1/λ distribution of
rates the logarithmic slow relaxation is obtained. Furthermore,
the logarithm depends on interactions and disorder through the
minimum cutoff rate, λmin. Using this dependence we examine
the qualitative effect of the interactions, disorder, and system
size on the dynamics, and compare it with the EG model.

The structure of the paper is as follows: In Sec. II we define
the local-equilibrium state of the system, present the model
in the mean-field approximation, and obtain numerically the
single-particle density of states (DOS) which contains the
dipole gap. In Sec. III, we derive the logarithmic shape of
the relaxation. In Sec. IV we show the numerical results of
the DOS and the distribution of rates for different values
of the disorder and interaction. In Sec. V we compare our
results to the results of the EG model under the same schemes
of parameter variation, and discuss the dependence of the
relaxation on the system size for both the EG and TLS models.
We then conclude in Sec. VI.

II. THE TLS-GLASS MODEL

In this section we discuss the STM model with the addition
of Ising-type interactions between the TLSs. We then apply the
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mean-field (MF) approximation and obtain the self-consistent
equations.

We consider the Hamiltonian

HT G =
∑

i

(
�iS

z
i + �0iS

x
i

) − 1

2

∑
i �=j

uij

r3
ij

Sz
i S

z
j , (1)

where Sz(x) = 1
2σ z(x) represent the TLSs (σ z(x) are the Pauli

matrices). Jij = uij

r3
ij

represents both acoustic and electric

interactions between TLSs. Since both interactions depend
on the orientations and relative positions of the two TLSs, we
choose uij from a random Gaussian distribution,

p(u) = 1√
2πU0

exp

(
−1

2

u2

U 2
0

)
, (2)

and quantify the interaction strength by J ≡ U0/r3
nn, where

rnn is the average nearest-neighbor distance. Numerically we
set rnn = 1.

To obtain the MF energies one can apply on HT G, Eq. (1),
a variational derivative with respect to Sz

i and obtain the MF
asymmetry energy �′

i ,

�′
i = δHT G

δSz
i

= �i − 1

2

N∑
j (�=i)

uij

r3
ij

Sz
j , (3)

where �i is the asymmetry energy of TLS i. �i is chosen
from a Gaussian distribution with variance W , which we use
to quantify the disorder. N is the number of sites (system size).

After thermal averaging the obtained self-consistent equa-
tion (SCE) is

�′
i = �i + 1

4

∑
j �=i

uij

r3
ij

tanh

(
�′

j

2T

)
, (4)

where we set the Boltzmann constant to unity, reassign �′
i =

〈�′
i〉T , and use 〈Sz

i 〉T = 1
2 〈σ z

i 〉T = − 1
2 tanh( 1

2β�′
i). The single

TLS shifted Hamiltonian is

H′
T LS =

∑
i

(
�′

iS
z
i + �0iS

x
i

)
(5)

and the equilibrium excitation energy of the ith TLS is

Ei = sgn(�′
i)
√

�′
i
2 + �2

0i . (6)

Unlike the distribution given in the STM, p(�,�0) = P0
�0

,
which is uniform in the asymmetry energies, we choose

p(�,�0) = P0

�0

1√
2πW 2

exp

(
−1

2

�2

W 2

)
. (7)

This choice eventually does not affect the qualitative physical
outcome. However, it allows us to look at the effect of changing
disorder. It is also in line with the DOS of the asymmetry
energies for the relevant TLSs at low energies in KBR:CN
(CN flips) [23], as well as in the two-TLS model [24,25].

Previous work [19,26,27] has shown that the DOS of the
TG system in 3D has a logarithmic gap which results from
the dipole interactions. We present the numerical solution of
the self-consistent equations [Eq. (3)], which gives the same
logarithmic dependence, and in addition the behavior for larger
energy values far from the gap region. Note, however, that
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FIG. 1. TLS DOS. The normalized histogram (DOS) of TLS

energies Ei = sgn(�′)
√

�′2
i + �2

0i obtained by solving the self-
consistent equations, Eq. (3), for N = 10 000 sites, W = J = 1,T =
0.05. Results are averaged over 300 realizations.

for large disorder the gap width is exponentially small in the
parameter W/J [24], unlike the polynomial dependence on
disorder for the EG model [28]. The calculation of the TG
energies within mean field allows us to gain an understanding
of the relation between the DOS and the dynamics of the
system, and in particular its dependence on control parameters
of the model such as disorder, interaction strength, and system
size. Following an iterative procedure done by Grunewald et al.
[29] we calculate numerically the solution of the SCE, Eq. (4),
for finite temperature. We set the initial values of the MF
asymmetry energy �′

i to uniform distribution, and perform an
iterative procedure that eventually converges to the solution
of the SCE. We then obtain the excitation energies of the
TLSs given in Eq. (6). The normalized histogram (DOS) of
the energies is plotted in Fig. 1.

Furthermore, as shown numerically in Fig. 2 the gap
disappears gradually as the temperature increases. A similar
phenomenon occurs for the electron-glass model (as discussed
in Sec. V). Note that �0’s do not evolve with the iterations
since their coupling to phonons is neglected [2,3]. In all the
numerical calculations the parameters of Eq. (3) are measured
in units of the interaction at average nearest-neighbor distance
J = U0

r3
nn

and the TLSs are distributed homogeneously in a
three-dimensional cube with periodic boundary conditions.
Also, �0 is taken to be in the range [10−7,10−1] [2,19].
Excluding the case where the interaction parameter J is varied
explicitly, we set the tunneling strength to be χ ≡ P0U0 =
10−3 given the fact that it ranges between 10−3 and 10−4 in all
known amorphous materials [4].

III. DYNAMICS

In this section we follow a similar approach to that used by
Amir et al. [22] for the EG, and obtain the relaxation to local
equilibrium of the TG model. The dynamics of the average
occupation of state i at time t is generally described by the
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FIG. 2. TLS DOS for different temperatures. T = 0.1 (blue
asterisks), T = 1 (green squares), and T = 2 (red triangles) for N =
1000. The gap gradually disappears with increasing temperature.

Pauli master equation:
dpi(t)

dt
=

∑
j �=i

ωijpj (t) − ωjipi(t), (8)

where ωij is the transition rate from state j to state i and
the occupation pi(t) can take the values in the range [0,1].
Equation (8) conserves the total probability; i.e.,

∑
i=1 pi(t)

is constant. Specifically for the EG [22], this reflects the
conservation of the total number of electrons. However, in the
TG system the transition of probability between any two TLSs
is not allowed and therefore there is probability conservation
for each TLS separately,

∑
m=1,2 pi

m(t) = pi
1 + pi

2 = 1, where
pi

1,p
i
2 are respectively the average probability occupations of

the low-energy and high-energy local levels of the TLS at site
i. Accordingly, Eq. (8) is reduced to two coupled rate equations
of the occupations of the ith TLS:

dpi
1(t)

dt
= ωi

−pi
2(t) − ωi

+pi
1(t),

(9)
dpi

2(t)

dt
= ωi

+pi
1(t) − ωi

−pi
2(t),

where ωi
+ and ωi

− are respectively the TLS upward and
downward transition rates caused by the TLS interaction with
the phonon bath

∑
i

∑
k gik(a†

−k + ak)Sx
i , where k represents

phonon with momentum vector q and polarization s, and gik

is coupling constant which is proportional to the deformation
potential constant γis . The rates are obtained via Fermi’s
golden rule [4],

ωi
− =

∑
s

γ 2
is

c5
s

�2
0iEi

2πρh̄4 (Ni + 1) ≡ ai�
2
0iEi(Ni + 1), (10)

and a similar expressions for ωi
+, with the brackets in Eq. (10)

replaced with Ni . Here ai ≡ ∑
s

γ 2
is

c5
s 2πρh̄4 � 108 K−3 s−1, where

Boltzmann constant is set to unity, Ni = (eβEi − 1)−1 is the
equilibrium phonon occupation at a given energy splitting
of the TLS (Ei), and β = 1

T
is the inverse temperature.

Finally, Eq. (9) reduces to one parameter in the pseudospin
representation by substituting σi = 〈σ z

i 〉 = pi
2 − pi

1:

dσi

dt
= −2ai�

2
0iEi

[
σi

(
Ni + 1

2

)
+ 1

2

]
= −λiσi − ai�

2
0iEi,

(11)
where the TLS-phonon relaxation rate in equilibrium is [4,30]

λi = ωi
− + ωi

+ = −ai�
2
0iEi coth

(
Ei

2T

)
. (12)

Equation (11) has a simple form but has hidden complexity.
The right-hand side depends on the energy Ei which in turn
depends on the interactions, disorder, and out-of-equilibrium
occupations of all the TLSs in the system, i.e., Ei(σ ′), where
σ ′ denotes all the elements of the pseudospin vector except the
ith element.

For TLS occupations slightly out of equilibrium (δσi ≡
σi − σ 0

i � 1) we can expand the r.h.s. of Eq. (11) to first
order in δσi around the local equilibrium point. Neglecting
a subdominant interaction term [23] (see App. B for details)
we obtain:

dδσi

dt
� −λi(σ

′0)δσi (13)

with the solution

δσi(t) = cie
−λi t , (14)

where ci ≡ δσi(0) is the initial deviation of TLS i at the
moment the external strain driving force has stopped.

To quantify the total relaxation of the system one can take
the norm of the vector δσ [22],

|δσ | =
∑

i

cie
−λi t , (15)

and in the continuous limit,

|δσ | = c

∫ λmax

λmin

p(λ)e−λtdλ, (16)

where a uniform distribution of initial excitations c(λ) = c is
assumed [22]. The rate distribution is then calculated numeri-
cally and obeys a 1

|λ| distribution over a very broad rate regime.
In Fig. 3 we plot the rates distribution using Eq. (12) and the

energies given in Fig. 1. The normal scale is shown in a regime
determined by a lower cutoff being the minimum value of the
plateau region in the log plot, λmin. This value also determines
the relaxation time scale of the system [see Eq. (17) below].
The maximum cutoff value λmax is fixed arbitrarily and has
no significance. The 1

|λ| functional form of the distribution

is a result of the dependence of the decay rates on �2
0 [see

Eq. (12)] in conjunction with the joint distribution function
p(�0,�

′) ∝ 1/�0. Finally we substitute in Eq. (16) the rate
distribution and obtain the logarithmic relaxation:

|δσ | � −c[γE + log (λmint)], (17)

where γE ≈ 0.577 is the Euler constant and the integral is
approximated for 1/λmax < t < 1/λmin [31]. The logarithmic
relaxation we find here is in line with the TLS glass being a
part of a large class of materials with a similar slow logarithmic
relaxation [32]. As mentioned above, the 1

|λ| functional form
of the rate distribution is dominated by the distribution of

144207-3



ASBAN, AMIR, IMRY, AND SCHECHTER PHYSICAL REVIEW B 95, 144207 (2017)

(a)

ln(λ)
-20 -10 0 10 17

Pr
ob

ab
ili

ty
 d

en
si

ty

0.01

0.02

0.03

0.04

(b)

λ ×10 -5

1 2 3 4

Pr
ob

ab
ili

ty
 d

en
si

ty

2000

4000

6000

8000

10000

FIG. 3. Decay rate distribution for the TLS glass. The distribution
of decay rates λi presented in Eq. (12) calculated for N = 10 000 and
J

T
= 10. The disorder energy, tunneling splinting, and interaction

strength are the same as in Fig. 1. The graph is averaged over 1000
realizations. (a) Rate distribution in log scale for the full range of
values. The bulk of rates occupy the plateau region which translates
to 1

λ
form in normal scale. (b) Rate distribution within the cutoff

region in the log plot shown in linear scale with a 1
λ

fit.

�0, and is thus independent of disorder and interaction
strengths. However, the latter change the density of states of
single-particle excitations, and specifically that at low energies,
that dominate the slowest transition rates [4]. Thus, disorder
and interaction can shift the distribution of relaxation rates to
higher or lower values; see below.

IV. EFFECT OF INTERACTIONS AND DISORDER

In this section we study the effect of the variation of disorder
and interaction on the DOS and on the dynamics of the TLS
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FIG. 4. TLS DOS for different disorder values. W = 1 (blue
stars), W = 10 (green squares), and W = 100 (red triangles) for
W/T = 10, constant interactions J = 1, and N = 1000. rnn = 1 as
in all our calculations.

glass. In particular, we find that the interactions speed up the
relaxation process rather than slow it down, in contrast to what
was found for the EG model [22] (see also Fig. 13 below).

A. Effects of interaction and disorder on the DOS of single TLSs

We present two schemes:
(1) Varying the disorder (W ) for constant interactions (J )

and constant W/T ratio. For increasing disorder the DOS
broadens and the gap diminishes (see Fig. 4). We note that
a similar broadening is obtained for varying the disorder W

while keeping T = 0.1J constant.
(2) Varying the the ratio J/W while holding the sum of

the variances constant, W 2 + J 2 = 2. This is done in order to
change the strength of the interactions while not significantly
affecting of the energy variance,

〈
E2

i

〉 ≈ W 2 + 〈
�2

0i

〉 + ∑
j

U 2
0

r6
ij

〈
S2

j

〉
. (18)

With the increase of the interaction strength (and decreasing
of W ) the overall effect is a broadening of the DOS and
a deepening of the gap (see Fig. 5). For a similar scheme
where only the interactions parameter is increased a greater
broadening is obtained since W is kept constant.

The study of the DOS of the TLS glass is of interest by
itself, but also in view of our interest in the dynamics of the
TLS glass. As can be inferred from Eq. (12), the dynamics
of the TLS glass is strongly affected by the distribution of
the single-TLS DOS. In fact, for a given realization of TLSs
and constant temperature, there is a unique correspondence
between the distribution of TLS energies and their dynamics.
Thus, the change in DOS as function of varying disorder and
interactions is a predictor of the change in the dynamics of the
TLS glass. In Fig. 4 and Fig. 5 we plot the single-TLS DOS
as a function of varying disorder and interaction according to
the protocols described above (see also figure captions). We
find that for larger W or J the width of the DOS increases.
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FIG. 5. TLS DOS for different interaction and disorder values.
W/J = 1 (blue asterisks), W/J = 3.1 (green squares), and W/J =
9.8 (red triangles), keeping W 2 + J 2 = 2. N = 1000 and T = 0.05.
The structure of the DOS including the gap and the peaks around it
is getting narrower and higher for larger values of W/J .

Also, for larger ratio J/W the depth of the gap increases as
expected. Note that in the disorder variation scheme, large
values of disorder are taken in order to obtain a large enough
qualitative effect in the rate distribution (plotted in Sec. IV B
below).

B. Shift of the distribution of relaxation rates

The distributions of relaxation rates [Eq. (12)] for both of
the schemes presented in Sec. IV A are plotted in Fig. 6 for the
variation of W and in Fig. 7 for the variation of W/J . As can
be seen, for increasing W or J/W the rate distributions are
shifted to higher values on the same 1/λ curve. This shift is a
consequence of the shift of the lower cutoff with the variation
of parameters. In turn, the lower cutoff represents TLSs which
have, in addition to small tunneling amplitude �0, also small
excitation energy. The number of such TLSs diminishes with
the deepening of the gap and the enhancement of the variance
of the DOS, leading to faster dynamics. Note that the upper
cutoff is held fixed in the normal scale plots. This is due to
the fact that the rate distribution extends over many orders
of magnitude which are not relevant to the relaxation of the
system at long time scales, i.e., t ∼ λ−1

min.

V. COMPARISON TO THE ELECTRON-GLASS MODEL

In this section we consider the electron-glass (EG) model
and compare its equilibrium and dynamical properties to the
results of the TG model shown in Sec. IV. In Sec. V A
we review the results of Amir et al. [22]. We present the
EG Hamiltonian, its equilibrium mean-field energies, and the
logarithmic relaxation which results from the 1

|λ| distribution
of rates. In Sec. V B we address the effects of the disorder and
interactions on the relaxation to facilitate comparison between
the TG and EG models, and add in this subsection a discussion
of the effects of system size. In Sec. V C we present additional
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FIG. 6. TG decay rate distribution for different disorder values.
W = 1 (blue stars), W = 10 (green squares), and W = 100 (red
triangles). W/T = 10, J = 1, and N = 1000. (a) Rate distributions
in log scale. (b) Rate distributions in normal scale. The values for
W = 10 are similar to those of W = 1 and are therefore discarded.

similarities and differences which originate from the basic
structure of the EG and TG models.

A. The electron-glass: Model and dynamics

The electron-glass (EG) system is composed of N localized
electronic states with random energies and M < N electrons
interacting via the unscreened Coulomb interaction. The
electron-phonon coupling induces intersite electron transi-
tions. Since the Hubbard energy is assumed to be much greater
than the energy scale of the system, only single occupation at
each site is allowed. The exchange interaction is assumed to
be much smaller than the Coulomb interaction, resulting in
spinless electrons. Accordingly, the Hamiltonian of the EG
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FIG. 7. TG decay rate distribution for different interaction
and disorder values. W/J = 1 (blue asterisks), W/J = 3.1 (green
squares), and W/J = 9.8 (red squares). The rest of the parameters
are the same as in Fig. 5. (a) Rate distributions in log scale. (b) Rate
distributions in normal scale.

system is [33–35]

HEG =
N∑

i=1

εi(ni − K) +
N∑

i=1

∑
j>i

e2

rij

(ni − K)(nj − K),

(19)
where εi are the random site energies of the system in the
absence of interactions, e2

rij
is the Coulomb interaction between

the electrons at sites i and j , K = M
N

is the background charge,
and ni,nj ∈ [0,1] are site occupations. The sites are distributed
uniformly in a square. In equilibrium, the site occupations obey
the Fermi-Dirac statistics, n0

i = (eEi/T + 1)−1, and accordingly
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FIG. 8. EG DOS. The normalized histogram of site energies
Ei for half filling and N = 10 000 sites [22]. The energies εi are
uniformly distributed in the interval [−W

2 ,W

2 ], and e2

rnnT
= 20. W = 1

and Ei are taken in units of interaction at average nearest-neighbor
distance J = e2

rnn
, where rnn is the average nearest-neighbor distance.

The sites are distributed uniformly on a square with periodic boundary
condition and averaged over 300 realizations.

the self-consistent equations are

Ei = εi − 1

2

∑
j �=i

e2

rij

tanh

(
Ej

2T

)
, (20)

where Ei are the MF energy of site i and Boltzmann constant
is set to unity. The DOS obtained from the self-consistent
Eq. (20) shows a gap around the chemical potential, known as
the Coulomb gap, first predicted by Efros and Shklovskii [28].
Starting from randomly distributed values in each realization,
the MF energies are found by an iterative procedure introduced
by Grunewald et al. [29]. The numerical solution in 2D gives a
linear density of states for low energies [22] (see also Fig. 8).
As can be seen finite temperature introduces a finite DOS at
correspondingly low energies. Similarly to the DOS of the
TG model, for large enough temperature the gap disappears
completely [36–38].

The dynamics of the average electronic occupations is
calculated using the Pauli rate equation (8) with Miller and
Abrahams transition rates [39]:

γij = �0
ij ni(1 − nj )e−rij /ξ [N (|�E|) + �(|�E|)]. (21)

Here � is a step function, N = (e|�E|/T − 1)−1 is the phonon
occupation, �E = Ei − Ej , and ξ is the localization length
of the electron. The prefactor is �0

ij � 2π
h̄

|Mq |2, where Mq

is the strength of the electron-phonon interaction and ν is the
phonon density of states. Since we are interested in a qualitative
description of the dynamics, the rates will be presented in units
of �0

ij . The linearized rate equation for small deviation around
equilibrium values is given by [22]

dδni

dt
=

∑
j

Aij δnj , (22)

144207-6



EFFECT OF INTERACTIONS AND DISORDER ON THE . . . PHYSICAL REVIEW B 95, 144207 (2017)

(a)

ln(-λ)
-25 -20 -15 -10 -5 0

Pr
ob

ab
ili

ty
 d

en
si

ty

0.02

0.04

0.06

0.08

0.1

(b)

-λ ×10 -4
1 1.5 2 2.5

Pr
ob

ab
ili

ty
 d

en
si

ty

400

600

800

1000

FIG. 9. Decay rate distribution for the electron glass. Normalized
histograms of the real part of the decay rates (originally done
elsewhere [22]), obtained by numerical diagonalization of the rate
matrix Aij given in Eq. (23), while neglecting the direct interactions

term. N = 1000, e2

rnnT
= 10, and rnn

ξ
= 10. The disorder energy and

density of sites are the same as in Fig. 8. The graph is averaged over
1000 realizations. (a) Rate distribution in log scale. The cutoff values
are taken around the plateau region. (b) Rate distribution in normal
scale with a 1

λ
fit. The region of the plot is determined by the cutoffs

as seen in the log plot.

where the rate coefficient matrix take the form

Aij =
⎧⎨
⎩

γ 0
ij

n0
j

(
1−n0

j

) − ∑
k �=j,i

e2γ 0
ik

T

(
1
rij

− 1
rjk

)
, i �= j,

−∑
k Akj , i = j.

(23)

The superscript “0′′ indicates equilibrium values. The diagonal
elements Aii are dictated by the requirement of particle
number conservation,

∑
i Aij = 0. Neglecting the second term

of the off-diagonal element of Aij , the top line in Eq. (23)
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FIG. 10. EG DOS for different disorder values. W = 1 (blue
stars), W = 5 (green squares), and W = 10 (red triangles) for
W/T = 10, constant interactions J = 1, and N = 1000. The density
of sites is set as in Fig. 8.

(the electron-electron interaction term has been shown to be
insignificant at low temperatures [22,40]), one obtains the 1

|λ|
distribution of relaxation rates [22,41]; see also Fig. 9. Notice
that according to the definition of Eq. (23) the rates will turn
out to be negative. Solving the linearized rate equation and
going through the steps shown in Sec. III, the obtained total
relaxation of the EG systems for times 1

λmax
< t < 1

λmin
and

p(λ) = 1
λ

rate distribution is [22]

|δn| � c

∫ λmax

λmin

e−λt

λ
dλ � −c[γE + log(λmint)], (24)

where the assumption is that the rate matrix eigenvectors
are excited roughly with a uniform probability c(λ) � c

except for the eigenvector associated with the zero eigenvalue
which cannot be excited since the total particle number is
conserved.

B. The effect of interactions and disorder in the EG model

To compare between the TG model and the EG model
we perform the same parameter-varying schemes for the
electron-glass model as presented in the previous section for
the TG model (i.e., varying W and J/W ; see Sec. IV A) and
study how the DOS and rates are affected. This is done by
studying the typical change of the rate matrix element, Eq. (23),
without the electron-electron interaction term [22,39], and use
it as a measure for the shift of the rates. Note that the plateau
region in the rate log plots of the EG model is narrower than in
the TG model, allowing us conveniently to take also the upper
cutoff. Figures 10 and 11 show respectively that for increasing
disorder the DOS broadens while the gap diminishes (although
the enhancement of the DOS near zero energy is a direct
consequence of the variation of temperature in that scheme)
leading to a shift of the rates to higher values, even though
the disorder is stronger. Figures 12 and 13 show respectively
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FIG. 11. EG decay rate distribution as given by the distribution
of eigenvalues of the rate matrix in Eq. (22) [22], for different
disorder values. The parameters are the same as in Fig. 10. (a) Rate
distributions in log scale. (b) Rate distributions in linear scale.

how for increasing interactions the DOS broadens and the
gap deepens, and at the same time a shift of the rates to
lower values, opposite to the effect of interactions on the TG
relaxation rates. Unlike the case for the TLS glass, for the
EG the connection between the single-particle DOS and the
relaxation rate distribution is indirect. The DOS affects the
N2 − N hopping rates Aij , which constitute the matrix whose
N eigenvalues are the relaxation rates. Still, some intuition
may be obtained by considering the dependence of Aij on the
energy difference between the sites i,j for low temperatures:

Aij ∼ N (�E) ∼

⎧⎪⎨
⎪⎩

1, �E > T, �E < 0,

e−�E/T , �E > T, �E > 0,
T

|�E| , |�E| < T.

(25)
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FIG. 12. EG DOS for different interaction and disorder values.
W/J = 1 (blue stars), W/J = √

17 (green squares), and W/J =√
97 (red triangles) for constant sum of variances W 2 + J 2 = 2,

temperature T = 0.1, and N = 1000. The density of sites is set as in
Fig. 8.

Narrower gaps and a larger DOS at low energies enhance
the weight of small energy differences between near-neighbor
sites, which in turn leads to faster relaxation.

Finally, it is worth mentioning the results obtained for
changing the system size. For both the EG and TG models we
found numerically that increasing the number of sites (while
keeping a constant density) shifts the rate distribution to lower
values. Specifically for the TG model, we found the shift to be
negligible whereas for the EG the effect is more pronounced.
It turns out that the shift in the EG model is a finite-size
effect that originates from the statistics of the exponential
distance matrix (e−rij /ξ ) rather than from the dependence on the
interactions; see the Appendix. The fact that the interactions
have a negligible contribution to the change in dynamics as
the system size is enhanced, in both models, suggests that the
relaxation modes are local in nature.

Table I summarizes the effects of disorder, interactions, and
system size on the dynamics of the EG and TG models.

C. Structural comparison of the EG and TG models

In this section we compare the formal solutions of the EG
and TG models. First, comparing Eqs. (12), (B1) and Eqs. (23),

TABLE I. Comparison between the relaxation dynamics of the
EG and the TG models for increasing disorder (W ), interactions (J ),
and system size (N ). The (+) and (−) signs indicate faster and slower
relaxation, respectively. Note that for changing the system size, the
dynamics has a weak dependence on the mean-field energies (and
thus on the interaction J ) in both models, which implies that the
relaxation modes are local.

Model/Quantity Disorder Interaction System size

EG + − −
TG + + −
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FIG. 13. EG decay rate distribution as given by the distribution
of eigenvalues of the rate matrix in Eq. (22) [22], for different values
of the parameter J/W . The parameters are the same as in Fig. 12. (a)
Rate distribution in log scale. (b) Rate distributions in linear scale.

(22) we see that the interaction term of the EG rate equation
includes also an interaction and transition with a third site
whereas the second term in the TG rate equation does not. This
difference stems from the fact that transitions are allowed only
within pairs of states (TLSs act as dimers). The interactions
are then between two dimers, whereas in the EG model the
interactions are between single site occupations. This leads to
the notion that under a certain condition one may obtain the
mathematical structure of the TG model from the given EG
model. This happens when the distance between next nearest
neighbors (rnnn) is sufficiently larger than the nearest neighbor
distance (rnn), i.e., rnnn − rnn > 2ξ .

Also, in both models the 1
|λ| distribution of relaxation rates

leading to logarithmic relaxation is a result of a wide and

rather homogeneous distribution of an exponent, i.e., Aij ∝
e−rij /ξ in Eq. (23) in the EG model and �0 ∝ e−� in the TG
model. However, the range in which the 1

|λ| form is satisfied is
much wider in the TG model (Fig. 3) than in the EG (Fig. 9).
This is a result of the exponent in the TLS glass model being
chosen as homogeneous over a large regime, whereas in the EG
model the tunneling amplitude is dictated by the distribution
of nearest-neighbor distances, which is narrower. Last, the
different dependence of the rates on the mean-field energies in
the two models leads to the different consequences of varying
the interactions, disorder, and system size on the dynamics
of the two models.

VI. SUMMARY AND CONCLUSIONS

In this work we examine thermodynamic and dynamic
properties of the TLS glass, modeled by the transverse-field
Ising model with random 1/r3 interactions and random local
fields. Using mean-field approximation, we first rederive
the single-particle DOS for this model, and then derive the
dynamics of its relaxation to equilibrium. Similarly to the
electron glass model, we find 1/λ distribution of relaxation
rates, leading to logarithmic time relaxation and known
memory effects in such models [27,42,43]. We further find
that increasing the disorder shifts the rate distribution to higher
values, similarly to what was observed for the electron glass
[22], but increasing the interactions shifts the rate distribution
to higher values while in the EG model this results in a shift to
lower values [22]. This suggests that the effect of interactions
on glass dynamics is system dependent. Finally, we show that
the interactions have a negligible effect on the rate distribution
for changing the system size at constant site density, which
implies that the relaxation modes are localized.

Given the complexity of the EG and TG models we use
the MF approximation which simplifies the calculation. It
would be of interest to check our results for the dynamics
of the system, some of them unexpected, against more exact
numerical methods such as Monte Carlo simulations or exact
diagonalization of finite systems.
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APPENDIX A: FINITE-SIZE EFFECT IN THE EG MODEL

In this appendix we give a qualitative argument that explains
the shift of the rate distribution caused by changing the system
size in the EG model. In Fig. 14 the EG DOS is plotted for
different system sizes, showing a narrowing of the gap for
increasing size. In Fig. 15 the EG relaxation rate distribution
is plotted showing a shift to lower values for increasing system
size, which might seem counterintuitive given the behavior of
the DOS. We show below how this shift is dominated by the
tunneling term.

Figure 16 shows the rate distribution as given in Fig. 15 after
excluding the interaction term in the rate matrix, i.e., Aij =

144207-9
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FIG. 14. EG DOS for different system sizes. The number of
sites N is varied, 10 (red triangles), 100 (green squares), 1000 (blue
asterisks). e2

rnnT
= 10. The disorder and density of sites are the same

as in Fig. 8. Notice how the DOS is wider and the gap is shorter for
smaller number of sites. The same quantitative behavior can be seen
for changing the interaction strength to smaller values.

e−rij /ξ . Comparing the two graphs it is evident that the shift
of the rate distribution peaks remains qualitatively the same.
Let us now estimate this effect. For rnn � ξ , the relaxation
is dominated by tunneling of electrons to their near-neighbor
site. Given a linear size of the sample L it can be shown that the
distribution of nearest-neighbor distance for rnn � L is [22]

p(r) = Vd

Ld
d(N − 1)rd−1e−Vd (N−1)(r/L)d , (A1)

where r is the nearest-neighbor distance in the continuous
limit, d is the dimension, and Vd is of order unity, e.g.,
V1 = 2, V2 = π . Substituting the average nearest-neighbor
distance r̄ = Ld/(N1/d − 1) for constant site density, as
used in the numerical calculation, and changing to variable
x = log(− λ

2 ) = − r
ξ

[22], we obtain for d = 2

p(x) = 2π

(
ξ

r̄

)2

x

√
N + 1√
N − 1

exp

[
−π

(
ξ

r̄

)2

x2

√
N + 1√
N − 1

]
.

(A2)

As can be seen from Eq. (A2), p(x) shifts with system size
(N ) in the same qualitative manner as obtained numerically in
Fig. 16. Furthermore, the inset shows the distributions when
scaled according to Eq. (A2) x → x(

√
N+1√
N−1

)
1
2 . This suggests

that within the mean-field approximation discussed in this
work, the dominant cause for the slow down of relaxation
is a finite-size effect that changes the effective average
near-neighbor distance. In similarity to the EG, the TG also
shows slowing down of the relaxation with increased system
size, but the effect is much weaker (not shown). Note though
that for the TG model the relaxation rates are dictated by the
tunneling amplitudes �0i , which are distributed independently
from the site distribution of the TLSs and therefore the
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FIG. 15. EG decay rate distribution as given by the distribution of
eigenvalues of the rate matrix in Eq. (22), for different system sizes.
N = 10 (red triangles), N = 100 (green squares), and N = 1000
(blue asterisks). Localization length ξ = 0.1. Disorder energy W and
density of sites are the same as in Fig. 8. The solid line is a fit of
1/x curve. (a) Rate distributions in the natural log scale. (b) Rate
distributions in linear scale.

relaxation rate distribution is not sensitive to finite-size
effects.

APPENDIX B: INTERACTION TERM IN THE RATE
EQUATION

In this appendix we discuss the full linearized rate equation
[Eq. (13)] with the addition of interaction terms

dσi

dt
� −λiδσi +

∑
j �=i

fij δσj ≡
∑

j

Bij δσj (B1)

and show that the second term can be neglected at low
temperatures. Here fij = 2ai�

2
0i�

′
iNi(Ni + 1)σ 0

i

uij

T r3
ij

is the
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FIG. 16. EG rate distribution as given by the eigenvalue distribu-
tion of the matrix Aij = e−rij /ξ (without energy dependence), plotted
for different system sizes. N = 1000 (blue stars), N = 100 (green
squares), and N = 10 (red triangles). The parameters are the same
as in Fig. 15. (a) Rate distributions in the natural log scale. The inset
shows how the peaks almost coincide after scaling ξ with the prefactor
given in Eq. (A2). (b) Rate distributions in linear scale.

interaction prefactor and ni = (eβ|Ei | − 1)
−1

, σ 0
i =

− tanh ( Ei

2T
) are the phonon and pseudospin equilibrium

occupations.
An estimate for the contribution of interaction term to the

rate equation is given by the ratio∣∣fij /λi

∣∣ =
∣∣∣∣∣ �′

i

|Ei | cosh2
(

Ei

2T

) uij

T r3
ij

∣∣∣∣∣ �
∣∣∣∣∣ �′

i

|Ei | cosh2
(

Ei

2T

) J

T

∣∣∣∣∣ .
(B2)

The second inequality represents an upper bound, where i,j are
nearest neighbors, i.e., uij

r3
ij

= U0
r3
nn

≡ J . Furthermore, since both

FIG. 17. Relative error between the rates with and without the
interaction term fij , for W = 0.1, J = 1.4, T = 0.1, and N = 1000.

λi and fij are proportional to �2
0i , the lowest rates (eigenvalues

of Bij ), which dictate the slow relaxation of the system, have a
tunnelling amplitudes �0i ∼ �0min

. Thus, one can approximate
�′

i ≈ Ei and substitute in Eq. (B2):

max(|fij /λi |) =

⎧⎪⎪⎨
⎪⎪⎩

J
T

[
1 + 1

2

(
Ei

2T

)2
]−1

−→ J
T
, |Ei | � T

0.1 J
T

< |fij /λi | < J
T
, |Ei | < 2T

2 J
T
e−|Ei |/T , |Ei | > 2T

(B3)

As can be seem from Eq. (B3), at low temperatures relative to
disorder and interactions (T � √

W 2 + J 2) the typical TLS
energy is larger than the temperature and fij is exponentially
suppressed.

FIG. 18. Relative error between the rates with and without the
interaction term fij , W = J = 1, T = 0.1, and N = 1000.
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FIG. 19. Relative error between the rates with and without the
interaction term fij , W = 1.4, J = 0.1, T = 0.1, and N = 1000.

Let us further consider two different limit cases: (i) T ∼
W � J . In this case TLSs with fij ∼ λi are rare since the
temperature resides deep inside the dipole gap. (ii) T ∼ J �
W . In this case the gap is small but the DOS is flat and wide in
comparison to the temperature scale, and the number of TLSs
with energy smaller than the temperature is N (|Ei | < 2T ) ∝
T
W

� 1.
To substantiate the conclusion that the interaction term

in the rate equation has little effect on the dynamics of the
system at low temperatures, we diagonalize numerically the
rate matrix Bij in Eq. (B1) and compare with the results

FIG. 20. Typical graph of the rates with and without the interac-
tion term for the three cases stated above. Blue (asterisk) for fij = 0
and orange (plus) is for fij �= 0.

obtained after neglecting the interaction term. The graphs
presented below show the relative error, defined as | λ′−λ

λ′ |,
where λ′ (λ) are the rates including (excluding) interactions,
for three cases: (i) W � 1.4,J � 0.1 (Fig. 17), (ii) W �
0.1,J � 1.4 (Fig. 18), (iii) W = J = 1 (Fig. 19). For all
cases we numerically diagonalise a single realization of Bij

for N = 1000, W 2 + J 2 = 2 and T = 0.1. In all cases low
rates are negligibly affected by the interaction. In Fig. 20 we
present the rates for W = J = 1 [case (i)] with and without
interactions. Similar results were obtained for cases (ii) and
(iii).
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