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This paper introduces a novel method to account for quantum disorder effects into the classical drift-diffusion
model of semiconductor transport through the localization landscape theory. Quantum confinement and quantum
tunneling in the disordered system change dramatically the energy barriers acting on the perpendicular transport
of heterostructures. In addition, they lead to percolative transport through paths of minimal energy in the
two-dimensional (2D) landscape of disordered energies of multiple 2D quantum wells. This model solves the
carrier dynamics with quantum effects self-consistently and provides a computationally much faster solver when
compared with the Schrödinger equation resolution. The theory also provides a good approximation to the
density of states for the disordered system over the full range of energies required to account for transport at room
temperature. The current-voltage characteristics modeled by three-dimensional simulation of a full nitride-based
light emitting diode (LED) structure with compositional material fluctuations closely match the experimental
behavior of high-quality blue LEDs. The model allows also a fine analysis of the quantum effects involved in
carrier transport through such complex heterostructures. Finally, details of carrier population and recombination
in the different quantum wells are given.
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I. INTRODUCTION

In a previous paper (referred to here as LL1 [1]) we
have introduced the localization landscape (LL) theory to
describe energy levels, localized states, and density of states in
disordered materials, with applications to the nitride materials
case. A second paper (referred to here as LL2 [2]) showed the
capability of the theory to compute material systems for time-
independent, frozen states entering optical absorption below
the band gap in alloy quantum wells (QWs). This phenomenon
called the Urbach tail was shown to be well described by
the density of states and the wave-function overlap given by
the landscape theory. This paper will address the physical
effects of disorder on carrier transport and recombination in
a much more complex situation, that of the full multilayer
heterostructures which make the light emitting diodes (LEDs),
devices of utmost importance for energy savings and so far very
poorly modeled due to the lack of a proper description of the
effects of disorder.

Applying the LL theory to nitride-based alloys aims at
solving long-standing issues in these important materials. In
recent years, nitride-based materials indeed play an increasing
role in semiconductor markets including high-power devices
and light emitters due to the large band-gap range and full
visible spectrum achieved by nitride ternary alloys [3–5].
However, a complete fundamental analysis of the intrinsic
material properties is still missing to reconcile experiments
and theoretical calculations. For instance, the explanations
for the droop effect in nitride-based LEDs include electron
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overflow [6,7], Auger recombination [8–11], poor hole injec-
tion [12], and carrier localization delocalization [13,14]. While
various direct measurements favor the Auger recombination,
however, requiring a large Auger coefficient when considering
direct Auger recombination processes [15], a number of
other indirect experiments analyzed with simple or ad hoc
models form the basis for claiming the other mechanisms. All
these above mechanisms are probably influenced by material
compositional disorder effects which are neglected in device
simulations or are only included at an elementary level.
The disorder is best described from experiments including
atom probe tomography (APT) with indium atoms distributed
randomly in InGaN/GaN quantum wells (QW) [14,16–19].
Such compositional disorder due to local indium fluctuations
should have an important role in determining electrical and op-
tical properties in nitride-based LEDs or laser diodes. Recent
atomistic calculations show that the localization effect induced
by indium fluctuations will cause strong inhomogeneous
broadening of the lowest transition energies [20]. Radiative
recombination coefficients were also found to decrease with
increasing indium concentration due to increased carrier
localization in the random alloy fluctuations [21]. However,
atomistic simulations are impractical for calculating a full LED
structure with contacts, multiple quantum wells (MQWs),
electron blocking layer (EBL), and indium fluctuations. They
do not really allow computing basic device characteristics,
such as current-voltage curves and electroluminescence spec-
tra, where the determination of many quantum levels and the
description of transport among such states is required.

In fully ordered materials, e.g., pure compounds, because
of the small computation time and of the mature development
of the technique, the classical drift-diffusion (DD) equations
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coupled with the Poisson equation are widely used to describe
transport and optical properties although they treat carriers
as semiparticles with a renormalized effective mass. Many
results of quantum theory are, however, implicitly introduced
as energy levels, density of states, quantum Fermi-Dirac
statistics, and transport parameters, such as carrier mobilities
and diffusion coefficients. In the case of LED simulations,
radiative and nonradiative recombination mechanisms are
described by a Shockley-Read-Hall coefficient A, a radiative
coefficient B, and a nonradiative Auger recombination coef-
ficient C. However, when comparing computational results
using typical material parameters for ideal quantum wells or
barriers without compositional disorder to experiments, the
classical transport model leads to turn-on voltages either much
too large in LEDs [22–24] or too small in electron barriers [25].
It also does not satisfactorily model the droop of the internal
quantum efficiency (IQE) [26]. In general, researchers then use
reduced piezoelectric polarization charge and larger Auger
coefficient compared with experimental measurements to fit
the experimental quantum efficiency [26] and the turn-on
voltage [22,27].

Quantum models such as the nonequilibrium Green’s func-
tion formalism (NEGF) have been proposed to model quantum
transport properties [28,29]. They provide a good description
of quantum effects such as tunneling which are absent from
DD models. However, to describe indium fluctuations [30],
multidimensional models are needed and the large burden
of computation time (>thousands of CPU hours) makes the
NEGF approach impractical.

We previously incorporated indium fluctuations into the
classical Poisson and DD models, by taking into account
the fluctuating conduction and valence band potentials. We
found that inclusion of these random potentials led to the
enhancement of Auger recombination due to the higher local
carrier density. In addition, the many percolation paths through
local minima of potential energy for carrier diffusion did
reduce the LED turn-on voltage [22,27]. It was also computed
that carrier localization induced by indium fluctuations has
a strong influence on the broadening of the light emission
spectrum [22]. However, we still did not take into account
the wave nature of electrons leading to localization and
delocalization in a disordered potential.

In this paper, we will implement the LL theory [31,32] into
semiclassical Poisson and drift-diffusion equations. We model
carrier dynamics including transport and recombination by
using known parameters (mobilities, A, B, and C coefficients)
from experiments. The quantum effects affecting in-plane and
perpendicular transport which arise from indium fluctuations
are taken into account by effective electron and hole energies
(the landscape energies), electron-hole overlap, disordered
densities of states. Thanks to the efficiency of landscape
computations, we carry out all calculations self-consistently
for the disordered LED system.

II. SIMULATION METHODS

In this section, we describe the simulation framework,
including how to apply the LL theory into Poisson and
DD equations. In the standard classical picture, Poisson and
drift-diffusion equations are solved self-consistently to obtain

the conduction and valence band edges which are the potential
energies Ec,v for electrons and holes. The set of equations is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (ε∇ϕ) = e(n − p + N−
A − N+

D ± ρpol),
Jn = nμn∇EFn,

Jp = nμp∇EFp,

∇ · Jn,p = ±e[A0 + B0np + C0(n2p + np2)],

A0 = np−n2
i

τn

(
p+nie

(Ei−Et )
kB T

)
+τp

(
n+nie

(Et −Ei )
kB T

) ,

n =
∫ +∞

Ec

DOSn,bulk(E)fn(E)dE,

p =
∫ Ev

−∞
DOSp,bulk(E)fp(E)dE,

(1)

where ϕ is the electrostatic potential, EFn and EFp are the
quasi-Fermi levels of electrons and holes, DOSn,p,bulk(E) =√|E − Ec,v|

√
2m∗3/2/(π2h̄3) is the bulk density of states

(DOS), m∗ is the effective mass of the electron or hole, and fn

and fp are the Fermi distribution functions for electrons and
holes, respectively. Note that if all the layers of the simulated
semiconductor structure are considered as homogeneous, then
the local free electron and hole carrier densities, n and p, will
only depend on the growth direction z. Ec and Ev are the local
conduction and valence band potential energies, respectively.
N−

A and N+
D are the activated doping densities of acceptors

and donors, respectively. ρpol is the density of polarization
charges, which can be computed by taking the divergence
of the total polarization in the space (∇ · Ptotal) including
spontaneous and piezoelectric polarization fields. Jn and Jp are
the electron and hole current densities, respectively. This paper
uses the Shockley-Read-Hall (SRH) model to account for the
defect-related nonradiative (NR) recombination through a rate
A0 [Eq. (1)], where τn and τp are the NR carrier lifetimes
dependent on the growth condition, which are taken in this
paper as 107 s (300 K), a value typically associated with
low-defect density nitride LEDs [33,34]. kB is the Boltzmann
constant and T is taken as room temperature. Et is the trapping
energy level assumed to be located at the midgap, and Ei and
ni are the intrinsic energy level and intrinsic carrier density,
respectively. B0 (3.0 × 1011 cm3 s−1) is the intrinsic radiative
recombination coefficient. Our B0np rate represents the usual
radiative recombination rate with B including the effect of
overlap of the wave functions across the active region [35].
In contrast, B0 is a bulk coefficient in our model and the
separations of the electron and hole distributions in the QW
both along z due to the quantum-confined Stark effect (QCSE)
and in-plane due to indium fluctuations are considered in the
np term. C0 (2.0 × 1031 cm6 s−1, see Ref. [15]) is the Auger
recombination coefficient, where the influence of the electron
and hole overlap is included in the n2p and np2 terms. B0 and
C0 are considered temperature independent in our simulations.

At this point, we should emphasize that the choices of B0

and C0 are somewhat arbitrary if even not inconsistent: As the
computation takes into account disorder-induced localization
effects and QW confinement Stark effects, we should take
values for the B0 and C0 bulk parameters without disorder
and electric field, but any experimental value will incorporate
such effects of disorder and QW confinement. Only those
values for bulk binary compounds such as GaN would
be disorder effect free, but then the effect of the band-gap
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change with QW alloying might be significant. For B0,
Kioupakis et al. [36] calculated that the change from GaN to
In0.25Ga0.75N modifies B0 by less than 10% without taking
disorder into account, with B0 = 6.4 × 10−11 cm3 s−1 for
25% indium. On the experimental side, the bulk B0 value
(7.0 × 1011 cm3 s−1) extracted from InGaN/GaN double-
heterostructure (DH) LED experiments would give a value
without QCSE, although with disorder, but it assumes that n

(carrier density) is constant across the structure [37]. However,
in real DHs, the carrier density is not a constant as a large
polarization electric field is present in the DH. A very high
carrier density still exists locally to screen the polarization field
in the DH which locally increases the radiative recombination
rate compared to the space-averaged one. Therefore, the
B0 value obtained in a DH while assuming uniform carrier
concentration is not correct and cannot be taken as the B0 bulk
input parameter without disorder and electric field as it is an
overestimation. Thus, we rather take an experimental value of
3.0 × 10−11 cm3 s−1 for B0 [35] in QWs as a better approxima-
tion in this simulation, although a parametric evaluation should
be done at a later point, both experimentally and theoretically.

The C0 issue is even more complex: The Auger recombina-
tion term Cn3 (more precisely Ceehn

2p + Cehhnp
2, where Ceeh

and Cehh are the electron-electron-hole and electron-hole-hole
Auger coefficients, respectively) incorporates disorder impact
through two effects, increase in local carrier densities through
carrier localization and increase in the Auger coefficient
through wave-function localization [38]. The starting C0 value
for the computation should then be free of both effects,
and cannot come from experiment. Theory [15] gives a
value of ∼10−33 cm6 s−1 for the direct Auger process in
InGaN and ∼10−31 cm6 s−1 for the indirect phonon-assisted
Auger process. By taking alloy effects through a supercell
model, Kioupakis et al. [15] calculate an alloy-assisted Auger
coefficient of a few 10−31 cm6 s−1, and an overall Auger
coefficient of ∼10−30 cm6 s−1. As we have not yet calculated
the effect of alloy disorder on the Auger coefficient in the
landscape model [1,39], we consider as a starting value for
C0 a low indium content experimental value from David
and Grundmann [35] of ∼2.0 × 1031 cm6 s−1. Doing this, we
might underestimate the effect of the alloying on the Auger
coefficient, but we will still capture the major effect of local
carrier concentration increase due to alloying, as well as the
effects of the internal electric field.

If we want to solve the Schrödinger equation to take the
disorder-induced quantum effects into account, we should use
the disordered potential energy in a Schrödinger solver to
calculate the wave functions and eigenenergies. Then, the car-
rier density distribution can be obtained by the wave-function
distribution and relative eigenenergy levels. When the carrier
density is obtained, this should be plugged into the Poisson-DD
solver and the corresponding equations should be solved
iteratively until convergence. In addition, a self-consistent 3D
Poisson-Schrödinger solver is highly time consuming, as will
be discussed later in the Appendix.

As a result, we rather apply the theoretical landscape model
proposed by Filoche et al. [1,31,32] to obtain the equivalent
semiclassical confining potential seen by the carriers, as
described in LL1 [1]. According to this theory, an effective
potential can be found which captures the complex interference

FIG. 1. Schematic of the local density of states (LDOS) arising
from the landscape potential 1/ue for electrons. For simplicity, the
effective potential is shown in 1D.

pattern created by the carrier wave functions in the original
disordered potential and transforms it into a semiclassical
confining potential which localizes the carriers in different
regions. Additionally, the long-range exponential decay, char-
acteristic of Anderson localization [40], is explained as the
consequence of multiple tunneling in the dense network of
barriers created by this effective potential [32]. Therefore,
both quantum localization/confinement and tunneling effects
are described in the LL theory.

The Hamiltonian entering the Schrödinger equations for
electrons and holes reads as

Ĥ = − h̄2

2m∗
e,h

� + Ec,v. (2)

The landscapes ue,h(�r) for electrons and holes are defined as
the solutions of

Ĥue,h(�r) = 1, (3)

and 1/ue,h are the effective potentials incorporating the
localization properties of the solutions of the Schrödinger
equation [1,32]. The boundary conditions for Eq. (3) can
be either Dirichlet, Neumann, or periodic. After obtaining
1/ue and 1/uh for electrons and holes, respectively, we use
these as the input potential energies for the Poisson and DD
equations to replace the original terms Ec and Ev . In the
carrier density calculation, 1/ue and 1/uh determine locally
the bottom energy for the local DOS (LDOS) of the disordered
system (Fig. 1):

n =
∫ +∞

1/ue

LDOS3D(E)
1

1 + exp
(

E−EFn

kBT

)dE,

p =
∫ 1/uh

−∞
LDOS3D(E)

1

1 + exp
(EFp−E

kBT

)dE, (4)

where EFn and EFp are the quasi-Fermi energies for electrons
and holes, respectively.

The LDOS in landscape theory can be computed from
Weyl’s law in 3D [1,32]:

LDOS3D(E) =
√

2m∗
e,h

π2h̄3

√|E − 1/ue,h|. (5)
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FIG. 2. Flowchart of Poisson and drift-diffusion equations by
applying the LL theory.

The fact that the DOS based on the LL is simply obtained
by replacing the original potentials Ec,v with the effective
potentials 1/ue,h makes the LL theory easily implementable
into the classical Poisson and DD models. It should be
emphasized at this point that Eqs. (4) and (5) will give a good
description of optical and transport properties, much better
than through the use of a model with disorderless QWs, only
because the LDOS spectrum is well described in the landscape
theory as was shown in LL1 [1], Sec. IVB 2.

The schematic flowchart of the entire simulation process is
shown in Fig. 2. First, the spontaneous polarization charges and
piezoelectric fields are computed. After the Poisson equation
is solved to obtain Ec and Ev , the landscape equations for the
conduction and valence bands are solved giving the effective
potentials 1/ue and 1/uh [Eq. (3)]. Then, the carrier densities
of electrons and holes are calculated from Eq. (4) using 1/ue

and 1/uh, and fed back to the Poisson-DD equations to be
solved in a self-consistent manner. When the potential energy
difference between two consecutive iterations is smaller than
10−5 eV, we consider the simulation loop as having converged
and the iterations stop.

FIG. 3. (a) Schematic full LED structure. (b) In-plane aluminum
distribution in the Al0.15GaN0.85N EBL layer. (c) In-plane indium
distribution in the third In0.14GaN0.86N QW layers. The Al and In
distributions are generated by random numbers.

In the following sections, we model realistic GaN-based
LED structures with indium fluctuations to study the impact
of disorder as calculated through the LL theory.

III. FLUCTUATING POTENTIAL IN InGaN
QWS AND AlGaN EBL

We adopt In0.14Ga0.86N and Al0.15Ga0.85N as the average
alloy composition of the QWs and EBL, whose dimensions are
illustrated in Fig. 3(a). The indium and aluminum atoms are
randomly distributed in the QWs and EBL and the composition
maps shown in Figs. 3(b) and 3(c) are obtained via the Gaussian
averaging method detailed below.

Note that other alloy systems, for instance InxGa1−xAs,
are well described by models that do not capture any effect
of disorder-induced localization, such as the virtual crystal
approximation (VCA) in which each potentially disordered
site is substituted by an artificial atom interpolating between
the properties of the actual components. In the VCA, the
maps of Figs. 3(b) and 3(c) would be substituted by a
homogeneous atom distribution with the mean composition of
the alloy. However, nitride-based materials are characterized
by composition fluctuations which induce large polarization-
related local electric fields, large band offsets between GaN
and InN, and heavy carrier effective masses, both larger than
in the arsenide alloy system. Simulations based on the VCA
in this context fail to provide a correct description of the local
variations of the physical observables (density of states, carrier
distribution, etc.) [41].

Then, one has to define the maximum length scale over
which the rapidly oscillating distribution of atoms can be
averaged to obtain a continuous fluctuating potential while
preserving the effects of disorder on the electronic properties
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TABLE I. Band structure parameters for wurtzite nitride al-
loys [43,44]: band gap, relative permittivity, and effective masses.

Eg m‖
e m⊥

e mhh mlh

Units (eV) εr (m0) (m0) (m0) (m0)

GaN 3.437 10.4 0.21 0.20 1.87 0.14
InN 0.61 15.3 0.07 0.07 1.61 0.11
AlN 6.0 10.31 0.32 0.30 2.68 0.26

Band-gap alloy InGaN: 1.4
Bowing parameter AlGaN: 0.8

of the system. Such length scale can be predicted by the
LL theory, which is able to provide the effective potential
fluctuations “seen” by the carriers. However, to avoid using
a circular argument, let us estimate this length scale from an
independent general theory of disorder: Baranovskii et al. [42]
showed that the spatial scale of the fluctuations affecting the
transport of the electrons and holes is given by the de Broglie
wavelength λ = h̄/

√
m∗E0, where m∗ is the carrier effective

mass and E0 is the energy scale of the band edge broadening
due to disorder. In LL2 [2], a value of E0 ≈ 50 meV or ≈30
meV (fluctuations of Ec and Ev , respectively) was calculated
for InxGa1−xN QW layers over a large range of indium
concentrations (x = 10%–30%). Taking these values of E0

and the carrier effective masses of GaN (Table I, note that
m∗

GaN > m∗
InGaN) gives a lower bound on the spatial size of

fluctuations in InGaN alloys of 2.8 nm for electrons and 1.1
nm for heavy holes, of the same order as the fluctuations
of the effective confining potentials obtained from the LL
theory, as it will be shown in Figs. 5(b) and 5(d). In the
computational framework presented here, the atomic disorder
is smoothed by a Gaussian averaging over a length scale of
2σ ≈ 1.2 nm, that is smaller than the spatial size of fluctuations
seen by the carriers calculated from Ref. [42]. Therefore, the
averaged atomic distribution we use still incorporates disorder
on the relevant scale for carrier transport. The details of the
algorithm generating the electric potential map from the atomic
distribution are described in the following.

At first, a cubic grid is constructed with a spacing corre-
sponding to the average distance between cation atoms in GaN
(a = 2.833 Å). Then, we randomly assign at each cation site
either an indium (aluminum) or gallium atom for the InGaN
(AlGaN) alloy, as shown in Fig. 4. For each atom site i the
local averaged alloy composition x(ri) is determined from the
Gaussian averaging method as

x(ri) =

∑
j

atom(j ) × e
− (rj −ri )2

2σ2

∑
j

e
− (rj −ri )2

2σ2

, (6)

where the sum goes over all atom sites j of the domain, atom(j )
is zero or unity as decided by the random generator, and σ is
the half-width of the Gaussian broadening parameter.

In this paper and in LL2 [2] we fixed σ = 2a (≈0.6 nm),
which gives an average alloy composition along the growth
direction of an InGaN QW that matches APT data [27]. In
addition, we observe that when σ = a is used, the indium

FIG. 4. The In, Al, and Ga atoms at each cation lattice site are
assigned randomly by a random number generator. This possibility
to obtain each atom is decided by the average alloy composition. The
local composition at each atom site is determined by the Gaussian
averaging method. If the mesh node does not coincide with the atom
grid position, the linear interpolation of grid map will be used to
determine the composition.

composition map exhibits very large fluctuations, from 0%
to more than 60%, that are strongly localized in space and
behave like single-atom fluctuations, which are beyond the
applicability of the effective mass Schrödinger equation. Such
choice of the Gaussian parameter impacts the results of the
Poisson-DD solver, which takes as an input the strongly
fluctuating real potentials Ec and Ev . However, the calculated
effective potentials used in the Poisson-DD-landscape model
are observed to be substantially unchanged for σ values
ranging from a to 2a, as the rapid fluctuations of the real
potentials are smoothed by the LL theory.

In our computations, we separate the process of atom grid
generation and computation mesh construction to make the
random alloy generator independent from the mesh elements.
At each mesh node, all the material parameters used in the
simulation (e.g., band gap, dielectric constant, and effective
mass) are assigned according to the local alloy composition
map x(ri). If the mesh node does not coincide with the atom
grid position, the linear interpolation of grid map will be used
to determine the composition. The III-nitrides material param-
eters we used are shown in Table I. All parameters of InGaN
and AlGaN alloys are obtained by an interpolation method as

EInxGa1−xN
g = (1 − x)EGaN

g + xEInN
g

− 1.4x(1 − x),

EAlxGa1−xN
g = (1 − x)EGaN

g + xEAlN
g

− 0.8x(1 − x),

εInxGa1−xN
r = (1 − x)εGaN

r + xεInN
r , (7)

εAlxGa1−xN
r = (1 − x)εGaN

r + xεAlN
r ,

m∗InxGa1−xN = [(1 − x)/m∗GaN + x/m∗,InN]−1,

m∗AlxGa1−xN = [(1 − x)/m∗GaN + x/m∗,AlN]−1.
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TABLE II. Piezoelectric coefficients for wurtzite III-N materi-
als [45].

e33 e31 e15

Units (C/cm2) (C/cm2) (C/cm2)

GaN 0.73 −0.49 −0.40
InN 0.73 −0.49 −0.40
AlN 1.55 −0.58 −0.48

The band offsets between GaN/InGaN and GaN/AlGaN
conduction bands are assumed to be 63% of the band-gap
difference.

To model the 3D strain distribution in the disordered system,
we adopt the 3D continuum strain-stress model solved by the
finite element method (FEM) to calculate the strain distribution
over the entire LED before solving the Poisson and DD
equations [48]. The calculated strain is transformed into the
piezoelectric polarization field as

Ppz = [e] · [ε] =
⎡
⎣ e15εxz

e15εyz

e31(εxx + εyy) + e33εzz

⎤
⎦, (8)

where εxx , εyy , εzz are normal strains and εyz, εzx , εxy are shear
strains. Ppz is the strain-induced piezoelectric polarization. e15,
e31, and e33 are the piezoelectric coefficients (Table II), and
other terms are zero due to the symmetry of wurtzite crystal
structures. On the other hand, the spontaneous polarization
values related to the GaN buffer layer is obtained by the
following equation:

Psp = ax + b(1 − x) + cx(1 − x), (9)

where the a, b, and c coefficients can be found in Table III.
By taking the divergence of the total polarization Ptotal, which
includes the spontaneous and piezoelectric polarization field
(Ptotal = Psp + Ppz) over the entire domain, we calculate
ρpol(�r) as

∇ · Ptotal = ρpol(�r). (10)

This induced fixed polarization charge ρpol at different
locations is finally implemented into the Poisson equation as
the initial condition, as shown in the flowchart of Fig. 2.

IV. LOCALIZATION LANDSCAPE IN NITRIDE LEDs

In this paper, the size of the simulated domain is 35 nm ×
35 nm × 387 nm with a full LED structure including six-pairs
MQW, an EBL, and p and n transport layers, as shown in
Fig. 3(a). The simulation will model the current injection,
transport, and carrier screening of polarization fields, by solv-
ing the equations self-consistently. The geometric structure

TABLE III. Parameters of polarization values [46,47].

a b c

Units (C/cm2) (C/cm2) (C/cm2)

InxGa1−xN −0.042 −0.034 0.037
AlxGa1−xN −0.090 −0.034 0.021

FIG. 5. In-plane potential energy maps computed in the midplane
of the third QW of the LED structure at 2.8-V bias. (a), (c) The
conduction and valence band potentials, respectively, solved by
classical Poisson and DD models. (b), (d) The effective confining
potentials solved by the LL theory corresponding to the conduction
band and valence band potentials, respectively. The location of the
plane is displayed in Fig. 6(b).

was meshed by the GMSH program [49], where the mesh has
1 265 291 nodes and 7 662 428 tetrahedral elements. The mesh
grid size is 0.5 nm × 0.5 nm in the x-y plane and a gradual
mesh technique was used for the grid size in the z direction
ranging from 0.12 to 20 nm. The Schrödinger equation is of
course an eigenvalue problem, whereas the LL model solves
a much simpler linear equation. This significantly reduces the
computation time in each iteration step by a factor of ∼1000 as
compared to a Schrödinger solver. In addition, the computation
time of the landscape equation is approximately the same as
that for the DD equation (with both electrons and holes). The
detailed computation time required to solve each equation and
a comparison with other models are given in the Appendix.

We now implement the LL theory into the Poisson-DD
model and solve these equations self-consistently (Fig. 2)
to account for disorders. This solves the carrier density and
transport including the quantum effects of disorder inasmuch
the landscape model results represent those of a Schrödinger
solver [1]. At a given applied bias to the LED structure, the
3D LL is computed in a self-consistent manner starting from
the original electron and hole potentials. As an illustration, the
2D energy potential maps corresponding to the midplane of
a QW and the 1D band diagram of the structure along the z

direction are shown in Figs. 5 and 6, both for the original and
the effective potentials 1/ue,h at a bias of 2.8 V.

Figures 5(a) and 5(b) show the conduction band potential
and the corresponding landscape potential 1/ue computed self-
consistently in presence of QW disorder. 1/ue appears to be
smoother compared to Ec because the landscape theory flattens
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FIG. 6. (a) Band diagrams of the LED structure at 2.8-V bias
along the z direction corresponding to Ec and Ev (black and blue
lines, respectively), 1/ue and 1/uh (red and green lines, respectively)
computed self-consistently. (b) Details of the zoomed band diagram,
where the variations of the effective potentials 1/u with respect to the
original band edge potentials can be observed. The electron and hole
quasi-Fermi levels are shown by dashed lines.

the rapid fluctuations not “seen” by the quantum states of the
disordered system [1,32]. The local peak potentials are lowered
and smoothed due to quantum tunneling effects. Aside from in-
plane quantum effects, the energy reference of 1/ue in Fig. 5(b)
is also raised with respect to Ec by quantum confinement along
z [see Fig. 6(b)]. Note that the difference between the Ev and
1/uh maps is smaller, as shown in Figs. 5(c) and 5(d). This
is due to the heavy-hole effective mass (1.829m0), which is
much heavier than the electron effective mass (0.159m0) in
the In0.14Ga0.86N QW. As a result, the quantum confinement
and tunneling effects experienced by heavy holes are much
reduced.

Similar effects can be clearly observed in the band diagram
of the structure shown in Fig. 6 obtained when averaging
in-plane 1/ue and 1/uh: 1/uh remains fairly close to the
valence band edge, while in 1/ue the minima of the con-
duction band edge are raised considerably and the barriers
are appreciably lowered. We emphasize that the LL theory
captures the quantum effects in a disordered layer over a
wide range of energies, far from only the ground states,
and thus describes the effective band diagram of a quantum
semiconductor structure (see LL1 [1]), therefore influencing
both in-plane and perpendicular carrier transport through the
LED. This will prove essential in the threshold voltage for
carrier transport through the heterostructure, and is at the root
of the proper description of the perpendicular transport, while
using layers with homogeneous averaged composition leads
to vastly overestimated threshold voltages.

V. ELECTRICAL AND OPTICAL PROPERTIES
CALCULATED FROM THE LOCALIZATION

LANDSCAPE THEORY

After understanding how the LL theory predicts the effec-
tive local potentials for electrons and holes used to calculate
the carrier concentrations in a self-consistent loop with the
Poisson-DD equations, we move to study current-voltage
characteristics, carrier densities, and the quantum efficiency
of the whole GaN-based LED structure. The simulation
parameters can be found in Table IV including the doping
and recombination coefficients. For the sake of comparison,
we compute different optoelectronic properties of the LED

TABLE IV. Simulation parameters of each epilayer [35,50,51].

n-GaN i-InGaN p-AlGaN p-GaN

Thickness (nm) 200 67 20 100
μe (cm2/Vs) 200 300 100 32
μh (cm2/Vs) 23 10 5 5
Doping (cm−3) 5 × 1018 1017 3 × 1019 2 × 1019

Ea (meV) 25 NA 215 170
τ non rad
n (s) 10 10−7 10−7 6 × 10−10

τ non rad
p (s) 7 × 10−10 10−7 10 10

B0 (cm3/s) 3 × 10−11 3 × 10−11 3 × 10−11 3 × 10−11

C0 (cm6/s) 2 × 10−31 2 × 10−31 2 × 10−31 2 × 10−31

using the landscape-based Poisson-DD solver with random
alloy fluctuations (“1/u-Poisson-DD”) and compare it to the
classical Poisson-DD method with random alloy fluctuations
(“Poisson-DD”) or with uniform QWs and EBL [“Poisson-DD
(uniform)”], developed in our previous work [27]. Note that
only the first modeling approach takes into account quantum
effects due to disorder because of the implementation of the
LL theory.

In Fig. 7, we compare the carrier distribution of electrons
and holes computed in the midplane of the third QW of
the LED structure. The classical Poisson and DD solver
treats carriers as particles and, as a consequence, the local
carrier density fluctuates strongly, reflecting the rapid spatial
oscillations of the alloy composition [Figs. 7(a) and 7(c)].

On the other hand, in the landscape model, quantum
effects are included and the smoother effective potentials
[Figs. 5(b) and 5(d)], via Eq. (4), produce more uniform carrier
distributions which are better representative of the standing
wave nature of the localized quantum states [Figs. 7(b)
and 7(d)].

FIG. 7. Electron and hole carrier densities computed in the
midplane of the third QW with compositional disorder at 20 A cm−2

current density using: (a), (c) the classical Poisson and drift-diffusion
models; (b), (d) the landscape theory implemented in Poisson-DD.
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FIG. 8. A comparison of Poisson-DD equations solutions for
the I-V characteristics assuming homogeneous QWs (black curves),
disordered QWs described by the real potentials (red curve), or by
the 1/u effective confining potentials (blue curve).

The I-V characteristics of the LED calculated by different
modeling approaches are shown in Fig. 8. Usually [22],
the classical Poisson-DD model without disorder leads to a
very large turn-on voltage when assuming 100% theoretical
polarization charge, and in several works [26,27] an internal
charge reduced by 50% was used to realize a turn-on voltage
and IQE more in line with experiment. Both calculations
with disorder, “Poisson-DD” and “1/u-Poisson-DD,” use the
same input random indium distribution and 100% theoretical
polarization charge. Due to the higher effective band gap of the
1/u potentials [Fig. 6(b)], the current density computed using
the landscape is slightly lower before or near turn-on voltage
compared to the classical Poisson-DD solver with adjusted
50% polarization charge. When the applied voltage increases
above the threshold, the current density computed using the
landscape becomes larger due to the lower effective barriers
of the 1/u potentials [Fig. 6(b)], which effectively reduce the
internal resistance for carrier transport. The forward voltage
(Vf ) computed by 1/u corresponding to 20 A cm−2 is around
3.0 V at 300 K, which matches quite well commercial blue
LED data (2.8–3.1 V). For instance, Nichia Co. reported in
Ref. [52] two blue LEDs, a high-efficiency one with Vf =
2.89 V at 10 A cm−2 and a high-power one with Vf = 3.10 V
at 35 A cm−2, both values being in good agreement with the
I-V characteristic predicted by the 1/u-Poisson-DD model.
The remaining difference could be attributed to leakage paths
via V-pit structures or dislocation lines [53], to the absence
in our modeling of tunneling in perpendicular transport, or to
the internal temperature of real LED devices being higher than
300 K, leading to a lower Vf .

The average carrier densities along each QW of the active
region are shown in Fig. 9. The black curves correspond to
a structure with uniform In0.14Ga0.86N QWs and polarization
charge reduced to 50% solved by the classical Poisson and DD
models, whereas the blue curves are the QW calculated by the
Poisson and drift diffusion implementing the landscape.

Since at a given LED bias voltage the injected current
in the two structures, with and without disorder, can be

FIG. 9. Carrier distribution in the 6 QWs of the LED for electrical
injection at 20 A cm−2 obtained using a classical Poisson-DD model
for uniform layers and the landscape theory implement in Poisson-DD
for a structure with random alloy fluctuations. The x and y axes are
shifted for illustration.

very different (see Fig. 8), it is more relevant to compare
the carrier densities realized from the different models at
a given current density, therefore, in comparable conditions
of band filling and carrier-induced electric field screening.
We also plot in red in Fig. 9 the calculation of the carrier
injection when the disorder is taken into account only through
the changes in conduction and valence band levels, without
the use of the landscape model to account for localization
effects. The results lie somewhat in-between those of the
uniform material model and the landscape model. As we can
see, at the same injected current density of 20 A cm−2, the
1/u-Poisson-DD model predicts a smaller carrier density as
a consequence of the larger electron-hole spatial overlap and
higher recombination rates induced by disorder. Moreover, the
modeling based on the LL shows that carriers are still quite
inhomogeneously injected [see Fig. 16(b)], leaving room to
improvement through better designs of the active region as one
wishes homogeneous carrier injection to diminish the highly
nonlinear Auger recombination.

Figure 10 shows the simulated effective B coefficient, Beff ,
for the last QW (p side) as a function of current density,
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FIG. 10. Variation of the effective radiative coefficient with
carrier injection in the last QW (p side).

defined as the recombination rate divided by the product of
the QW averaged electron and hole concentrations. As can
be seen, Beff increases with current density, mainly due to
electric field screening. The increase is particularly important
for the simulated uniform QWs, as disorder will smooth out
large potential fluctuations. The size of the calculated change in
Beff , however, points that the frequently used ABC model with
constant A, B, C parameters is of little use to quantitatively
analyze recombination phenomena in LEDs [3].

Figure 11 shows the z component of current and the
corresponding effective quantum potentials in the midplane
(x-y plane) of the third QW. As shown in Fig. 11(d), the

FIG. 11. (a), (b) The perspective views along the z direction
of vertical transport of 1/ue and z component of current (Jz),
respectively. (c), (d) The 1/ue and Jz value in the midplane (x-y
plane) of the third QW. All figures are solved by 1/u-Poisson-DD
model, where the LED current density is 20 A cm−2.

FIG. 12. Ideality factors corresponding to the I-V characteristics
shown in Fig. 8 computed from Eq. (11).

current finds percolation paths through lower potential regions,
enabling a decrease of the turn-on voltage, where a much
smaller voltage is needed to reduce the polarization-induced
potential barrier. The existence of such percolation paths with
high current densities is the basis of the reduced turn-on
voltage caused by indium fluctuations induced by disorder,
together with the in-plane averaged effects of confinement
and tunneling (see Fig. 6). Similar effects of InGaN alloy
fluctuations have been observed and verified in unipolar
structures [25,54].

VI. DISCUSSION

The above calculation of the I-V characteristic based on
1/u only assuming experimental material parameters (Tables
I–IV) represents well the experimental data. We turn now to
more precise results to identify the calculated LED internal
features. Figure 12 displays the ideality factor (IF) of the I-V
characteristics calculated as

IF = e

kBT

∂V

∂ ln(J )
. (11)

The 1/u simulation remarkably reproduces the few experi-
mental data available in high-quality LEDs [21,55,56]. At low
bias and current, IF is near 2, as in the Sah-Noyce-Shockley
theory [57] due to SRH recombination in the depletion
region (here mainly in the QWs). Increasing the bias, the IF
diminishes close to unity, as modeled in perfect p-n junctions
where current is dominated by diffusion in the neutral regions
of the junction. This is to be expected: in the bias region
where recombination is dominated by a bimolecular radiative
recombination process, the current density is approximately
B0np. Expressing n and p as

n = Nc exp

(
EFn − Ec

kBT

)
,

p = Nv exp

(
Ev − EFp

kBT

)
.
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FIG. 13. Ratio of Auger and leakage currents to total injected
current.

This yields

J ∝ NcNv exp

(
− Eg

kBT

)
exp

(
eV

kBT

)
≈ n2

i exp

(
eV

kBT

)
,

which corresponds to IF = 1. The minimum IF, near unity,
is reached at a current density of the order of 0.1 A cm−2, in
the range of the experimental measurements [21,55,56,58]. At
even larger bias, the IF increases again as the series resistance
dominates the device characteristic. Our IF calculation shows
that the “1/u-Poisson-DD” model including random alloy
fluctuations provides an excellent overall description of the
transport properties of LEDs.

It must be remarked that an almost ideal IF does not
mean at all that carriers are uniformly distributed in the
structure (cf. Fig. 9) pointing to the inherent shortcomings
of electrical measurements to assess that critical phenomenon.
We can also calculate the leakage current exiting the active
layer region, as shown in Fig. 13. As can be expected from
the low turn-on voltages modeled, quite smaller than the
GaN band gap, very little carrier leakage is expected under
usual operating conditions. The calculation indeed shows that
leakage is negligible until the bias voltage reaches 3.4 V, value
corresponding to the GaN band gap, with total currents above
500 A cm−2. In this calculation, the sheet resistance is not
considered since only vertical transport is calculated. If sheet
resistance would be considered, one would even need higher
voltage to reach the flat band condition since an extra potential
drop will occur in the current spreading layer.

Turning to the light emission efficiency curve, shown in
Fig. 14, the peak IQE obtained from 1/u is slightly higher than
the classical Poisson-DD model on fluctuated QWs because of
the more homogeneous in-plane radiative efficiency and carrier
injection in each QW. As Fig. 15 shows, the in-plane radiative
recombination distribution spreads out in the 1/u-Poisson-DD
model because carriers are localized on larger domains in the
QW plane [Figs. 9(b) and 9(d)]. Let us recall that the influence
of wave-function overlap in our model is included in the np

term instead of the radiative recombination coefficient B0.
Therefore, as shown in Fig. 9, the distribution of electrons

FIG. 14. IQE curve for the full structure LED.

and holes along the growth direction is more symmetric with
respect to the midplane of the QWs due to quantum confined
wave properties. They have then better overlap compared to the
classical DD model, leading to a higher radiative efficiency.

Figure 16(b) shows the calculation of the integrated recom-
bined current both radiatively and nonradiatively in each well
for the uniform QW and disordered QW models at a current
density of 20 A cm−2. The inhomogeneity of carrier injection
is well displayed by the total recombination current decreasing
from the p side, on the right, to the n side. Moreover, the IQE
of each QW is also calculated to examine the contribution of
each QW as shown in Fig. 16(a). The IQE of the QW close
to the p layer is smaller in the classical Poisson-DD model
due to a smaller overlap as compared to the 1/u-Poisson-DD
model. The opposite trend between the classical Poisson-DD
model (higher IQE in the QWs close to the n layer) and
1/u-Poisson-DD model (higher IQE in the QWs close to
the p layer) also reveals a better current injection through
MQWs for the 1/u-Poisson-DD model due to reduced effective
barriers for electrons. Besides, the Auger recombination will

FIG. 15. The in-plane local radiative recombination rates in the
third QW computed from (a) the classical Poisson-DD model; (b)
1/u-Poisson-DD model. Current density is fixed at 20 A cm−2.
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FIG. 16. Distribution among the different QWs of (a) IQE. (b)
Recombination current density. LED current density is 20 A cm−2.

start to dominate in the last QW (p-side well) at higher
carrier densities. Due to the increasing local carrier density
in the disorder case, the integrated Auger recombination can
be enhanced compared to normal QW (see Fig. 13), which
matches well the experimental droop with a C0 coefficient in
line with theory. On the other hand, the different IQE values
among QWs can be attributed to the inhomogeneity of carrier
injection, which again shows that adopting a constant carrier
density (n) in the ABC model is incorrect to represent the IQE
behavior in MQW structures. While small, the recombination
currents in QWs other than the last one cannot be neglected, as
is sometimes done in ABC modeling. In the 50% polarization
uniform QWs case, the intentionally reduced polarization
field makes electrons and holes overlap better due to the
more homogeneous distribution in each well, which does
not match experimental observations [59]. It also reduces the
influence of Auger recombination due to lower local carrier
density (without localization), so that the droop effect is less
pronounced. A larger C0 would then be needed to represent
the experimental Auger recombination.

VII. CONCLUSIONS

In this work, we successfully implemented a method,
namely the LL theory of disordered systems, to model the
carrier transport and optical emission of LED heterostructures
including the effects of intrinsic disorder in nitride-based
material alloys. According to the LL theory, a function 1/u

acts as an effective semiclassical confining potential which
allows us to account for in-plane quantum confinement and
tunneling effects due to the random indium fluctuations. The
carrier dynamics can then be modeled through the classical
drift-diffusion equations in an efficient self-consistent way.
With the landscape model, computations are much faster than
the conventional Schrödinger eigensolvers, especially in 3D,
typically by a factor ×100–1000, allowing self-consistent
calculations.

The I-V characterization of LEDs matches very well
experimental measurements as a result of reduced energy
barriers and of percolative transport. While the ideality factor
of the LED has a near perfect behavior as a function of injected
current, the carrier distributions are still very inhomogeneous
throughout the heterostructures. This shows that measuring
electrically the structure does not provide a clear insight on
the internal electronic processes. On the optical properties
side, the landscape maps for electrons and holes give us a
good estimate of electron and hole overlap, leading to more
accurate simulations of LED IQE.

In principle, this method is not only restricted to modeling
nitride-based devices, but can be expanded to model other
disordered semiconductor materials and structures.
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APPENDIX: COMPUTATION TIME OF THE LANDSCAPE
THEORY APPLIED TO LEDs

COMPARED TO OTHER MODELS

Table V shows the approximate computation time required
for each iteration step when solving different equations, such
as the Poisson, drift-diffusion, LL, and Schrödinger equation.
The total computation time required to compute a typical LED
I-V curve (45 bias values) using different methods is given
in Table VI, where an average number of 16 iteration steps
until convergence is needed for each bias (Poisson-DD and
Poisson-DD-1/u). The ARPACK solver [60] for the generalized
eigenvalue problem was used. For the solution of the inverse
problem, the PARDISO solver [61] was used. Typically, the
environment of clusters to which the computation is submitted
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TABLE V. Computation time required for each iteration step
when solving the Poisson, DD, landscape, and Schrödinger equations
for a given number of nodes, as tested by our home-built software
and compared with other disorder models in nitrides [14,20,21,62].

Node number Computation time (s)
(matrix size)

Poisson 428 655 25
Drift diffusion 428 655 50
Localization landscape 428 655 50
Schrödinger 428 655 63 650
Refs. [14,62] 1 500 000 60 000
Ref. [20] 328 000 7500
Ref. [21] 100 000 24 000

is 2 Intel Xeon E5-5650V2 8 cores 2.6 GHz CPUs with 396 GB
memory.

Let us draw a comparison with the computation time
deduced from the simulations of InGaN/GaN QWs incorpo-
rating random indium fluctuations as reported by other groups
(Table V). Watson-Parris et al. used the finite-difference
method to solve the 3D effective mass Schrödinger equation
[14], where the node size is about 1 500 000. Their computation
time for one iteration is about 60 000 s, which is quite
similar to our Schrödinger simulation model and is extremely
time consuming. Besides, the self-consistent loop cannot be
done due to this long computation time so that the Poisson-
Schrödinger solver is not self-consistent. Concerning atomistic
simulations, Schulz et al. adopted the empirical tight-binding
method (TBM) and valence force field model to account for the
strain-induced polarization field and band structure of the QW,
while the perpendicular carrier transport was overlooked [20].

TABLE VI. Total computation time of a complete I-V curve
ranging from 1.8 to 4.0 V (0.05-V step) for the Poisson-DD solver,
Poisson-DD-Schrödinger solver, and Poisson-DD-1/u solver, as
tested by our home-built software.

Total computation time (s)

Poisson-DD 54 000
Poisson-DD-Schrödinger 45 882 000a

Poisson-DD-1/u 90,000

aValue has been obtained from the Table V assuming 16 iterations to
achieve convergence.

The simulation domain is limited near the single QW region
of 10 nm × 9 nm × 10 nm containing ∼82 000 atoms. Hence,
the typical node size is about 82 000 × 4, with an estimated
computation time of 7500 s. Auf der Maur et al. also applied
the empirical TBM to model indium fluctuations in InGaN
QWs [21]. Although the classical Poisson and drift-diffusion
models were used to solve the electrostatic potential, the
atomistic calculation is not performed self-consistently with
the classical model. The dimension of the atomistic simulation
is still limited near the QW region (10 nm × 10 nm × 11 nm
containing ∼100 000 atoms), which cannot be used to model
full MQW LED structure in view of the computation time.
Therefore, the key problem for quantum solvers such as the
effective mass approximation Schrödinger equation or TBM
is the huge amount of computation time which makes such
models impractical for the full structure LED simulation.

It can be concluded that the landscape model coupled to the
Poisson-DD equations is much more computationally efficient
with respect to state-of-the-art quantum solvers, while still
incorporating quantum effects such as tunneling and quantum
confinement.
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