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Localization landscape theory of disorder in semiconductors. I. Theory and modeling
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We present here a model of carrier distribution and transport in semiconductor alloys accounting for quantum
localization effects in disordered materials. This model is based on the recent development of a mathematical
theory of quantum localization which introduces for each type of carrier a spatial function called localization
landscape. These landscapes allow us to predict the localization regions of electron and hole quantum states,
their corresponding energies, and the local densities of states. We show how the various outputs of these
landscapes can be directly implemented into a drift-diffusion model of carrier transport and into the calculation of
absorption/emission transitions. This creates a new computational model which accounts for disorder localization
effects while also capturing two major effects of quantum mechanics, namely, the reduction of barrier height
(tunneling effect) and the raising of energy ground states (quantum confinement effect), without having to solve
the Schrödinger equation. Finally, this model is applied to several one-dimensional structures such as single
quantum wells, ordered and disordered superlattices, or multiquantum wells, where comparisons with exact
Schrödinger calculations demonstrate the excellent accuracy of the approximation provided by the landscape
theory.
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I. INTRODUCTION

Alloy semiconductors are ubiquitous in many modern
semiconductor devices, where the use of heterostructured
materials can drastically improve the device performances
(see, e.g., Ref. [1]). The main property engineered here is the
band-gap difference between the various materials associated
in the heterostructures. However, due to the large lattice
mismatch between pure compound semiconductors which
would lead to highly defective materials if employed as such,
one has to associate binary compounds and alloys of binary
compounds, leading to ternary alloys, eventually quaternary
alloys. The resulting lattice constants are sufficiently close to
obtain growth of high-quality materials. One thus retains part
of the band-gap discontinuities between the binary compounds
which allows one to confine carriers in double heterostructures
or quantum wells [2,3]. An additional useful property is the
modulation of the refractive index, which proved to provide
an additional beneficial effect of crucial importance to achieve
room-temperature continuous wave lasers, opening the way to
optical telecommunication systems. Many other properties are
impacted by alloying, some of them not desirable: for instance,
the compositional fluctuations induce an additional scattering
mechanism for charge carriers which diminishes the carrier
mobilities.

GaN-based compounds are among the semiconductors
displaying the largest variety of properties of heterostructures
and alloys. In addition to the usual features, they show,
due to their large ionic composition and crystalline structure
(most often wurtzite along the c axis), spontaneous and
piezoelectric fields which strongly impact their electrical and
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optical properties [4]. They also exhibit significant effects of
the intrinsic spatial compositional fluctuations of their alloys.
The random indium content in InGaN multiple quantum well
(MQW) structures can vary locally from 10% to 23% within
a few nanometers, for an average composition value of 17%
[5]. These fluctuations can induce a strong modification of
carrier spatial distributions, of recombination rates, and of the
overall light emission efficiency of the device. They have long
been identified as responsible for the short carrier diffusion
lengths which in turn lead to high emission efficiencies in
spite of the high density of defects still present in the best
grown heterostructures [6].

Accounting for carrier localization induced by the local
material disorder in semiconductor materials and devices is
a daunting task. Usually, it requires solving the Schrödinger
equation (both for electrons and holes) for random realizations
of the disordered potential, and determining the energies and
the spatial structure of the localized quantum states. Actually,
this problem relates to the famous Anderson localization
phenomenon [7] which has triggered an enormous literature,
and several of whose aspects still remain puzzling after more
than 50 years of research [8–10]. From 1983, early evidence
of the role played by localization in semiconductors has been
observed in conductivity measurements around the metal-
insulator transition of three-dimensional (3D) doped charge-
uncompensated silicon [11]. Theoretical approaches such as
the self-consistent scaling theory of Anderson localization
have been able to successfully describe this disorder-induced
phase transition [12]. More recently, Anderson localization
has been found to play a key role in the transport properties
of low-dimensional media such as disordered graphene [13].
Yet, most of the theories developed to account for Anderson
localization rely on statistical averages (through correlation
functions) and scaling hypotheses [14,15]. Moreover, the
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fermionic nature of the carriers and the electron-electron and
electron-hole interactions (through the electric field) increase
the difficulty to reproduce the complex and intricate behaviors
of semiconductors. The existing methods for computing
transport needs to go down to the atomistic level using
techniques such as nonequilibrium Green’s functions and
coherent potential approximation, at a very high computational
cost [16]. As a consequence, one still lacks a model able to
predict efficiently carrier localization and its consequences
in realistic disordered semiconductor devices, with the often
added complication of multilayered heterostructures.

One of the most puzzling aspects of Anderson localization
is the strong spatial confinement of the one-particle quantum
states, attributed to destructive interferences between different
propagation pathways in a disordered potential. Recently, a
new theory has been proposed, which allows one to accurately
predict the localization regions of the carriers, and the density
of states (DOS) in the disordered potential created by the
fluctuations of material composition, without having to solve
the Schrödinger equation [17,18]. This groundbreaking theory
is based on a new mathematical tool, the localization landscape
(LL), which is the solution to a Schrödinger-type equation with
uniform right-hand side.

We present here the implementation of this tool into
semiconductor materials and its use in a semiclassical transport
model of semiconductor devices. We show how the formalism
of the theory enables us to efficiently predict in semiconductor
structures the wave functions and eigenenergies of the confined
states, the overlap between electrons and holes, the DOS, and
the carrier distribution. This implementation conserves a local
formulation, adding only to Poisson and transport equations a
different partial differential equation (PDE). It accelerates the
computation time by several orders of magnitude compared to
the Schrödinger-Poisson drift-diffusion (DD) type approach.

The results of this localization theory are further applied to
the specific case of nitride semiconductors in two companion
papers, one showing experiments and theory of the Urbach tail
of InGaN quantum wells (Piccardo et al. [19], hereafter called
LL2), the other on the simulation of full light emitting diode
(LED) structures (Li et al. [20], hereafter called LL3).

II. LOCALIZATION LANDSCAPE THEORY

We present first the main features of the LL theory
introduced in Refs. [17,18]. According to this theory, the
precise spatial location of quantum states in a potential V (�r)
can be predicted using the solution u(�r) of a simple associated
Dirichlet problem, called the localization landscape. The
quantum states and the energies of particles with mass m

are, respectively, the eigenfunctions and the eigenvalues of
the Hamiltonian of the system defined as

Ĥ = − h̄2

2m
� + V. (1)

With this notation, the landscape u(�r) is defined as the solution
to

Ĥu = − h̄2

2m
�u + V u = 1. (2)

FIG. 1. The localization landscape theory: (a) 3D representation
of the original 2D disordered potential V ; (b) 3D representation of
the landscape u solving Eq. (2). (c) The valley lines of the landscape
u (black lines) delimit the various localization regions. (d) Effective
localization potential W ≡ u−1. The localization subregions outlined
in (c) are also the basins of W .

It is shown in Ref. [17] that the subregions hosting the localized
eigenfunctions are delimited by the valley lines of the graph of
u [see Figs. 1(a) and 1(b) for the case of two-dimensional (2D)
potential (for a 3D potential, these valleys would be surfaces)].
This property directly derives from a fundamental inequality
satisfied by any eigenfunction ψ of Ĥ with eigenvalue E,
normalized so that its maximum amplitude is equal to 1 (see
Ref. [17] for the proof):

|ψ(�r)| � Eu(�r). (3)

In other words, the small values of u(�r) along its valley
lines [17] constrain the amplitude of ψ to be small along
the same lines and, as a consequence, localize low-energy
eigenfunctions inside the regions enclosed by these lines. The
landscape u therefore exhibits a partition of the entire domain
into a set of subregions, each of these subregions localizing
the carriers. But, as exposed hereafter, much more information
can be extracted from the localization landscape u(�r).

A. Effective localization potential

Not only u(�r) controls the eigenfunctions, but also the
function W (�r) ≡ 1/u(�r) (homogeneous to an energy) can be
interpreted as a confining potential that is related, among oth-
ers, to the exponential decay of the Anderson localized states
away from their main localization subregion. This property can
be proved by transforming the original Schrödinger equation
through the introduction of an auxiliary function ψ1 such that
ψ ≡ uψ1. A straightforward computation yields

− h̄2

2m

[
1

u2
div(u2∇ψ1)

]
+ Wψ1 = Eψ1. (4)
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One can see from this equation that the auxiliary function
ψ1 = ψ/u thus obeys a Schrödinger-type equation in which
the original potential V (�r) has disappeared. Instead, the
function W (�r) now plays the role of an “effective confining
potential.” The valleys of u, which are the boundaries of the
localization subregions [17], now correspond to the crest lines
(or watershed lines) of W and thus act as barriers to the
auxiliary function ψ1. This function ψ1, as well as the initial
eigenfunction ψ , is now localized in the basins of W [see
Fig. 1(c)].

Actually, it was proved that W plays exactly the role of an
effective potential thanks to the following identity satisfied by
any quantum state |ψ〉:

〈ψ |Ĥ |ψ〉 = h̄2

2m

〈
u �∇

(
ψ

u

)∣∣∣∣u �∇
(

ψ

u

)〉
+ 〈ψ |Ŵ |ψ〉. (5)

This identity shows that the energy E of any quantum state |ψ〉
can never be smaller than the one it would have in a potential
W (�r). Consequently, according to Agmon’s inequality [21,22],
the quantity (W − E) controls exponentially the decay of
ψ(�r) in the regions where E < W . Mostly, the eigenfunction
decays exponentially with a rate proportional to

√
W − E in

the barriers where W > E. More precisely, the decay at point
�r of the amplitude ψ�r0 (�r) of an eigenfunction centered in �r0

and of energy E is expressed through the inequality

|ψ�r0 (�r)| � e−ρE( �r0,�r), (6)

where ρE( �r0,�r) is the Agmon distance between �r0 and �r . This
Agmon distance (depending on E) is defined as

ρE( �r0,�r) = min
γ

(∫
γ

√
[W (�r) − E]+ds

)
, (7)

where γ minimum is the geodesic path (i.e., the path of
minimum length) between points �r0 and �r and ds is the
elementary path on that geodesic.

The LL therefore provides an estimate of the decay of the
quantum state away from its main existence region. This decay
corresponds to the tunneling effect and is more commonly
known in quantum mechanics as a result of the Wentzel-
Kramers-Brillouin (WKB) approximation. The theory used
here is its mathematical generalization, which holds for any
potential W satisfying 〈ψ |Ĥ |ψ〉 � 〈ψ |Ŵ |ψ〉 for all quantum
states. The fact that W plays the role of an effective potential
finely shaping the quantum states is crucial for deriving
an accurate expression of the density of states, as we will
see in Sec. II C. Finally, our estimate of the eigenfunction
amplitudes based on W can also be used, for instance, to
assess the coupling between distant localization subregions
[23].

B. Eigenvalue and eigenfunction estimates

In each of the subregions bounded by the valley lines
of the LL u(�r), the local fundamental eigenfunction and its
corresponding energy can also be accurately determined from
u itself inside the localization region (the decay far from the
localization region being assessed as exposed in Sec. II A).
To this end, the landscape u, satisfying Ĥu = 1, has to be

decomposed on the basis formed by the eigenfunctions ψi of
the Hamiltonian:

u =
∑

i

αiψi (8)

with

αi = 〈u|ψi〉 =
∫∫∫

u(�r)ψi(�r)d3r. (9)

The decomposition coefficients αi can be computed using the
self-adjointness of the Hamiltonian:

αi = 〈u|ψi〉 = 1

Ei

〈u|Ĥψi〉 = 1

Ei

〈Ĥu|ψi〉

= 1

Ei

〈1|ψi〉. (10)

From Eqs. (8) and (10), one can draw three main remarks.
First, the lower-energy quantum states contribute more to the
landscape u than the high-energy ones [because Ei grows in
the denominator of Eq. (10)]. Second, in a given localization
subregion, the low-energy states (ψi) entering the decom-
position of Eq. (8) are essentially the local quantum states
of this subregion. Third, in each subregion, the fundamental
state has a bumplike shape, while the higher-energy ones, by
orthogonality, take positive and negative values which cancel
out so that the scalar products 〈1|ψi〉 of Eq. (10) almost vanish.
Note that this cancellation also occurs for the high-energy
delocalized states of the system. As a consequence, in each
localization subregion �m, the following relation is deduced:

u ≈
〈
1
∣∣ψ (m)

0

〉
E

(m)
0

ψ
(m)
0 , (11)

ψ
(m)
0 being the local fundamental state of subregion �m.

This shows that the local fundamental state ψ
(m)
0 is almost

proportional to u in �m:

ψ
(m)
0 ≈ u

‖u‖ . (12)

Inserting Eq. (12) into identity (5) and using the fact that
W ≡ u−1 allows us to evaluate the fundamental energy E

(m)
0

from the landscape only:

E
(m)
0 = 〈

ψ
(m)
0

∣∣Ĥ ∣∣ψ (m)
0

〉 ≈ 〈u|Ŵ |u〉
‖u‖2

= 〈u|1〉
‖u‖2

=

∫∫∫
�m

u(�r)d3r∫∫∫
�m

u2(�r)d3r

. (13)

The LL u(�r) therefore provides a direct estimate of the
fundamental energy in each of the localization subregions.

C. Density of states

Finally, the prediction of the localized energies extends to
the prediction of the integrated density of states (IDOS), hence
to its derivative, the density of states (DOS). Thanks to the
LL theory, these quantities can be computed not only globally
for the whole system under consideration, but also locally. We
detail here the general case of a 3D system as well as the
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specific case of a (1+2)D system exhibiting two-dimensional
translation invariance.

1. 3D DOS

Due to the uncertainty principle �x�k ≈ 2π , each three-
dimensional (3D) one-particle quantum state spreads in phase
space (�r,�k) on a volume of order (2π )3. As a consequence,
the number of energy states below a given energy E (i.e.,
the counting function, also called integrated density of states
IDOS) is asymptotically equivalent to V(E)/(2π )3 when E →
+∞, where V(E) is the volume in phase space determined
by H (�r,�k) � E. This asymptotic behavior is the so-called
Weyl’s law [24]. In a three-dimensional semiconductor, the
Hamiltonian of an electron in the conduction band reads as

H (�r,�k) = h̄2k2

2m∗
e

+ Ec(�r), (14)

where Ec is the conduction band energy and m∗
e is the effective

electron mass. The IDOS deduced from Weyl’s formula is
therefore

IDOS(E) = 2

(2π )3

∫∫∫
H (�r,�k)�E

d3r d3k

= 2

(2π )3

∫∫∫
�r

(∫∫∫
h̄2k2

2m∗
e

�E−Ec(�r)
d3k

)
d3r. (15)

The factor 2 appearing in the numerator accounts for the spin
degeneracy, and the integral within parentheses on the second
line is simply the volume of a sphere in k space. The IDOS can
therefore be written as a space integral of a local quantity that
is classically assimilated to a local IDOS, noted LIDOS(E,�r),
in the local band structure approximation:

IDOS(E) =
∫∫∫

�r
LIDOS(E,�r)d3r (16)

with

LIDOS(E,�r) = 2

(2π )3

4π

3

⎛
⎝

√
2m∗

e [E − Ec(�r)]

h̄2

⎞
⎠

3

= 1

3π2

(
2m∗

e

h̄2

) 3
2

[E − Ec(�r)]
3
2 . (17)

Differentiating this LIDOS with respect to E gives the local
density of states LDOS(E,�r):

LDOS(E,�r) = 1

2π2

(
2m∗

e

h̄2

) 3
2 √

E − Ec(�r). (18)

One recovers here the classical expression of the local density
of states for conduction electrons in a semiconductor.

In a disordered system, Eq. (5) shows that W (�r) acts
as an effective potential on the particle. Subsequently, W

controls the distribution of energies for localized states in each
localization subregion. One of the main consequences of this
control, as shown on several examples in Ref. [18], is that
W can be used to accurately estimate the integrated density
of states, hence of the density of states also, although the
approximate DOS obtained after differentiating the IDOS is in

FIG. 2. Local density of states (LDOS) deduced from the effec-
tive potential Wc ≡ 1

ue
.

essence less accurate. Practically, this is achieved by replacing
the original potential (here Ec) by W in the LDOS:

LDOS(E,�r) = 1

2π2

(
2m∗

e

h̄2

) 3
2 √

E − W (�r). (19)

This expression physically means that at each point �r , the local
density of states is equal to the one of an infinite medium with
identical material composition and a parabolic band whose
minimal energy would be W (�r) (see Fig. 2). In the classical
view of the local band approximation, �r represents in fact a
small volume compared to the typical size of the system, but
large enough so that it can contain the local electronic states.
This approximation, which is routinely used when the wave
functions are delocalized Bloch waves, is even more justified
when dealing with localized eigenfunctions.

The reason for the quality of the approximate IDOS
computed using Wc (resp. Wv) instead for Ec (resp. Ev)
has been detailed in Ref. [18], but one can give here a
short explanation. Weyl’s law is fundamentally based on an
analogy between quantum and classical filling of phase space,
the classical being the volume bounded by H (�r,�k) = E, and
the quantum originating from the uncertainty principle which
states that the volume of a quantum state in phase space is
approximately constant (due to �x�k ≈ 1). Thus, counting
the number of quantum states of energy smaller than E (the
IDOS) comes back to assessing the size of the corresponding
volume in phase space. It is known that in a disordered
medium, localized states contribute to perturb the bulk IDOS
and make it depart from the Weyl’s equivalent. Now, the
effective potential, which can be seen a smoothed version of
the original potential (Ec in the case of electrons), exhibits
much better defined wells and barriers. The spatial shapes
of the quantum states are closer to the classical trajectories
in this effective potential than in the original random or
disordered potential. In others words, the effective potential
is closer to what is “experienced” by the quantum wave if it
were a classical particle. As a consequence, the validity of
the classical-quantum analogy is strengthened, and the local
density deduced from Weyl’s law using W much more accurate
than any other available estimate.

One needs here to express one word of caution. While
IDOS(E) can be understood as the actual number of states
below energy E over the spatial region of integration, the
“local” density of states LDOS(E,�r) cannot be understood as
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the actual number of states at point �r as soon as the spatial
fluctuations of this LDOS occur on a scale smaller than the
typical spatial extension of the electronic states. It should rather
be considered as an “effective” value, a useful tool for assessing
physical quantities.

This remark is of particular importance when this LDOS
is integrated over all possible energies to compute the local
carrier density n(�r):

n(�r) =
∫ +∞

W (�r)

1

1 + e
E−EF
kB T

LDOS(E,�r)dE. (20)

This carrier density is apparently a local quantity at point �r ,
as in the classical DD model of transport [25], but thanks
to the effective potential W appearing in the LDOS, it now
also encompasses the quantum confinement induced by the
material disorder. As a consequence, this expression is much
more accurate than what could be estimated from the classical
similar expression with Ec(�r) instead of W (�r). At the same
time, it can be easily implemented into a PDE model such as
a drift-diffusion solver with Poisson-DD continuity equations,
instead of solving the eigenfunctions of the Hamiltonian.

2. 1D DOS

The procedure described above for 3D states can be applied
similarly to 1D systems. In this case, the IDOS reads as

IDOS(E) = 1

π

∫
z

(∫
h̄2k2

2m∗
e

�E−W (z)
dk

)
dz

= 2

π

∫
z

√
2m∗

e [E − W (z)]

h̄2 dz (21)

and the local density of states is

LDOS(E,x) = 1

π

√
2m∗

e

h̄2

1√
E − W (z)

. (22)

If one considers a 3D system with translational invariance in
the two other directions x and y, such as a quantum well, then
the quantum states are products of 1D and 2D states in the z

direction and the (x,y) plane, respectively. The 3D density of
states can thus be deduced from the above 1D density of states
along z by convoluting it with the 2D LDOS:

LDOS3D(E,z) =
∫ E

W (z)
LDOS2D(E − E1)

×
(

1

π

√
2m∗

e

h̄2

1√
E1 − W (z)

)
dE1, (23)

LDOS2D being the 2D density of states for free particles, which
is constant and equal to m∗

e/(2πh̄2) (we do not count the spin
degeneracy here as it is already included in the 1D LDOS).
This finally gives the 3D density of states

LDOS3D(E,z) = 1

4π2

(
2m∗

e

h̄2

) 3
2
∫ E

W (z)

dE1√
E1 − W (z)

= 1

2π2

(
2m∗

e

h̄2

) 3
2 √

E − W (z). (24)

One can notice that the above expression is exactly identical
to the 3D local density of states obtained in Eq. (19), except
that here W depends only on z.

D. Setting the potential reference

One needs here to underline a peculiarity of the LL.
When solving the Schrödinger equation, the potential V (�r)
experienced by the quantum particle can be defined up to a
constant value K . If one shifts the potential by K , then the
resulting energies are also shifted by the same constant K .
However, this invariance does not hold for the landscape u. If
one considers u being the solution to Eq. (2), then the solution
uK corresponding to the same potential shifted by a constant
K satisfies

− h̄2

2m
�uK + [V (�r) + K]uK = 1. (25)

If the constant K is much larger than the typical energies of the
quantum states, then KuK ≈ 1. Therefore, the corresponding
effective potential WK = 1/uK is very close to K . Inserting
the effect of the potential shift on the energies into Eq. (3),
the amplitudes of the quantum states are controlled by the
landscape through the following inequality:

|ψ(�r)| � (E + K)uK (�r). (26)

In the situation where KuK becomes very close to 1, this
inequality is almost trivially satisfied. In other words, the
constraint on ψ exerted by the LL uK becomes weaker. This
means that the constant K has to be chosen in order to be
as small as possible, in such a way that the Hamiltonian
remains a positive operator (a condition of applicability of the
LL theory). As a consequence, in semiconductor structures
where one encounters large, smooth variations of potential
superimposed on small-scale random potentials, one should
resort to solving the LL piecewise in regions over which the
variation of the potential V is of the same order of magnitude
than the energies of the quantum states.

III. TRANSPORT MODEL

A. A self-consistent approach

In this section, we present the first implementation of
the LL theory in the physical description of processes in
semiconductor heterostructure devices. The exposed model
uses a hybrid approach where energy levels, wave functions,
and DOS are computed using the landscape theory, while
a standard description is retained for carrier transport and
statistics, as described by the DD equations of semiconductor
textbooks [26]. Classically, the DD model is described through
the following set of coupled equations whose unknowns are
the electrostatic potential ϕ and the quasi-Fermi levels EFn

and EFp:

div(εr
�∇ϕ) = q

ε0
(n − p − N+

D − N−
A ± ρpol),

div( �Jn) = R + Gn,

div( �Jp) = −R + Gp,

�Jn = nμn
�∇EFn,
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�Jp = pμp
�∇EFp,

n(�r) =
∫ +∞

Ec

1

1 + e
E−EFn

kB T

LDOSn(E,�r)dE,

p(�r) =
∫ Ev

−∞

1

1 + e
EFp−E

kB T

LDOSp(E,�r)dE, (27)

where εr is the medium relative permittivity, n and p are the
electron and hole densities, N−

A and N+
D are the activated dop-

ing densities of acceptors and donors; ρpol is the polarization
charge which appears in some semiconductors such as nitrides
where electric polarization effects are important; �Jn and �Jp

are the electron and hole currents, respectively, and μn and
μp their mobility; R is the recombination rate which includes
all types of recombination processes (SRH, radiative, Auger),
and Gn,p are the carrier generation rates. Finally, LDOSn,p

are the bulk local densities of states for electrons and holes,
respectively.

The first equation of (27) is the Poisson equation which
determines the electrostatic potential from the charge carrier
densities. Second and third equations are the continuity equa-
tions for both carrier transports. The fourth and fifth equations
of (27) are the semiclassical expressions of the current
densities, derived from the Boltzmann equation assuming a
linear collision kernel. These expressions correspond to the
linear response theory in statistical physics. The mobilities μn

and μp are effective parameters that summarize the scattering
events and the quantum transport in the bulk materials, either
pure compounds or alloys. Finally, the sixth and seventh
equations of (27) compute the carrier densities from the
quasi-Fermi levels EFn and EFp through the densities of states
LDOSn,p.

In the usual DD model, Poisson and transport equations are
solved self-consistently to obtain the converged electrostatic
potential and the quasi-Fermi levels EFn and EFp. More
advanced models, called hydrodynamic, include also energy
transport and hot carriers [26], but at the expense of much
larger computational time. In order to account for quantum
confinement effects, one has to solve the Schrödinger equation
using Ec(�r) and Ev(�r) as potentials for electrons and holes,
respectively. The carrier densities are then deduced from the
electron and hole wave functions {ψe,i} and {ψh,j } and their
corresponding energies {Ee,i} and {Eh,j } through summation
with Fermi-Dirac distribution:

n(�r) =
∑

i

(
1

1 + e
Ee,i−EFn

kB T

)
|ψe,i(�r)|2,

(28)

p(�r) =
∑

j

(
1

1 + e
EFp−Eh,j

kB T

)
|ψh,j (�r)|2.

In the absence of currents, these carrier densities enter Poisson
equation which in turn modifies the electrostatic potential,
and then Ec and Ev (the band offsets δEc,v mentioned in
Fig. 3 being local properties of the material). This is the
usual (without disorder) self-consistent Poisson-Schrödinger
scheme, depicted by the blue cycle in Fig. 3. Accounting for
quantum transport adds another level of complexity, which
consists in solving the Schrödinger equation to determine
the equilibrium quantum states, and then compute transitions
between these states [27]. The dynamic carrier densities now

FIG. 3. Schematic structure of the self-consistent Poisson-
landscape model allowing us to bypass solving the Schrödinger
equation.

enter Poisson and transport equations, from which one deduces
the electrostatic potential and the quasi-Fermi levels. This
loop results in lengthy, time-consuming, and possibly unstable
simulations that can take days of computation for a complex
3D structure, even damagingly longer with compositional
disorder. At an even more fundamental level, nonequilibrium
Green’s function techniques or atomistic tight-binding models
are used to assess fast processes [28,29].

Overall, DD-based models still remain to this date the
only models able to simulate large structures and compute
carrier transport in realistic semiconductor devices with a
computational time compatible with optimization and design
(see LL3, Ref. [20]).

In the following, the implementation of the LL theory
is first presented for the Poisson scheme, then for the full
DD model including carrier transport. Introducing the LL
u(�r) allows us to entirely bypass solving the Schrödinger
equation, a computationally highly demanding step. From the
electrostatic potential, we deduce two LLs ue and uh, hence,
two effective potentials Wc and Wv . According to the theory,
these landscapes provide direct estimates of the density of
states LDOSn(�r) and LDOSp(�r) [see Eq. (22)], and of the
carrier densities. This bypass is depicted by the red arrow in
Fig. 3. The recombination rates are also assessed by computing
the overlap between electron and hole states in the localization
subregions (see next subsection). These quantities are then
used to solve Poisson and DD equations. This makes the LL
theory easily compatible with a classical DD approach. The
schematic flow chart of the entire self-consistent simulation
process is displayed in Fig. 4.

One has to underline that in this model, the current densities
still take their classical DD form expressed in Fig. 4. In this
form, the tunneling current caused by the spatial tails of the
eigenstates that cross potential barriers is inherently accounted
for in the model through the lowering of the effective potential
Wc (resp. Wv) as compared to Ec (resp. Ev). However, the
quantum current originating from phonon-assisted hopping
between different eigenstates or by scattering events is still
accounted for through effective transport parameters, i.e., the
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FIG. 4. Flow chart solving the Poisson and drift-diffusion equa-
tions by applying the localization landscape theory.

mobilities μn and μp. Extension of the theory to account for a
full quantum model of transport is currently work in progress.

B. Computing generation and recombination processes

The final subsection of the modeling section is dedicated
to the computation of the generation and recombination
processes in direct gap semiconductors using the LL, the focus
being in particular on optical interband transitions, namely,
absorption and emission. Typically, the computation of these
processes in quantum-confined semiconductor structures re-
quires the knowledge of the eigenenergies and eigenfunctions
of the quantum states, which determine, respectively, the
energy of the transitions and the overlap between the electrons
and holes. As derived in Sec. II B, these quantities can be in
fact directly assessed from the LL. It should be noted that
due to the integrals appearing in Eqs. (12) and (13), these
relations cannot be implemented into a local formulation,
such as a self-consistent Poisson-DD-landscape loop, but can
be evaluated after convergence is reached for the simulated
system.

We consider in the following the case of a homoge-
neous quantum well (QW), for which the classical absorp-
tion/emission expressions are rewritten using the LL theory.
The extension to the case of QWs with in-plane disorder is
briefly outlined, while for more details the reader is referred
to the companion papers LL2 and LL3.

1. Absorption

The quantum mechanical expression of the absorption
coefficient α of a homogeneous QW of thickness L as a

function of photon energy hν is [30]

α(hv) = C

L
g2D

∑
i,j

(hν − Eg − Ee,i − Eh,j )Ii,j , (29)

where the prefactor C = πe2h̄|pcv|2/m2
0cnrε0hν depends on

the real part of surrounding refractive index nr and the
interband momentum matrix element pcv . Considering a
narrow photon energy range (close to the band gap), we neglect
the k dependence of pcv and the hν dependence of C, and
treat this prefactor as a constant; g2D = mr/πh̄2 is the joint
density of states (JDOS) of a 2D system including the spin
degeneracy with mr = (1/m∗

e + 1/m∗
h)−1 being the reduced

effective mass. The summation is performed over all electron
and hole states (labeled i and j , with i = j = 0 being the
fundamental states) with eigenenergies Ee,i and Eh,j . The
overlap factor Ii,j is determined by the electron and hole
eigenstates ψe,i and ψh,j as

Ii,j = |〈ψe,i |ψh,j 〉|2
‖ψe,i‖2‖ψh,j‖2

. (30)

Our approach here is to use the LL theory to assess the
absorption coefficient directly from the maps of ue and uh

computed for electrons and holes using Eq. (2), where V

corresponds to the conduction and valence band potential,
respectively. The valleys of the landscapes (which are also
the crest lines of the Wc,v potentials) partition the domain
into localization subregions. Note that in the case of a
homogeneous QW, only one localization subregion exists for
each type of carrier, determined by the confinement along
the growth direction, while in the case of a disordered QW
several subregions can be found [19,20]. The determination
of the valley lines in a homogeneous QW is discussed in
Sec. IV A.

In each subregion, the eigenfunctions of the fundamental
states ψe,0 and ψh,0 and the corresponding eigen-energies
Ee,0 and Eh,0 can be calculated using Eqs. (12) and (13).
From the estimation of the eigenstates, the overlap factor
I0,0 of Eq. (30) can then be directly computed. To sum over
all interband transitions, Weyl’s law can be used to estimate
the system DOS instead of summing over all possible i,j as
in Eq. (29). In Sec. II C it was shown that in a 3D system
exhibiting confinement along one direction and translational
invariance along the others, Weyl’s law predicts a LDOS
exactly identical to that of the bulk case. Although the values
of Ee,0 and Eh,0 account for the quantum confinement of the
carriers in the disordered potential, bulk asymptotic Weyl’s
law is only a continuous yet good approximation of the
discrete energy spectrum. Future works should allow us to
provide a discrete and even better estimate of the spectrum
in each localization subregion, based on W . To compute the
JDOS of the homogeneous QW, the following well-known
expression for bulk is thus used considering an effective band
gap Eg + Ee,0 + Eh,0:

JDOS3D(hν) =
√

2m
3
2
r

π2h̄3

√
hν − Eg − Ee,0 − Eh,0. (31)
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FIG. 5. Overlap regions are defined as intersections between
electron and hole localization subregions. (Left) Superimposed
electron and hole landscapes. (Right) Example of one overlapping
region defined as the intersection between two electron and hole
localization subregions.

Finally, the absorption coefficient of the homogeneous QW
can be rewritten as

α(hv) = 2

3
C JDOS3D(hv)I0,0, (32)

where all quantities can be derived from the landscapes without
solving the Schrödinger equation. [The factor 2

3 in Eq. (32) and
the absence of the 1/L prefactor appearing in Eq. (29) are due
to the use of the bulk expression of the JDOS in the absorption
coefficient [30]].

The procedure for determining the absorption coefficient
in the case of a disordered QW remains essentially the same.
When superimposing the maps of the two landscapes, one can
define the subregions which are the intersections between the
various localization subregions for electrons and holes (Fig. 5).
For each of these electron-hole “overlapping” subregions a
local value of α can be computed using Eq. (32). The overall
absorption coefficient of the disordered QW is obtained by
summing over all electron and hole subregions �m and �n as

α(hv) = 2

3
C

∑
m,n

JDOS(m,n)
3D (hv)I (m,n)

0,0 , (33)

where the JDOS and overlap factors depend on the fundamen-
tal state and corresponding energy of the considered subregion,
namely, ψ

(m)
e,0 and E

(m)
e,0 for electrons and ψ

(n)
h,0 and E

(n)
h,0 for

holes, which again can be calculated from the landscapes using
Eqs. (12) and (13). Such an accurate accounting of carrier
localization in a disordered material is crucial for a precise
assessment of the below-gap absorption processes. A detailed
study on this topic is presented in Ref. [19].

2. Emission

Let us first discuss the homogeneous case. While in
the previous derivation of optical absorption [Eq. (32)] the
conduction and valence bands were considered as completely
empty and filled, respectively, in the case of optical emission
the occupation of the states depends on the specific injection
conditions of the QW. Assuming that the quasi-Fermi levels
for electrons and holes are known, the electron and hole
distributions n(z) and p(z) in the QW can be determined using
Eq. (20). The radiative recombination rate then reads as

Rint =
∫

B0(z)n(z)p(z)dz (34)

corresponding to the transition energy Eg + Ee,0 + Eh,0 cal-
culated from the landscapes as in Sec. III B 1. B0(z) is the
local radiative recombination coefficient. If the transition is
homogeneously broadened, then a Lorentzian function must be
used to determine the emission spectrum of the nondisordered
QW as

Rsp(hν) =
�

2π
Rint

(hν − Eg − Ee,0 − Eh,0)2 + (
�
2

)2 . (35)

In the case of a disordered QW, the emission spectra have to be
summed over all possible transitions between localized states
to produce the inhomogeneously broadened luminescence
spectrum of the QW (see companion paper LL3, Ref. [20]).

The localization landscapes can also be used to compute
nonradiative recombination processes which may be strongly
affected by disorder. In Auger recombination the confinement
increases the carrier momentum compared to free carriers,
leading to a better overlap with the wave function of the
final high-energy carrier, and thus an enhanced transition
probability. Let us consider for instance the “hhe” Auger
process: an electron and a hole recombine and transfer their
energy through Coulomb interaction to a second hole which
becomes highly energetic (hot). Using the Fermi golden rule,
one expresses the Auger recombination rate in one overlapping
region:

1

τ
= 2π

h̄
|Mif |2ρ(Ef ), (36)

where ρ(Ef ) is the density of final states and Mif is the matrix
element defined as

Mif =
√

2
∫∫

dr1dr2ψh,0
∗(r1)ψh,0

∗(r2)

×V (r1,r2)ψe,0(r1)ϕh,f (r2), (37)

ri being the initial and final positions, and V the Coulomb
interaction potential. ψh,0(r1) and ψh,0(r2) are the initial states
of the two holes, while ψe,0(r1) is the initial electron state.
Finally, ϕh,f (r2) is the final state of the second hole. After
dividing the entire system into the aforementioned overlapping
regions, the above integral is computed over each region
separately. For instance, in the above integral, the final hole
wave function ϕh,f is assumed to be a simple plane wave of
wave vector kf , while the initial states are approximated by
the local landscapes in the considered overlapping region (see
Sec. II B). All these local integrals can then be assembled to
build maps of the Auger recombination times in the whole
system. The influence of compositional disorder on Auger
recombination tackled by the localization landscape theory is
currently under study.

IV. APPLICATIONS OF THE LANDSCAPE THEORY TO
SIMPLE 1D HETEROSTRUCTURES

In the following sections, we study several structures to
show in various configurations the ability of our model to
capture the main features of quantum devices. We successively
study the eigenenergies and the overlap between quantum
states in single QW (SQW) and 3QW structures (Sec. IV A).
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FIG. 6. QW structures used to test the LL theory. (Left) SQW well with m-plane orientation of the well material. (Right) 3QW structure
with c-plane orientation. The well width and the barrier thickness are 3 and 7 nm, respectively.

We then apply our model to the computation of density of
electronic states in 1D periodic and disordered superlattices
(Sec. IV B). Finally, in Sec. IV C, a 1D SQW structure is
simulated to perform a detailed comparison of the carrier
distributions computed by the classical Poisson equation,
the Poisson-landscape model (LL theory), and the Poisson-
Schrödinger equation, respectively. All modeled structures
presented in the following are 1D with homogeneous layers. A
full 3D modeling of carrier transport in a semiconductor device
including the effect of compositional disorder is presented in
the companion paper LL3 [20].

A. Eigenenergies and overlap

In GaN-based materials, the polarization field at heteroint-
erfaces can strongly depend on the growth direction due to
the wurtzite crystal structure. Conventionally, GaN grown
along the (0001) direction (c plane) cannot avoid a lattice
mismatch which in turn induces a piezoelectric polarization.
In addition, the relative displacement of the cation and anion
sublattices from the ideal wurtzite position generates a net
spontaneous polarization. In contrast, GaN grown along the
(11̄00) direction (m plane) is nonpolar and does not exhibit
any strain-induced piezoelectric polarization or spontaneous
polarization field. In the simulation framework developed
here, the density of polarization charges ρpol is computed

by taking the divergence of the total polarization (∇ · Ptotal),
including spontaneous and piezoelectric polarization fields to
account for the internal electric field at the heterointerfaces.
Spontaneous and piezoelectric polarizations are computed
using Eqs. (A1) and (A2), while parameters of polarization
values and piezoelectric coefficients can be found in Tables II
and III, respectively (see Appendix).

First, we test the ability of the Poisson-LL model to
accurately predict the energies and the spatial extension of
quantum states in QW structures. Two different types of
structures are simulated (Fig. 6). The first one is a 3-nm
SQW of m-plane GaN enclosed between 50-nm barriers of
AlxGa1−xN, several values of Al fraction x being computed
in a range from 0.1 to 0.5. The second structure is formed
of 3 QWs of c-plane GaN of 3-nm width separated by 7-nm
barriers of AlxGa1−xN, also enclosed between 50-nm barriers
of AlxGa1−xN. This allows us to test the confinement effects
in the wells in our model.

The LLs and the corresponding localization potentials are
computed from the conduction and valence bands for both
structures without external applied bias. Figure 7 displays
the corresponding band structures, together with the effective
potentials Wc and Wv . Despite the sharp boundaries of the
conduction and valence bands at the well-barrier interface, one
can see that the variations of the potentials Wc and Wv extend

FIG. 7. Band structures for the m-plane single QW and the c-plane 3QW. The localization potentials Wc (blue) and Wv (green) are
superimposed over the band edges Ec (black) and Ev (red). The integration regions �e and �h are indicated on each frame.
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FIG. 8. Simulation results for the m-plane SQW (left structure in
Fig. 6). The energies computed by solving directly the Schrödinger
equation are compared to the energies computed using our Poisson-
LL model. Top frames display comparisons for electrons (left) and
holes (right), respectively. Bottom left frame displays the energy
difference, i.e., the smallest energy for a radiative transition. Bottom
right frame shows the overlap integral between fundamental electron
and hole states, computed from the Schrödinger equations (dashed
line) and from the estimate using the LLs (plain line).

much further than the width of the well. The fundamental
energies for electrons and holes in the well are therefore
computed from Eq. (13) on a larger integration region than the
well itself. The integration boundaries (different for electron
and hole) are represented by the dashed lines in Fig. 7. The
boundaries of the integration region outside from the QW are
first set to the inflection points of the local effective potential
W . Then, the integration boundaries are extended from these
points by the characteristic decay length of a wave function
of energy E in a barrier of height W , i.e., h̄/

√
2m(W − E).

The lighter effective mass of electrons therefore leads to a
larger integration domain than the one of the holes which
have a heavier effective mass. Eigenenergies as well as the
overlap between electron and hole fundamental states ψe and
ψh are computed on these integration regions, ψe and ψh being
approximated by ue and uh normalized on the same region [cf.
Eq. (12)].

Figures 8 and 9 display the comparisons between the
fundamental energies computed by solving the Schrödinger
equation directly, and the energies computed using Eq. (13), for
m-plane and c-plane cases with various values of the aluminum
content. In both figures, the top frames exhibit a remarkable
agreement between the two different computations. The
bottom left frames show the differences between the electron
and hole energy, in other terms the energy of the smallest
radiative transition. The bottom right frames display the value
of the overlap integral between electron and hole fundamental
states (in the case of the 3QW structure, the states are taken
in the central quantum well) (dashed line), compared with the
estimates obtained using Eq. (11) for the wave functions. The
overlap region used for the calculation are the intersections
of the regions �e and �h displayed in Fig. 7. Although

FIG. 9. Simulation results for the c-plane 3QW (right structure in
Fig. 6). The energies computed by solving directly the Schrödinger
equation are compared to the energies computed using our Poisson-
LL model. Top frames display comparisons for electrons (left) and
holes (right), respectively. Bottom left frame displays the energy
difference, i.e., the smallest energy for a radiative transition. Bottom
right frame shows the overlap integral between fundamental electron
and hole states of the central well, computed from the Schrödinger
equations (dashed line) and from the estimate using the LLs (plain
line).

one observes here a slight deviation by a few percent of the
approximated value using the landscapes, the agreement, both
in absolute value and in trend, remains very good in the two
structures, for all values of the Al content.

B. Density of states, overlap, and absorption computation

1. Periodic superlattice

AlGaN/GaN superlattice (SL) structures are widely used in
commercial LEDs to prevent the electron current leakage and
improve lateral current spreading [31,32]. However, modeling
SL structures still remains a challenge for classical Poisson-
DD solvers. In the classical picture, the resistance experienced
by carriers is determined by the barrier height. In SLs, this leads
to an overestimation of its value. Schrödinger-based solvers
can model SLs, accounting for wave-function coupling and
tunneling effects. However, this approach cannot be applied in
the case of multidimensional devices to study current crowding
effects of disordered systems, due to the high demand of
computation time. We show here that the LL theory allows
us to overcome this constraint.

We model a 20-pair n-type m-plane Al0.4Ga0.6N/GaN SL
structure with flat band conditions at both ends, as shown
in Fig. 10(a), to analyze the electron transport behavior.
Two structures with different periodicities, 5 nm/5 nm and
1 nm/1 nm QW/barrier thickness, are simulated. A nonpolar
m-plane orientation is considered at first to study the intrinsic
transport properties of SLs as described by the landscape
model. In the thicker SL (5 nm/5 nm), quantum effects are
weaker and Wc deviates only slightly from Ec, as shown in
Fig. 10(b). In contrast, in the thinner SL (1 nm/1 nm) Wc is
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FIG. 10. (a) Schematic structure of 20-period Al0.4Ga0.6N/GaN
SLs. (b), (c) The conduction band potential (Ec) and effective
quantum confining potential (Wc) for 5 nm/5 nm and 1 nm/1 nm
SLs.

significantly different from Ec, as shown in Fig. 10(c). This
difference is a manifestation of the coupling between wells
when the barriers are thin, and expresses how the effective
potential is able to translates quantum tunneling into a shift of
the effective conduction band edges.

To evaluate the effective barrier seen by carriers in a
complicated structure such as SLs, Weyl’s asymptotic formula
is used [18] to obtain the 1D LIDOS [see Eq. (21)], which is
then integrated over the entire system:

IDOS(E) = 2

π

∫ L

0

√
2m∗

e [E − Wc(z)]

h̄2 dz, (38)

FIG. 11. (a), (b) The counted states for 5 nm/5 nm and 1 nm/

1 nm SLs.

where IDOS(E) is the integrated density of available states.
As seen in Sec. II A, Wc(z) = 1/ue(z) can be understood as
the effective conduction band edge.

For large SL barrier and QW thicknesses, quantum effects
are weak and classical. Therefore, original potential- and
landscape-based models give very similar estimates of the real
IDOS (blue and black lines), as displayed in Fig. 11(a). One
can observe that the takeoff energy is better approximated by
the landscape model (continuous black line) when compared
to the computation from Schrödinger equation (red dashed
line). In this situation of very weak coupling between wells,
the similarity of all wells (no disorder here) induces a strong
energy degeneracy which appears in the real IDOS. This IDOS
increases through large steps of height 20 (the number of wells)
which underlines the discrete nature of the spectrum, while
the landscape-based (or Wc-based) approximation shows a
continuous line following these steps.

As the SL thicknesses of QWs and barriers becomes
smaller, wells become coupled, the degeneracy is lifted,
creating subbands in the entire structure, and the corresponding
IDOS (red dashed line) proceeds by smaller steps of height
1 which are almost invisible at the scale of the figure. The
landscape-based IDOS (Wc-based Weyl’s law) shows here
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FIG. 12. (a), (c) The conduction band potential (Ec) and effective quantum confining potential (Wc) for m-plane (top) and c-plane (bottom)
double-period SLs. (b), (d) The corresponding integrated density of states (IDOS).

an excellent agreement with the exact calculation from the
Schrödinger equation [Fig. 11(b)], showing that it takes well
into account the coupling between wells, in other words,

the tunneling phenomenon. The approximation based on the
original potential Ec, however, falls very far off the true IDOS,
especially for lower-energy states. Going into finer detail, one

FIG. 13. (a), (c) The conduction band potential (Ec) and effective quantum confining potential (Wc) for m-plane (top) and c-plane (bottom)
20-pair disordered SL. (b), (d) The corresponding IDOS.
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FIG. 14. (a), (c) The conduction band potential (Ec) and effective quantum confining potential (Wc) for m-plane (top) and c-plane (bottom)
200-pair disordered SL. (b), (d) The corresponding IDOS.

can also observe that in this last case, the W approximation
of the IDOS becomes positive about 50 meV earlier than
the actual IDOS of the Schrödinger equation. This slight
discrepancy comes from the fact that, by definition, the W

approximation of the IDOS is continuous while the actual
IDOS is stepwise. Therefore, to reach a value close to 1 at
an energy corresponding to the fundamental energy of the
system, the approximate IDOS has to take off and be positive
at a smaller energy.

To test further the LL model, we analyze more complicated
structures such as 20-pair n-type SL with double periods com-
posed of 10-pair 1 nm/1 nm and 10-pair 2 nm/2 nm SLs, re-
spectively, including m-plane and c-plane cases. Figures 12(a)
and 12(c) show the conduction band edges Ec and Wc for
m-plane and c-plane conditions. Here again, the difference
between Ec and Wc increases as the period becomes smaller,
exhibiting stronger tunneling effects. The IDOS displayed in
Figs. 12(b) and 12(d) shows the quality of the approximation
provided by Wc, regardless of the structure complexity. We
found the c-plane case exhibits a better agreement with the
Schrödinger model due to distinct potential energy distribu-
tions. As randomness and intercoupling increase in the system,
the prediction of Wc becomes closer to the solution of the
Schrödinger equation. This last result was in fact already partly
demonstrated in Ref. [18] for very random systems.

2. Disordered superlattice

To illustrate the efficiency of the landscape model in the
case of disordered systems, we compute the band structure
and the density of states in nitride m-plane and c-plane

disordered SL. Two types of SL are investigated: the first is
composed of 20 pairs of well/barrier layers, while the second
is composed of 200 pairs. In both cases, wells and barriers
have 1-nm thickness. The barrier material is Al0.4Ga0.6N and
the well material is AlxGa1−xN, where x is randomly and
independently determined in each well, using a uniform law
between 0 and 0.4.

For each type of SL, the band structure and the IDOS are
computed (Figs. 13 and 14). In both cases, although the edge of
the conduction band Ec now exhibits large fluctuations across
the structure due to the compositional disorder, the quantum
coupling between wells translates into a much smoother
effective potential Wc. The value of Wc is significantly larger
than Ec and can be interpreted as a local fundamental energy
from the expression of the local density of states in Eq. (22).
Looking at the IDOS (right column of Figs. 13 and 14), we
observe a very good agreement between the actual counting
functions and its approximation obtained using Wc. One has to
note the same slight discrepancy of the takeoff energy between
both functions that was observed in the periodic case. This
discrepancy, which comes from the different natures of the
two functions (continuous versus stepwise), appears to be of
the same order of magnitude independently on the number of
wells in the structure.

We also use the c-plane 200-pair disordered SL structure
(bottom of Fig. 14) to test the quality of the local integrated
density of states approximation. To this end, the SL structure
is divided into four disjoint regions of same length. The
local integrated density of states (LIDOS) of each region
is computed in two different ways: first, by directly solving
the Schrödinger equation in the entire system, each quantum
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FIG. 15. Comparison of the LIDOS of a c-plane 200-pair disordered SL structure computed using on one hand a coupled Poisson-
Schrödinger approach, and on the other hand our coupled Poisson-LL model. The structure is divided into four regions (top frame). Comparisons
of the IDOS of each region computed using both methods are displayed in the four bottom frames.

state is then assigned a unique region among the four already
defined, which is the region where the state reaches its
maximum amplitude. Second, by integrating the LDOS of
Eq. (22) on each region, comparisons of the two methods for
all four regions are presented in the four bottom frames of
Fig. 15. Here also, one can observe the accuracy of the LIDOS
computed using the landscape approach.

We finally test the accuracy of the overlap and joint density
of states estimates. To this end, the absorption spectrum
between electrons and heavy holes (of respective masses
0.20 and 1.87) of both disordered SL (20 and 200 wells)
are computing summing over all localization subregions the
formula of Eq. (33), and compared to exact computations
using the quantum states computed by Schrödinger equation.

Comparisons between the two types of calculations are
displayed in Fig. 16, both in linear and log scale. One
can see that the absorption curves obtained using the LL
(plain black lines) are very close to the ones computed using
Schrödinger equation (red dashed lines), over almost three
decades of absorption rate, confirming the quality of the
landscape approach. Our results show that W appears as a very
likely candidate for inserting into a model of carrier transport
able to account for quantum effects in complicated systems.

C. Carrier distribution

To study and compare in detail the carrier distributions
predicted by the different models, a 1D SQW is simulated. The
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FIG. 16. (Top) Light absorption spectra (in linear and log scales) for the c-plane 20-pair disordered SL of Fig. 13. The absorption spectrum
computed using the Schrödinger equation is displayed with a red dashed line while the spectrum computed with the landscape approach is
displayed with a black continuous line. (Bottom) Light absorption spectrum (in linear and log scales) for the c-plane 200-pair disordered SL
of Fig. 14.

structure is composed of a 3-nm active GaN layer, enclosed
between two barriers of AlxGa1−xN, where x = 0.2 will be
the reference case. The band offsets between GaN/AlGaN
conduction bands are assumed to be 63% of the band-gap
discontinuity. The detailed band structure parameters for GaN
and AlN are provided in Table I (see Appendix). All parameters
of AlxGa1−xN alloys are obtained by interpolation, where the
band-gap alloy bowing parameter is assumed to be 0.8 eV.

The m-plane and c-plane cases (without and with the po-
larization charge induced at the interface) are both discussed.
The detailed dimension and material doping level are shown
in Fig. 17(a), where the electron effective mass of Al0.2Ga0.8N
and GaN is 0.214m0 and 0.20m0, respectively. The doping is
assumed to be fully activated to ensure the same activation
condition for comparison.

The carrier density distribution is solved through three
different methods: (1) the classical Poisson model solving
Poisson equation for the charge distribution of ionized donors
across the QW structure; (2) self-consistent Poisson-LL ap-
proach; and (3) self-consistent Poisson-Schrödinger approach.
Figure 17(b) displays the computed carrier distribution and
the potential energy for the m-plane case with a symmetric
potential energy by the three methods. We can see that the car-
rier distribution obtained from the classical Poisson equation
(blue line) is almost constant across the well and dropping
sharply outside, not accounting for the quantum nature of
the electron. The Poisson-Schrödinger solver provides a very
different outcome: the carrier distribution is more confined
in the center of the well [red line of Fig. 17(b)] and extends

smoothly outside of it, revealing the wave-function shape of the
carrier. Turning to the landscape model, the effective quantum
potential Wc (black line) exhibits a smoother behavior than
the original conduction band (blue line). The carrier density
computed after replacing the original conduction band edge
Ec with Wc appears very similar to that computed from the
Schrödinger equation.

In Fig. 17(c), we evaluate the c-plane case with an asym-
metric potential profile induced by the polarization charge.
The carrier distribution computed by the classical Poisson
equation is sharp and mostly located at the minimum of the
conduction band. This does not match the result obtained from
the Poisson-Schrödinger solver. This excessively large carrier
density located at the interface might be the reason why some
numerical studies [33] using Poisson and DD solvers to study
GaN-based polar QWs adopt only ∼50% of the theoretical
polarization charge, in order to reproduce a carrier distribution
consistent with the Schrödinger equation. Here again, the
Poisson-LL model results in a smoother carrier distribution, as
shown in Fig. 17(c), much closer to the Schrödinger solution.

In the case of a deeper m-plane QW with x = 0.4, carrier
distributions computed with the Poisson-LL and Poisson-
Schrödinger models are also in good agreement, as displayed
in Fig. 17(d). To quantify this agreement, we simulate a series
of Al composition from 10% to 50% (0.1 � x � 0.5). For each
simulation, we compute the dimensionless quantity � defined
as the relative difference of peak carrier densities between the
Poisson-landscape and Poisson-Schrödinger models. As dis-
played in Fig. 18, � becomes smaller when the carriers are well
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FIG. 17. (a) Schematic structure of the single
AlxGa1−xN/GaN/AlxGa1−xN QW, where x is variable.
(b) Potential energy and carrier distribution for m plane and x = 0.2.
(c) Potential energy and carrier distribution for c plane and x = 0.2.
(d) Potential energy and carrier distribution for m plane and x = 0.4.
The blue, black, and red lines are solved by the classical Poisson
equation, Poisson-LL model, and Poisson-Schrödinger equation,
respectively. The Fermi level is located at zero energy as the
reference.

localized within a deeper potential (larger Al composition) and
almost vanishes above 40% Al composition.

We can conclude from this that the LL model matches very
well the solution of the Schrödinger equation when the system

FIG. 18. Relative difference between the predictions of the
peak carrier distribution by the Poisson-LL and Poisson-Schödinger
models for various Al compositions of the AlxGa1−xN/GaN m-plane
SQW structure.

is strongly localized. Even in systems with a lower degree of
localization (here, small x) the prediction of the Poisson-LL
model gives an acceptable agreement with the exact Poisson-
Schrödinger solution and provides an overall description of
the carrier distribution much more accurate than the result
of a classical Poisson solver. The discrepancy observed
between the carrier distributions computed in Poisson-LL and
Poisson-Schrödinger models can be attributed to the fact that
the local DOS used in Poisson-LL does not fully describe
the exact shape of the wave function. If required, an even
more accurate approximation might be achieved by using the
effective confining potential to compute a correction to this
carrier distribution without any adjustable parameter [34,35].

V. CONCLUSION

In this work, we applied the LL theory [17,18], until
now a purely mathematical framework, to build a model of
quantum and disordered semiconductor devices. In the LL
theory, the Schrödinger equation is replaced by an associated
Dirichlet equation whose solution is called the localization
landscape u. The reciprocal of this landscape, W = 1/u, acts
as an effective classical confining potential which governs
localization of quantum states. Eigenfunction profiles and
geometry of localization subregions can be retrieved from a
direct analysis of this effective potential. Inserting W into
Weyl’s law also provides a very good approximation of the
density of states, the carrier concentrations, and the spatial
distributions of charges, especially in the case of strong
localization. Besides, as seen here in 1D cases, and shown

TABLE I. Band structure parameters for wurtzite GaN and AlN
alloys: band gap, relative permittivity, effective masses.

Eg εr m⊥
e mhh mlh

Units (eV) m‖
e (m0) (m0) (m0) (m0)

GaN 3.437 10.4 0.21 0.20 1.87 0.14
AlN 6.0 10.31 0.32 0.30 2.68 0.26
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TABLE II. Interpolation parameters for polarization in AlxGa1−xN.

a b c

−0.090 −0.034 0.021

to play a decisive role in the 3D modeling of LEDs (see LL3
[20]), the LL theory simulates to an excellent approximation
two major effects of quantum mechanics, namely, the reduction
of barrier heights (tunneling effect) and the raising of energy
ground states (quantum confinement effect).

We have presented here how to compute localized states,
energies, density of states using the landscapes, and how to
couple them to Poisson and DD equations to model carrier
transport in SL structures and carrier localization in nitride-
based systems. In principle, this method is not restricted to
modeling nitride-based devices (as the examples presented
here or in companion papers dealing with the simulation of
the absorption edge (LL2 [19]) and LEDs (LL3 [20]) based on
InGaN alloy materials), but can expand to other semiconductor
materials and to any electronic or optoelectronic properties
requiring the knowledge of electron and hole quantum states.
Moreover, except for the transport and carrier distribution
issues discussed in this paper, the emission and absorption
in the disordered system can be properly modeled in terms of
eigenenergy calculation (LL2 [19]). Finally, as observed in real
modeling exercises (LL3 [20]), the computation time using
the landscape model is considerably reduced compared to a
conventional Schrödinger solver, which makes this model ideal
for simulating and designing quantum 3D real-world devices.
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APPENDIX: BAND STRUCTURES AND POLARIZATION
IN AlGaN ALLOYS

Table I displays the detailed band structure parameters for
GaN and AlN, respectively. The parameters of all AlxGa1−xN
alloys are obtained by interpolation, the band-gap alloy bowing
parameter being taken equal to 0.8 eV. Spontaneous and
piezoelectric polarizations are computed using Eqs. (A1) and
(A2), while parameters of polarization values and piezoelectric
coefficients are provided in Tables II and III, respectively:

P sp = ax + b(1 − x) + cx(1 − x), (A1)

P pz = [e] · [ε] =
⎛
⎝ e15εxz

e15εyz

e31(εxx + εyy) + e33εzz

⎞
⎠. (A2)
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