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Shear-strain gradient induced polarization reversal in ferroelectric BaTiO3 thin films:
A first-principles total-energy study
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Based on the first-principles total-energy calculation, we have studied the shear-strain gradient effect on the
polarization reversal of ferroelectric BaTiO3 thin films. By calculating the energies of double-domain supercells
for different electric polarization, shear-strain gradients, and domain-wall displacement, we extracted, in addition
to the domain-wall energy, the polarization energy, elastic energy, and flexoelectric coefficient of a single
domain. The constructed Landau-Devonshire phenomenological theory yields a critical shear-strain gradient of
9.091 × 107/m (or a curvature radius (R) of 110 Å) for reversing the 180◦ domain at room temperature, which
is on the same order of the experimentally estimated value of 3.333 × 107/m (R = 300 Å). In contrast to the
commonly used linear response theory, the flexoelectric coefficient derived from fitting the total energy to a
Landau-Devonshire energy functional does not depend on the specific pseudopotential. Thus, our method offers
an alternative numerical approach to study the flexoelectric effect.
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I. INTRODUCTION

Unlike the piezoelectric effect stipulating the relation
between electric polarization (P ) and mechanical strain (e)
which appears only in space-inversion-symmetry–breaking
crystals, the flexoelectric effect describes the dependence of
electric polarization on inhomogeneous deformation (strain
gradient), a phenomenon that is present universally in all
kinds of materials irrespective of underlying symmetries.
Therefore, the flexoelectric effect was not only observed in
traditional inorganic crystals, but also in artificially structured
materials and biological tissues [1]. It can be broadly applied in
nanodevices such as sensors, actuators, and energy harvesters.
The interest in flexoelectric effect arises, among other things,
from the strain-gradient manipulation of electric polarization
or even its reversal. This makes it possible to mechanically
write and electrically read the ferroelectric memory bits.
The flexoelectric effect was originally proposed by Kogan
50 years ago when he theoretically studied the induced
electric polarization by inhomogeneous deformation [2]. This
effect was confirmed experimentally by Scott 4 years later
[3], and a reciprocal effect was also discovered by Bursian
and Zaikovskii [4]. In these experiments, Scott found that
surface strain gradient leads to the appearance of polar
modes in centrosymmetric single crystals, while Bursian and
co-workers observed an inhomogeneous deformation brought
about by electric polarization. The flexoelectric effect has
been overlooked for several decades because it is extremely
small, and a large strain gradient is also difficult to achieve in
macroscopic samples. The phenomenon has received renewed
attention recently because a large strain gradient can be easily
realized in nanoscaled ferroelectric structures and thus the
flexoelectric effect is significantly enhanced.

In the past decade, great progress has been made regarding
both the understanding of fundamental physics and the device
applications of the flexoelectric effect [1]. On the experimental
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front, the flexoelectric effect has been investigated by several
groups using different techniques such as substrate-induced
bending [5–9], piezoelectric-force-microscope tip pressure
(PFM) [10,11], and the cantilevel beam–based dynamical
method [12]. Among others, Gruverman and co-workers [5]
have studied the imprint behavior of ferroelectric Pb(Zr,Ti)O3

capacitor thin films by bending the underlying Si substrate. Lu
et al. [10] investigated the domain reversal of an ultrathin
BaTiO3 (BTO) ferroelectric film under the tip pressure of
an atomic force microscope (AFM). They demonstrated
the feasibility to write mechanically and read electrically
the ferroelectric memory bits to avoid electric leakage and
dielectric breakdown problems. Očenášek et al. [11] have
shown that the flexoelectric domain switching is mainly driven
by the shear-strain gradient. The flexoelectric coefficients
have also been estimated to be the order of a few nC/m for
bulk BaTiO3 single crystals [9] instead of μ C/m suggested
for ceramics samples [12]. The uncertainty in determining
the flexoelectric coefficient was attributed to the reduced
permittivity in thin films than that of bulk materials. The giant
flexoelectric effect was also revealed through the hysteresis
loop of ferroelectric HoMnO3 thin films [8]. A strong
flexoelectric effect was even observed in biological tissues
[13] where the electric polarization was internally biased
outward of the porcine aortic walls and the inward polar-
ization is unstable. These experimental investigations have
convincingly demonstrated that the flexoelectric effect can
indeed be giant in ferroelectric nanomaterials, large enough to
switch ferroelectric domains, or be applied in novel memory
nanodevices.

Regarding the theoretical progress on flexoelectric effects,
the flexoelectric coefficients were first estimated by Kogan
from a phenomenological theory of simple dielectrics [2]. The
distinction between piezoelectric and flexoelectric responses
was clarified by Tagantsev using the classical ionic model [14].
A more quantitative analysis of the flexoelectric tensor has
been made by Maranganti and Sharma [15] for ionic salts, per-
ovskite dielectrics, and III-V and II-VI semiconductors using
the lattice dynamics method. These previous studies mainly
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concentrated on the ionic contribution and the electronic
contribution to flexoelectric coefficients was not considered.
The idea to compute the flexoelectric coefficient from a first-
principles method was first formulated for element materials
by Resta [16] in the framework of linear response theory
and restricted to the longitudinal electronic contribution. The
formulation was implemented by Hong and Vanderbilt [17]
to calculate the flexoelectric coefficients of cubic insulating
compounds. Since then, the formulism was refined by several
research groups to address both the longitudinal and transverse
strain gradients. Both ionic and electronic contributions
are included [18–20]. However, the calculated flexoelectric
coefficients are generally pseudopotential dependent and a
correction with respect to the all-electron case is needed.
Furthermore, transverse components require both charge and
current response functions and are difficult to implement in
practice [18].

A more direct approach to calculate the flexoelectric
coefficient is to fix one type of atoms of compounds to simulate
the strain gradient while computing the electric polarization
change of relaxed structures at the position of maximal strain
gradient using the first-principles method. With this method
Hong et al. [21] computed the longitudinal flexoelectric
coefficients of bulk ferroelectric BaTiO3 and paraelectric
SrTiO3 compounds. Xu et al. calculated both the transverse
and shear flexoelectric coefficients of bulk BaTiO3 and SrTiO3

[22]. Using the effective Hamiltonian technique, Ponomareva
et al. [23] also computed the temperature dependence of flex-
oelectric coefficient of paraelectric Ba1/2Sr1/2TiO3 thin films
adopting a Monte Carlo simulation. All these works mainly
focused on the dependence of electric polarization on local
strain gradient in the paraelectric phase; the overall pattern of
the energy functional on strain gradient and polarization was
not systematically studied.

Clearly, having the accurate full energy functional is an im-
portant first step to discuss the polarization-reversal phenom-
ena in inhomogeneously deformed ferroelectrics [5,11,12,24].
Previous studies concentrated most on the paraelectric phase;
the nonlinear nature of the full energy functional on polariza-
tion was not considered. Most importantly, because the polar-
ization definition is pseudopotential dependent, the accuracy of
the flexoelectric coefficient is in doubt. These issues have to be
dealt with consistently in order to give the precise information
on the polarization reversal under strain gradient. Thus, to
construct the true energy functional of deformed ferroelectrics,
one has to compute the total energy of a ferroelectric for a given
set of polarization (P ), strain (e), and strain gradient (∂e/∂x).
To avoid the pseudopotential dependence of polarization,
we specify the structure with given polarization (P ) with
reference to the fully polarized bulk equilibrium structure at
0 K (P0). To extract the flexoelectric coefficient, we consider
a double-domain supercell with reversed polarizations and
strain gradients so that the piezoelectric effect is absent. In this
paper, we choose the tetragonal phase of ferroelectric BaTiO3

compound as an example. The bulk flexoelectric coefficient
is calculated using the first-principles total energy under pure
shear-strain gradient. By fitting to the generalized Landau-
Devonshire energy functional, we derived a whole set of
parameters relating the electric polarization, strain, and strain
gradient.

The rest of the paper is organized in the following way.
In Sec. II, we first introduce the two-domain supercell
model with sinusoidal shear-strain gradient. The local-density-
approximation calculation as implemented in the Vienna
Ab Initio Simulation Package (VASP), as well as the relevant
parameter setting, are briefly described. In particular, the steps
of the detailed fitting procedure to deduce the flexoelectric
coefficient are outlined. In Sec. III, we present the numerical
results on the cases of strain-free single-domain, strain-
free double domain with domain wall, and the full double
domain with a prescribed shear-strain gradient and electric
polarization. The best fitting parameters and their relative
errors are given in each step and discussed in comparison with
available data from previous calculations or measurements.
The obtained Landau-Devonshire energy functional for a
single domain is then used to predict the polarization-reversal
phenomena by shear-strain gradient and compared with the
experimental measurement. The conclusions are drawn in
Sec. IV.

II. COMPUTATIONAL DETAILS

A. Two-domain supercell with prescribed strain gradient
and electric polarization

To facilitate the first-principles total-energy calculation, we
construct the following two-domain supercell as illustrated
in Fig. 1. The supercell consists of a 2Na × b × c BaTiO3

unit cells with up-domain (P ) and a down-domain (−P ) of
an N unit cell each along the a axis. a, b, and c are the
equilibrium lattice constants of the tetragonal phase of BaTiO3.
For the shear-strain-free case [see Fig. 1(a)], the theoretical
atomic coordinates of bulk equilibrium ferroelectric BaTiO3

at zero temperature are adopted for the fully polarized cases
(p = P/P0 = ±1, 180◦ domains) and those of the paraelectric
cubic phase are used for the p = 0 case. The z coordinates
of the up-domain and down-domain are offset by � along
the c axis. � = 0 for the paraelectric phase and has to be
determined self-consistently for p �= 0 cases. When a sinusoid
shear strain is imposed along the a axis [see Fig. 1(b)], both
the up-domain and down-domain are under a similar pattern

FIG. 1. Sketches of double-domain supercells. The supercell is
composed of 2Na × b × c tetragonal BaTiO3 unit cells with an up-
domain (p) and a down-domain (−p) of N unit cells each along a

axis. (a) Free-shear-strain case, and (b) with sinusoidal shear strain
and strain gradient. Ba, Ti, and O atoms are represented as big green,
middle light blue, and small red spheres, respectively.
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of shear-strain gradient ∂e31/∂x. The shear strain in each
domain is exactly compensated so that the piezoelectric effect
is canceled precisely. Thus only the flexoelectric effect remains
and can be deduced from the total-energy calculation. The
configurations for other values of scaled polarization (p) can
be interpolated from fully polarized and paraelectric phases.

The previous first-principles calculations showed that the
width of a 180◦ domain wall in ferroelectric BaTiO3 is very
narrow and is about one lattice constant long [25,26]. In
addition, the Ba-centered inversion symmetrical domain wall
is energetically more favorable than a Ti-centered inversion
symmetrical domain wall. Thus, we choose a Ba-centered
inversion symmetrical domain wall in this paper. For a such
narrow domain wall with prescribed shear-strain configuration
in the bulk domain, the z coordinate of the ith atom inside the
supercell is given in terms of scaled modulation h0:

zi = (
z̄0
i + pδz̄i

)
c ± 0.5pcδ + (2Nc)h0 sin

(
2πxi

2Na

)
. (1)

Here z̄0
i are the scaled atomic coordinates of the paraelectric

phase of BaTiO3 in units of c while δz̄i are the corre-
sponding scaled polar displacements of fully polarized bulk
equilibrium BaTiO3 in the absence of shear strain. (x̄0,ȳ0,z̄0)
are (0.0,0.0,0.0) for Ba, (0.5,0.5,0.5) for Ti, (0.5,0.0,0.5) for
O1, (0.0,0.5,0.5) for O2, and (0.5,0.5,0) for O3, respectively.
The up-domain and down-domain are offset by � = pcδ,
which smoothly interpolates between the paraelectric and
ferroelectric phases. The dimensionless parameter δ has to
be determined by minimizing the domain-wall energy. The
corresponding shear-strain configuration e31 is

e31 = ∂z

∂x
=

(
2πc

a

)
h0 cos

(
2πx

2Na

)
(2)

and the shear-strain-gradient configuration is

∂e31

∂x
= −

(
2πc

a

)2(
h0

2Nc

)
sin

(
2πx

2Na

)
. (3)

In this way, the averaged shear strain and shear-strain gradient
are given by σ = ē31 = (2πc/a)(h0/

√
2) and η = ∂ē31/∂x =

(2πc/a)2(h0/2
√

2Nc) = 1/R, respectively, and R is the cor-
responding curvature radius. In our numerical calculations, we
compute the total energy of a double-domain supercell for a
given set of scaled polarization p, shear strain σ , shear-strain
gradient η, and domain offset δ to sample the total-energy
functional. Although the scaled atomic positions are fixed by
the prescribed polarization, the total energy is optimized with
respect to the lattice constants of the supercell.

B. The total-energy calculations using density functional theory

With the double-domain supercell described above, the
total energy of strained ferroelectric BaTiO3 is calculated
using a plane-waves basis with an energy cutoff of 500 eV
and the projector-augmented-wave method as implemented
in VASP [27]. The projector-augmented-wave potentials [28]
include ten valence electrons for Ba (5s25p66s2), 12 for Ti
(3s23p64s23d2), and six for O (2s22p4). The exchange and
correlation effects were described within the local density
approximation (LDA) [29]. A 6 × 6 × 6 �-centered k-point

TABLE I. The structural parameters of tetragonal phase of
ferroelectric BaTiO3. O1,2 and O3 refer to the planar oxygens in
TiO2 and BaO planes. The scaled atomic z̄i coordinates are in units
of lattice constant c. The references where the data are cited are also
indicated.

z̄i (This work) z̄i (Experiment) z̄i (Theory)

a (Å) 3.941 3.991a 3.943c

c (Å) 3.987 4.035a 3.994c

c/a 1.012 1.011a 1.013c

Ti 0.487 0.489a 0.492c

O1,2 0.512 0.511a 0.513c

O3 0.019 0.018a 0.021c

P0 (C/m2) 0.251 0.260b 0.229c

aReference [33].
bReference [34].
cReference [35].

sampling is used for a single unit cell, and a 2 × 6 × 6
�-centered k-point sampling for a supercell. The various
k-point samplings have been well tested for structural and
electronic convergences (see Supplemental Material [30]).
Each self-consistent electronic calculation is converged to
10−6 eV and the tolerance force is set to 0.005 eV/Å for
ionic relaxation. The ferroelectric polarization is calculated
using the Berry phase approach for equilibrium tetragonal
ferroelectric BaTiO3 [31,32]. The pseudopotentials have also
been first validated on the tetragonal phase of ferroelectric
BaTiO3. As shown in Table I, the obtained structural param-
eters are consistent with both the experimental measurements
[33,34] and previous theoretical results [35]. The scaled
atomic positions in the P 4mm space group provide the
following ferroelectric displacements (assuming δzBa ≡ 0):
δzT i = +0.013, δzO1,2 = −0.012, and δzO3 = −0.019. For
the paraelectric cubic phase, the lattice constant a = b = c =
3.950 Å is obtained.

Based on the structural parameters of the tetragonal phase
of BaTiO3, the supercell is constructed with 2Na × b × c unit
cells stacked along the a axis. For a given set of electric
polarizations and a shear-strain-gradient configuration, the
structural parameters of the supercell are optimized. To check
the size effect on the Landau-Devonshire energy functional,
the energy densities of the supercells with N = 5,7,9 are
computed for comparison. It is found that the N = 9 case
is already well converged; thus the discussion below focuses
only on the N = 9 case.

C. Fitting the total energy into Landau-Devonshire
energy expansion

To extract the complete set of Landau-Devonshire pa-
rameters of the total energy calculated for various electric
polarizations, shear strains, and shear-strain gradients, we
divide the whole procedure into three steps:

(1) First, the total energy of single-domain ferroelectric
BaTiO3 is computed for various ferroelectric polarizations
0 � p � 1. To eliminate the systematic error due to the size
effect, we consider the supercell with N unit cell stacked along
the a axis. For a given p, the atomic coordinates are obtained
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by interpolation between the fully saturated ferroelectric phase
and the paraelectric phase. Thus the total energy calculated
this way should reproduce exactly those of the p = 0 and
p = 1 cases. The evolutions of atomic configurations between
these two extreme cases are difficult to figure out, and the
configuration interpolation represents the best guess under
current circumstances. According to Landau-Devonshire phe-
nomenological theory, the polarization-dependent energy can
be expanded into the following form:

E1(P ) = E(0) + (Nabc)EP (P ), (4)

with

EP (P ) = a1P
2 + a2P

4 + a3P
6 + a4P

8. (5)

Here E(0) is the total energy of the supercell of the cubic
paraelectric phase of BaTiO3. EP (P ) is the polarization-
dependent Landau-Devonshire energy density expanded in
Taylor series. P = P0p is the electric polarization, with P0 =
0.251 C/m2 denoting the saturated polarization at equilibrium.
a1, a2, a3, and a4 are the dielectric stiffness and higher-order
stiffness parameters. The a1, a2, a3, and a4 parameters are
deduced from the best fit to Eqs. (4) and (5).

(2) In order to extract the energy density relevant to the
flexoelectric effect, we first consider the strain-free double-
domain supercell to identify the domain-wall energy density.
The supercell consists of an up-domain (p) and a down-domain
(−p) of N unit cells, each along the a axis [see Fig. 1(a)]. We
chose a Ba-centered inversion symmetrical domain wall due
to its low-domain-wall energy density. Because of the inverse
flexoelectric effect, the mass centers of two domains are offset
by a pcδ so that they are the same for the paraelectric phase
[25]. δ has to be determined self-consistently for the p �= 0
cases. Once the two-domain supercell is prescribed, the total
energy E2(P,δ) of the supercell can again be computed as
a function of electric polarization p and parameter δ. After
careful physical reasoning and tedious numerical trials, we
find that the domain-wall energy ED(P,δ) can be expanded
into the following form after subtracting two single-domain
energies:

E2(P,δ) = 2E(0) + 2(Nabc)EP (P ) + 2(bc)ED(P,δ)

(6)

with

ED(P,δ)=a5P
2 + a6P

4 + a7P
6 + a8P

2(δ − δ0 − δ1p
2)2.

(7)

The first three terms (a5, a6, a7) refer to the domain-wall
energy per unit area, while the last term (a8) represents the
energy penalty paid for domain-wall mismatch. As is obvious,
the penalty energy vanishes for the paraelectric phase. The
scaled optimal offset δ = δ0 + δ1p

2 is obtained by the best fit
to the domain-wall energy.

(3) Once the domain-wall energy is known as a function of
electric polarization, we are able to focus on the flexoelectric
effect. As we mentioned in the Introduction, for the sinusoidal
strain configuration considered in this paper the piezoelectric
effect is perfectly canceled due to the symmetrical strain
distribution in each domain. The flexoelectric effect is left
intact because the shear-strain gradient contributes coherently

in both domains. To extract the flexoelectric parameter, we
systematically computed the total energy E3(P,σ,η,δ) of the
supercell for various sets of electric polarization P , shear strain
σ , shear-strain gradient η, and the dimensionless parameter δ.
Similarly, the known quantities from single domains, domain
wall can be subtracted from the total energies so that the elastic
and electromechanic coupling terms can be extracted:

E3(P,σ,η,δ)

= 2E(0) + 2(Nabc)[EP (P ) + Eσ (σ ) + EPη(P,η)]

+ 2(bc)[ED(P,δ) + EDη(P,η,δ)], (8)

Eσ (σ ) = a9σ
2 + a10σ

4, (9)

EPη(P,η) = a11ηP + a12ηP 3 + a13ηP 5 + a14η
2P 2, (10)

EDη(P,η,δ) = a15ηP (δ − δ0 − δ1p
2). (11)

Here C44 = 2a9 is the bulk shear elastic constant, and a10 is
the high-order correction for elastic energy. f1313 = 2a11 is the
flexoelectric coefficient. a12, a13, and a14 are the high-order
corrections for the electromechanic coupling terms, while
a15 is the strain gradient domain-offset coupled energy. The
strain-gradient square term is much smaller than the elastic
energy term and can be extracted when different supercell
sizes are fitted together [36]. It should be emphasized that
high-order terms are small in comparison with quadratic
terms and result from the high-order strain terms. In this
way, the energy parameters for single domains, domain wall,
and electromechanic coupling are identified and determined
together with their relative standard deviations.

III. RESULTS AND DISCUSSION

To investigate the shear-strain flexoelectric effect of bulk
BaTiO3, a comprehensive first-principles total-energy study
has been carried out for a dense set of parameters of electric
polarization (P ), shear strain (σ ), and shear-strain gradient
(η) (see Supplemental Materials [30]). In the following,
we analyze and discuss the numerical results and Landau-
Devonshire energy fitting of supercell (N = 9) according to
the major steps outlined in Sec. II.

For the shear-strain-free single-domain supercell, the
polarization-dependent energy density EP (P ) is plotted in
Fig. 2. The empty circles are the calculated data points while
the solid curve is the Landau-Devonshire energy fitting. The
overall fitting is excellent and the fitting parameters are listed in
Table II. Also listed are the previous experimentally estimated
parameters deduced from phase transitions [37] and theoret-
ically estimated parameters based on the lattice eigenvectors
of paraelectric cubic phase and ferroelectric tetragonal phase
[38]. Generally speaking, these parameters are rather scattered
in values. Our estimated values are close to the cubic phase
for a1 and a2 and to the tetragonal phase for a3 and a4.
This result is understandable in view of the configuration
interpolation used in our total-energy calculation [38]. As
shown in Fig. 2, the polarization-dependent energy density
shows a well-known symmetrical double-well structure with
respect to the paraelectric phase. Although these values are
computed at temperature T = 0 K, finite temperature a1(T )
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FIG. 2. The polarization-dependent energy density of single-
domain BaTiO3. The saturated polarization P0 = 0.251 C/m2 is set
to that of the ferroelectric ground state. The circles are the calculated
points, while the solid line represents the best fit by Eqs. (4) and (5).

can be approximated by a1(T )/a1(0) = (1 − T/TC), with TC

denoting the Curie-Weiss temperature. As was customarily
done, a2, a3, and a4 are usually assumed to be temperature-
independent quantities.

To prevent the domain-wall energy from interfering the
extraction of the flexoelectric coefficient, we first identify the
domain-wall energy from a shear-strain-free double-domain
supercell. After subtracting the single-domain polarization en-
ergy from the total energy, the extracted domain-wall energies
ED(P,δ) are shown in Fig. 3 as functions of polarization P and
dimensionless offset parameter δ. As expected, domain-wall
energy shows a typical parabola shape with the best δ min-
imizing its energy. The optimized δ takes δ(p) = δ0 + δ1p

2,
and the parameters a5, a6, a7, and a8 together best describe the
functional form of the domain-wall energy density. The best
fitting parameters are summarized in Table III. Note that the
optimal domain offset for Ba, δuBa = (δ0 + δ1)c = 0.0126c,
is very close to the value for Pb, δuPb = 0.010c, in PbTiO3

found by Meyer and Vanderbilt [26].
Now we are ready to address the elastic property and

flexoelectric property under the sinusoidal shear-strain con-
figuration. Since the piezoelectric effect is absent, only
the flexoelectric effect remains. The elastic constant C44,
flexoelectric parameter f1313, and the high-order parameters
can be similarly deduced by best fitting Eqs. (8)–(11) and are
listed in Table IV, together with the available experimental
and theoretical data. Unlike the fitting procedures for single-
domain and domain-wall energies where the relative errors

δ

δ
δ
δ
δ
δ

FIG. 3. The domain-wall energy densities as functions of electric
polarization for different δ. The symbols are the calculated points
while solid lines represent the best fit by Eqs. (6) and (7). δ(p) =
δ0 + δ1p

2 with δ0 = 0.014 2 and δ1 = −0.001 6.

are very small, the third fitting procedure inherited all the
numerical inaccuracies from the first two steps. Thus the
relative errors are significantly large. It should be mentioned
that a large relative error for the parameter a12 only indicates
that this small term is probably irrelevant in the fitting. The
obtained value C44 = 1.2910 × 1011 N/m2 agrees well with
the previous calculated value [39], being about twice the
experimental measured value [40]. As shown in Table IV,
the flexoelectric parameter f1313 = 0.220 V is smaller than
the previous theoretical value, 0.85 V, of BaTiO3 [22] and is
comparable with the experimental value [1]. The high-order
terms are generally small. They are mainly caused by the
complex strain configuration, which deviates from the ideal
model with only the strain and strain gradient. Thus, these
high-order terms should be neglected when considering the
phenomena originating from the flexoelectric effect.

In deriving the elastic and flexoelectric parameters outlined
in step 3, the bulk strain-gradient square term (a16η

2) was
not explicitly included in the Landau-Devonshire energy
expansion [36]. For a single-size supercell, the elastic energy
term (a9σ

2) and strain-gradient square term (a16η
2) are not

separable because strain and strain gradient differ by a factor
of π/Na in our model strain configuration. They can be
independently extracted when fitting simulation results for
different supercell sizes together. Combining the energy data
points for supercells N = 7 and N = 9, we obtain a16 ≈
3.832 × 10−10 N. Thus, the a16η

2 term is much smaller than
the a9σ

2 term. For example, for a half cylinder with curvature

TABLE II. The Landau-Devonshire phenomenological parameters for single-domain BaTiO3. The symbols O and T within the brackets
denote the cubic and tetragonal phases of BaTiO3.

ai This work �ai/ai Li et al. [37] Ueda et al. [38] (O) Ueda et al. [38] (T ) Units

a1 −4.752 × 108 0.0003 −1.601 × 108 −7.430 × 108 −1.906 × 109 V m/C
a2 +4.347 × 109 0.0002 −2.097 × 108 +5.769 × 109 +1.183 × 1010 V m5/C3

a3 −8.048 × 109 0.0008 +1.294 × 109 −3.274 × 109 −1.218 × 1010 V m9/C5

a4 +1.100 × 1010 0.0040 +3.863 × 1010 +2.618 × 109 +1.832 × 1010 V m13/C7
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TABLE III. The fitting parameters of domain-wall energy density.

ai a5 a6 a7 a8 δ0 δ1

Units V m2/C V m6/C3 V m10/C5 102 V m2/C

0.1868 –0.2821 0.5115 3.9404 0.0142 –0.0016
�ai/ai 0.0035 0.0173 0.0646 0.0079

radius 110 Å, a16η
2/a9σ

2 ≈ 0.002%. However, including the
a16η

2 term affects the flexoelectric coefficient somewhat.
The flexoelectric coefficient changes from 0.220 V without
this term to 0.389 V with this term. This is so because
the flexoelectric effect involves rather small energy and the
size effect may play a role. Using Eq. (6.2.42) derived
from the continuum phenomenological model in Ref. [25],
the flexoelectric coefficient can also be estimated from the
displacement of the mass centers of two domains across the
domain wall, f1313 = C44δu/(2P0) ≈ 1.04 V. This value is
roughly 4 times the value f1313 = 0.220 V derived from the
strained bulk domain and 3 times the value f1313 = 0.389 V
when the strain-gradient square term is included. However,
the rather small domain-wall width of 1–2 lattice constants
can be one factor which makes the continuum model difficult
to apply. The other factor can be attributed to the smallness of
the flexoelectric term with regard to elastic and polarization
terms.

Using the self-consistent fitting procedure outlined above,
we are able to deduce the reliable Landau-Devonshire phe-
nomenological parameters for single-domain BaTiO3 as well
as the elastic and flexoelectric parameters. The Landau-
Devonshire energy functional, after dropping the high-order
correction terms and domain-wall energy, can be written as
follows:

E(P,σ,η) = a1P
2 + a2P

4 + a3P
6 + a4P

8

+ (1/2)C44σ
2 + (1/2)f1313ηP. (12)

The constant energy term E(0) is also removed for simplicity.
To discuss the strain-gradient induced electric polarization
reversal, the above energy functional has to be extended to
finite temperature. As was customarily done, we assume a1(T )
at finite temperature takes the form a1(T ) = a1[1 − (T/TC)]
and all other parameters are assumed to be temperature
independent. Thus, the polarization-reversal phenomenon

η)

∞

c

FIG. 4. The effect of shear-strain gradient on the polarization-
dependent energy density of BaTiO3 at T = 300 K (TC ≈ 388 K).
The values of shear-strain gradient η = 1/R are indicated by different
line types.

essentially depends on two external variables, i.e., the experi-
mental temperature T and the strain gradient η or curvature R.
For ferroelectric BaTiO3, the bulk Curie-Weiss temperature
is TC = 388 K (115 ◦C) [37]. We take T = 300 K for the
experiments carried out at room temperature. However, it
should be noted that our parameters are estimated for the bulk
ferroelectric BaTiO3, while polarization-reversal experiments
are usually done on ferroelectric thin films. The parameters
for bulk samples and thin films can differ from each other,
in particular, the Curie-Weiss temperature can be significantly
reduced with regard to bulk materials. To view the influence of
shear-strain gradient η on the polarization-dependent energy
density, the Landau-Devonshire energy functional is plotted
in Fig. 4 for T/TC = 0.773 and for different values of the
shear-strain gradient η = 1/R. In Fig. 4, the elastic energy
is not included because it does not break the double-well
symmetry of ferroelectric energy.

As shown in Fig. 4, the barrier height is reduced by
20 times while the optimized ferroelectric polarization is
reduced by half at room temperature. The shear-strain gradient
affects the energy profile in a similar way as an external
electric field. Imposing a shear-strain gradient destroys the
symmetrical double-well structure; the electric polarization is

TABLE IV. The elastic, flexoelectric, and high-order electromechanic coupling parameters of BaTiO3.

ai This work �ai/ai Theory Experiment Units

C44 +1.2910 × 10+11 0.0007 +1.24 × 1011a +0.611 × 1011b N/m2

a10 +0.2003 × 10+11 0.3551 N/m2

f1313 +0.2200 0.1474 ∼0.85c <0.15d V
a12 -0.0182 7.5465 m4 V/C2

a13 +3.6583 0.2640 m8 V/C4

a14 −7.6890 × 10−9 0.0938 m3 V/C
a15 −0.3270 × 10−6 0.0136 V m

aReference [39].
bReference [40].
cReference [22].
dReference [1].
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more favored in one direction than the other. The domain-
reversal barrier height shrinks as the shear-strain gradient
increases and eventually vanishes at a critical shear-strain
gradient ηC or critical curvature radius RC . If we used the
bulk parameters of BaTiO3 obtained in our first-principles
calculations, ηC ≈ 9.091 × 107/m (RC ≈ 110 Å). Comparing
to the experimentally observed value ηC ≈ 3.333 × 107/m
(RC ≈ 300 Å) [11], the theoretically estimated value has the
same order of magnitude but is 3 times smaller than the exper-
imentally suggested one. The following reasons may affect the
theoretical prediction: (1) The Curie-Weiss temperature of thin
ferroelectric films is significantly reduced in comparison with
that of bulk BaTiO3. For example, the Curie-Weiss temperature
for ferroelectric 35-nm thin film of BaTiO3 is reduced to
TC ≈ 337 K [41] and yields ηC ≈ 3.125 × 107/m or RC ≈
320 Å, which is very close to the experimentally measured
value. (2) At finite temperature, the stabilities of up- and
down-domains are not determined by the internal energy but
rather by the Helmholtz free energy. The thermal fluctuation is
important and makes the polarization reversal easier at finite
temperature. (3) In domain-reversal experiments, the shear,
transverse, and longitudinal flexoelectricities act in a coherent
fashion: this further enriches the paths of phase transition. (4)
For the finite-size ferroelectric thin films, the boundary effect
and surface piezoelectric effect may decrease the effective
susceptibility, thus enhancing the effective flexoelectricity [9].

IV. CONCLUSION

In summary, the elastic, flexoelectric, and parameters of
Landau-Devonshire polarization-dependent energy density are
obtained by best fitting the first-principles total energy for
different polarization, shear-strain, and shear-strain-gradient
configurations of BaTiO3. In order to extract the flexoelectric

parameter unambiguously, we divide the numerical procedure
into three controllable steps: (1) the Landau-Devonshire
parameters are first obtained from a single-domain ferro-
electric BaTiO3; (2) the parameters of domain-wall energy
are deducted from a shear-strain-free 180◦ double-domain
structure after subtracting the single-domain contribution; and
(3) the parameters of elastic, flexoelectric, and high-order
correction terms are derived from the double-domain structure
with a sinusoidal shear-strain pattern. The extracted elastic
coefficient is in excellent agreement with previous theoretical
values and is comparable with experimental measurement.
In this way we constructed the Landau-Devonshire energy
functional with given electric polarization, shear strain, and
shear-strain gradient. Then we applied the Landau-Devonshire
energy functional to study the shear-strain gradient induced
polarization reversal in ferroelectric BaTiO3 thin films. Our
computed flexoelectric parameter f3131 = 0.220 V yields a
critical curvature radius of RC = 110 Å, which is on the
same order of magnitude as the measured one (RC = 300 Å).
The possible reasons for discrepancy are also discussed. It
should be emphasized that our flexoelectric coefficient is
obtained from best fitting to the first-principles calculated
total energy. The obtained coefficient is not limited to small
polarization and does not sensitively depend on the adopted
pseudopotential. Therefore, our method offers an alternative
numerical approach to compute the flexoelectric property as
well as domain-reversal phenomena.
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