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Representation of compounds for machine-learning prediction of physical properties
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The representations of a compound, called “descriptors” or “features”, play an essential role in constructing
a machine-learning model of its physical properties. In this study, we adopt a procedure for generating a set of
descriptors from simple elemental and structural representations. First, it is applied to a large data set composed
of the cohesive energy for about 18 000 compounds computed by density functional theory calculation. As a
result, we obtain a kernel ridge prediction model with a prediction error of 0.041 eV/atom, which is close to the
“chemical accuracy” of 1 kcal/mol (0.043 eV/atom). A prediction model with an error of 0.071 eV/atom of the
cohesive energy is obtained for the normalized prototype structures, which can be used for the practical purpose
of searching for as-yet-unknown structures. The procedure is also applied to two smaller data sets, i.e., a data
set of the lattice thermal conductivity for 110 compounds computed by density functional theory calculation and
a data set of the experimental melting temperature for 248 compounds. We examine the effect of the descriptor
sets on the efficiency of Bayesian optimization in addition to the accuracy of the kernel ridge regression models.
They exhibit good predictive performances.
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I. INTRODUCTION

A data-driven machine-learning approach is expected to
be used to develop prediction models of target physical
properties of interest and classification models of target classes
of properties. Therefore, machine-learning techniques have
been increasingly used for the exploration of materials and
structures from a huge number of candidates [1–18] and/or for
the extraction of meaningful information and patterns from
existing data such as machine-learning interatomic potentials
[19–33]. A key factor in controlling the performance of a
machine-learning-based approach is how compounds are rep-
resented in a data set. Representations of compounds are called
“descriptors” or “features”. Candidate compound descriptors
are quantities obtained from first-principles physical properties
such as volume, cohesive energy, elastic constants, and dielec-
tric constants. Although a few first-principles databases are
available, the numbers of compounds and physical properties
in the databases are still limited. Nevertheless, if one can
discover a set of descriptors that can explain a target property
well, a robust prediction model of a target property can be
derived. In addition to first-principles properties, one can use
quantities derived from simple representations of elements and
structures of compounds as descriptors.

Many candidate elemental representations can be found
in the literature. These are intrinsic quantities such as the
atomic number and ionization energy, heuristic quantities such
as the electronegativity [34] and ionic radius [35], and physical
properties of elemental substances such as melting and boiling
points. Such elemental representations have already been
used in many studies on machine-learning prediction. Other
candidates are the chemical composition and a binary digit
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representing the presence of each element in a compound
[5]. Also, an elemental or ionic similarity defined by crystal
structure database entries has been proposed [36]. Many
structural representations that are not generally intended for
application to machine learning have also been proposed in
the literature. They include the simple coordination number,
Voronoi polyhedron of a central atom, angular distribution
function, bond-orientational order parameter (BOP) [37],
and radial distribution function. Some of them and their
extended forms have already been applied to machine-learning
predictions [38–40]. Candidate structural representations have
also been proposed in the context of the machine-learning
interatomic potential [41].

Moreover, in the usual situation that a data set covers a
wide range of chemical compositions and crystal structures,
it is natural to consider a combined form of elemental and
structural representations as a descriptor. Such descriptors have
not been proposed except for the Coulomb matrix [42], its
extended forms [43], the x-ray diffraction pattern [44], and
some functions based on multiple elemental representations
[23,45], because it is not easy to find a good descriptor derived
from elemental and structural representations. Therefore,
a systematic procedure for generating a set of compound
descriptors from simple representations is strongly required.

In this study, we demonstrate an approach to derive a set
of descriptors for a compound from atomic representations,
which can be applied not only to crystalline systems but
also to molecular systems. This approach enables us to
generate a set of descriptors composed of elemental and
structural representations satisfying the following features: (i)
Compounds with a wide range of chemical compositions are
expressed by same-dimensional descriptors. (ii) Compounds
with a wide range of crystal structures are expressed by
same-dimensional descriptors. This is an important feature
because unit cells of different crystals are not composed of
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TABLE I. Elements and their valences included in the DFT data set of cohesive energy. Prototype structures of compounds included in the
DFT data set are also listed. We adopt prototype structures for which many entries are registered in the ICSD.

Valence Element

1+ Li, Na, K, Rb, Cs
2+ Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg
3+ Al, Ga, In, Sc, Y, La
1− F, Cl, Br, I
2− O, S, Se, Te
3− N, P, As, Sb
Formula Prototype structure No. of compounds
AX NaCl, ZnS, ZnO, NiAs, MnP, FeB, CsCl, TlI 608
AX2 CaF2, CaCl2, α-PbO2, CdI2, La2Sb, rutile-TiO2, PbCl2, pyrite-FeS2, marcasite-FeS2 468
AX3 Cementite-Fe3C, YF3, Na3As, ReO3, BiI3 220
A2X3 Bi2Te3, La2O3, Sn2S3, Sb2S3, bixbyite-Mn2O3 279
ABX Cu2Sb, RbAuS, Fe2P 2214
ABX2 α-LiFeO2, NaCrS2, CuFeS2, CuLaS2, AgFeO2 6497
ABX3 Perovskite-GdFeO3, perovskite-CaTiO3, BaNiO3 2243
ABX4 ZrSiO4, CaWO4, BiWO4 2207
AB2X4 Olivine-Mg2SiO4, Spinel-MgAl2O4, K2MgF4, CaFe2O4, CrNb2Se4, Al2CdS4 3357

the same number of atoms. (iii) A set of descriptors satisfies
translational and rotational invariance and other invariances
required for all compounds included in the data set.

We apply this approach to a large data set and two small
data sets of physical properties. The large data set is composed
of the cohesive energy for about 18 000 compounds computed
by density functional theory (DFT) calculation [46,47]. The
two small data sets correspond to a data set of the lattice
thermal conductivity (LTC) for 110 compounds computed by
DFT calculation and a data set of the experimental melting
temperature for 248 compounds. Using the data sets, we
examine the performance of descriptors in terms of the
prediction error for test data of the kernel ridge models
and the performance of the Bayesian optimization, which
is becoming an option for solving optimization problems in
physics, chemistry, and materials science [5,14,18,25].

This paper is organized as follows. Section II gives the
detail of the data sets used in this study. Section III describes
the regression methods and the procedure for Bayesian
optimization adopted here. Section IV shows how to derive
compound descriptors from simple elemental and structural
representations. Section V reports results for the performance
of the descriptors for kernel ridge models and Bayesian
optimization. Finally, we conclude in Sec. VI.

II. DATA SETS

A. DFT cohesive energy (18 093 compounds)

The first data set contains the cohesive energy for binary
and ternary compounds computed by DFT calculation. The
compounds in the data set correspond to exhaustive arrange-
ments of given chemical compositions and crystal structure
prototypes. Therefore, the cohesive energy depends on both
the elements and the crystal structure of the compound.
The chemical compositions are generated by considering
all combinations of cations and anions listed in Table I,
satisfying the charge neutrality condition. Binary compounds
have the compositions AX, AX2, AX3, and A2X3, and ternary

compounds have the compositions of ABX, ABX2, ABX3,
ABX4 and AB2X4, where elements A and B are cations and
element X is an anion. For each chemical composition, we
consider several crystal structure prototypes, listed in Table I,
included in the inorganic crystal structure database (ICSD)
[48]. The total number of compounds is 18 093: 1575 binary
and 16 518 ternary compounds.

We use a definition of the cohesive energy for a binary or
ternary compound, normalized by the total number of atoms,
expressed as

Ecoh =
(
nAEatom

A + nBEatom
B + nXEatom

X

) − Ebulk

nA + nB + nX
, (1)

where nA, nB, and nX denote the numbers of atoms A, B, and
X included in a simulation cell for the compound, respectively.
Ebulk is the total energy of the compound at the equilibrium
volume. Eatom

A , Eatom
B , and Eatom

X are the energies of isolated
atoms A, B, and X, respectively.

For all 18 093 compounds, DFT calculations were per-
formed using the plane-wave basis projector augmented
wave method [49,50] within the Perdew-Burke-Ernzerhof
exchange-correlation functional [51] as implemented in the
VASP code [52,53]. The cutoff energy was set to 400 eV. The
total energy converged to less than 10−3 meV. The atomic
positions and lattice constants were optimized until the residual
forces became less than 10−2 eV/Å. To evaluate the energy of
an isolated atom, a spin-polarized calculation was performed
with a large periodic cell of 15 × 16 × 17 Å.

B. DFT lattice thermal conductivity (110 compounds)

One of the small data sets is composed of the LTC for
110 compounds computed by DFT calculation, generated
by incorporating the data sets used in Refs. [5,54]. We
employed the supercell and finite-displacement approaches
to obtain second-order and third-order force constants. LTCs
were calculated from phonon lifetimes, group velocities and
mode-heat capacities solving the phonon Boltzmann trans-
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port equation within the relaxation time approximation. The
PHONOPY [55] and PHONO3PY [54] codes were used for these
phonon calculations. Details of the theoretical background and
computational procedure can be found in Refs. [5,54].

C. Experimental melting temperature (248 compounds)

The other small data set is composed of the experimental
melting temperature for 248 binary compounds taken from
Ref. [56]. This data set is exactly the same as that used in
Ref. [25]. The melting temperatures of the compounds in the
data set range from room temperature to 3273 K. In addition,
transition-metal compounds are not included in the data set to
avoid complexity in the DFT calculation. The compounds and
their melting temperatures can be found in the Appendix of
Ref. [25].

Since the database of melting temperatures does not contain
information on the crystal structure, we estimate the stable
crystal structure for each compound by DFT calculation.
Candidate crystal structures are taken from the ICSD. When
the ICSD database has a unique crystal structure for a
compound, the DFT calculation is carried out for the unique
crystal structure. When the ICSD database contains multiple
crystal structures for the compound, the crystal structure with
the lowest energy among the structures is adopted.

III. REGRESSION METHODS

A. Kernel ridge regression

A way of measuring the performance of descriptors is to
estimate the prediction error of regression models. Kernel
ridge regression (KRR) [57] is employed in this study. In the
formalism of KRR, the observation property y of point d is
expressed by a kernel function for point d and training data
point di as

y(d) =
N∑

i=1

αik(d,di), (2)

where N and αi denote the number of training data and
the contribution of training data i to the prediction of the
observation property, respectively. k(d,di) is a kernel function
used to measure the similarity between point d and training
data point di . Here we introduce a radial basis function kernel,
given by

k(di ,dj ) = exp

(
−|di − dj |2

2σ 2

)
, (3)

with a length scale of σ . Coefficients α = [α1,α2, . . . ,αN ]� are
determined from the training data by simple matrix operations
as

α = (K + λIN )−1 y, (4)

where λ and IN denote a regularization parameter and the
N -dimensional identity matrix, respectively. y denotes an N -
dimensional vector describing the observation property of the
training data. K is a symmetric kernel matrix composed of
kernel functions for all pair arrangements of the training data,

expressed as

K =

⎛
⎜⎜⎝

k(d1,d1) k(d1,d2) · · · k(d1,dN )
k(d2,d1) k(d2,d2) · · · k(d2,dN )

...
...

. . .
...

k(dN,d1) k(dN,d2) · · · k(dN,dN )

⎞
⎟⎟⎠. (5)

Finally, the prediction for point d∗ is derived as

y(d∗) = k�
∗ (K + λIn)−1 y, (6)

where k∗ = [k(d∗,d1), . . . ,k(d∗,dN )]� is the vector of kernel
functions for point d∗ and the training examples. The pre-
diction model depends on the values of σ and λ, hence we
determine them by a grid-search optimization.

B. Gaussian process regression

Another way of measuring the performance of descriptors
is to examine the efficiency in finding the compound showing
the best observation property among the existing data whose
observations are known. We employ Bayesian optimization
based on a Gaussian process (GP) [58], specified by its mean
function and covariance function. We adopt a radial basis
function covariance for noise-free observation, given by

k(di ,dj ) = σ 2
f exp

(
−|di − dj |2

2l2

)
, (7)

where l and σ 2
f are tuning parameters controlling the length

scales for d and the observation, respectively. The mean
function μ at point d∗ and the variance function σ 2

∗ are given
as

μ(d∗) = k�
∗ K−1 y (8)

and

σ 2
∗ = k(d∗,d∗) − k�

∗ K−1k∗, (9)

respectively. The mean function is exactly the same as the
KRR prediction in Eq. (6) without the regularization term.

C. Bayesian optimization

Our procedure for Bayesian optimization is as follows.
First, a GP model is developed from two randomly selected
observations taken from all the data. The model is iteratively
updated by repeatedly (i) sampling the point at which the
observation property is expected to be the best and (ii) updating
the model including the observation at the sampled point.
These steps are repeated until all the data are sampled.

We have two main options when sampling a new point [59]:
we can consider the probability of improvement (PI) and the
expected improvement (EI). For a minimization problem, the
former involves sampling the point at which the probability
that the observation is lower than ybest is maximized, where
ybest denotes the best observation among the observed data.
Therefore, sampling point i ′ is selected by maximizing the
probability formulated as

i ′ := argmax
d∗

�

(
ybest − μ(d∗)

σ∗

)
, (10)
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FIG. 1. Schematic of how to generate compound descriptors. First, each atom in a compound is characterized by Nx representations. The
collection of atoms in the compounds is written as a representation matrix X . Then the representation matrix is regarded as the data distribution
in an Nx-dimensional space. To transform the distribution into descriptors, representative quantities are introduced to characterize the data
distribution such as its mean, standard deviation, skewness, kurtosis, and covariance.

where �(y − μ(d∗)/σ∗) denotes the cumulative distribution
function of N (μ,σ 2). In a similar manner, the EI is formulated
as

i ′ := argmax
d∗

∫ ybest

−∞
(ybest − y)φ

(
y − μ(d∗)

σ∗

)
dy, (11)

where φ(y − μ(d∗)/σ∗) denotes the probability density func-
tion of N (μ,σ 2). We apply the two options for Bayesian
optimization to the LTC and melting temperature dataz sets.

IV. DESCRIPTORS

A. Representation of compounds

Here we describe a compound using descriptors d that can
be derived from only simple elemental and structural repre-
sentations. Figure 1 schematically illustrates the procedure for
generating such descriptors for compounds. We first consider
a compound as a collection of atoms that are described by
element types and neighbor environments determined by other
atoms. Supposing they are represented by Nx(ele) elemental
representations and Nx(st) structural representations, each
atom is described by Nx = Nx(ele) + Nx(st) representations.
Therefore, compound ξ is expressed by a collection of the
atomic representations as an (N (ξ )

a × Nx)-dimensional matrix,
where N

(ξ )
a is the number of atoms included in the unit cell of

compound ξ . The representation matrix for compound ξ , X (ξ ),
is written as

X (ξ ) =

⎛
⎜⎜⎜⎜⎝

x
(ξ,1)
1 x

(ξ,1)
2 · · · x

(ξ,1)
Nx

x
(ξ,2)
1 x

(ξ,2)
2 · · · x

(ξ,2)
Nx

...
...

. . .
...

x
(ξ,N

(ξ )
a )

1 x
(ξ,N

(ξ )
a )

2 · · · x
(ξ,N

(ξ )
a )

Nx

⎞
⎟⎟⎟⎟⎠, (12)

where x
(ξ,i)
n denotes the nth representation of atom i in

compound ξ .
Since the representation matrix is only a representation

for the unit cell of compound ξ , we need a procedure for
transforming the representation matrix into a set of descriptors

to compare different compounds. An approach to the transfor-
mation is to regard the representation matrix as the distribution
of data points in an Nx-dimensional space, as shown in Fig. 1.
To compare the distributions themselves, we then introduce
representative quantities to characterize the distribution as
descriptors d, such as the mean, standard deviation, skewness,
kurtosis, and covariance of the distribution. The inclusion of
the covariance enables the interaction between the element
type and the crystal structure to be considered.

In previous machine-learning predictions, a popular ap-
proach was to use the composition average of a representation
as a descriptor (for example, Refs. [12,30]), expressed as

d (ξ )
n = 1

N
(ξ )
a

N
(ξ )
a∑

i=1

x(ξ,i)
n . (13)

In the case of constructing linearized machine-learning inter-
atomic potentials, the average of structural representations is
also commonly used because the internal energy is given as
the sum of the atomic contributions to the total internal energy
[22]. The above examples are regarded as simplifications of
our approach.

The performance of this procedure is dependent on the set of
elemental representations, the set of structural representations,
and the representative quantity used to characterize the
distribution of the elemental and structural representations.

A universal or complete set of representations, which can
derive good prediction models for all physical properties even
when using standard machine learning procedures, is desired,
while it is expected to be almost impossible to find such
a universal set of representations. On the other hand, many
elemental and structural representations have been proposed
for a long time, not only in the literature on machine-learning
prediction but also in the literature on standard physics and
chemistry. Using these representations, many phenomena in
physics and chemistry have been explained. Therefore, it is a
good way to generate descriptors to make effective use of the
existing representations.
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B. Atomic representations

Our set of elemental representations [56,60] is composed
of the (1) atomic number, (2) atomic mass, (3) period and
(4) group in the periodic table, (5) first ionization energy,
(6) second ionization energy, (7) electron affinity, (8) Pauling
electronegativity, (9) Allen electronegativity, (10) van der
Waals radius, (11) covalent radius, (12) atomic radius, (13)
pseudopotential radius for the s orbital, (14) pseudopotential
radius for the p orbital, (15) melting point, (16) boiling
point, (17) density, (18) molar volume, (19) heat of fusion,
(20) heat of vaporization, (21) thermal conductivity, and (22)
specific heat. These representations can be classified into the
intrinsic quantities of elements (1)–(7), the heuristic quantities
of elements (8)–(14), and the physical properties of elemental
substances (15)–(22).

We also introduce four types of structural representations
x(i)

n , i.e., histogram representations of the partial radial dis-
tribution function (PRDF), the generalized radial distribution
function (GRDF), the BOP, and the angular Fourier series
(AFS). The PRDF is a well-established representation for a
wide variety of structures. Although the PRDF has also been
used in the context of machine-learning prediction [38], it is
difficult to apply it directly to a data set composed of a wide
range of compounds in the same way. Therefore, we apply a
histogram representation of the PRDF with a given bin width
and cutoff radius to the procedure in this study. The number
of counts for each bin is used as a structural representation.

The GPRF is a pairwise representation similar to the PRDF,
expressed as

GRDF(i)
n =

∑
j

gn(rij ), (14)

where gn(rij ) denotes a pairwise function for distance rij

between atom i and its neighbor atom j . For example, a
Gaussian pairwise function is given by

gn(rij ) = exp[−an(rij − bn)2], (15)

where an and bn are the nth given parameters. Here, we employ
Gaussian, trigonometric, and Bessel pairwise functions as
pairwise functions gn.

The GRDF can be regarded as a generalization of the PRDF
because the PRDF histogram is obtained by using rectangular
functions as pairwise functions gn. The GRDF has been used
not only as a potential function and/or function describing
the local environment in pairwise interatomic potentials such
as Lennard-Jones and embedded atom method potentials
[61–63], but also as descriptors of machine-learning inter-
atomic potentials [20,22].

The BOP is also a well-known representation for local struc-
tures in liquid crystal and glass states [37]. The rotationally
invariant BOP Ql for atomic neighborhoods is expressed by

Ql =
[

4π

2l + 1

l∑
m=−l

|Qlm|2
]1/2

, (16)

where Qlm corresponds to the average spherical harmonics
for neighbors of atom i. The third-order invariant BOP Wl for

atomic neighborhoods is expressed by

Wl =
l∑

m1,m2,m3=−l

(
l l l

m1 m2 m3

)
Qlm1Qlm2Qlm3 , (17)

where the parentheses is the Wigner 3j symbol, satisfying
m1 + m2 + m3 = 0. A set of both Ql and Wl up to a given
maximum l is used as structural representations.

The AFS is the most general among the four formulations,
which is able to include both the radial and the angular
dependences of an atomic distribution [41]. The AFS is given
by

AFS(i)
n,n′ =

∑
j,k

gn(rij )gn′(rik) cos θijk, (18)

where θijk denotes the bond angle between three atoms. AFS
also corresponds to a rotationally invariant representation
simply derived from spherical harmonics modified by radial
functions [41].

V. RESULTS AND DISCUSSION

A. Cohesive energy

To begin with, the performance of descriptors is examined
by developing KRR prediction models for the DFT cohesive
energy. First, we adopt descriptor sets derived only from
elemental representations, which are expected to be more
important than structural representations in the prediction of
the cohesive energy. Since the elemental representations are
not complete for some of the elements in the data set, we
consider only the elemental representations that are complete
for all elements. We estimate the root-mean-square error
(RMSE) for test data composed of a randomly selected 10%
of the data. The random selection of test data is repeated 20
times, and the average RMSE is regarded as the prediction
error.

Table II summarizes the prediction errors of KRR models
for the cohesive energy. The simplest option is to use only the
mean of each elemental representation as a descriptor. The pre-
diction error in this case is 0.249 eV/atom. When considering
the means, standard deviations, and covariances of elemental
representations, the prediction model has a prediction error
of 0.231 eV/atom. Figure 2(a) shows a comparison of the
cohesive energy calculated by DFT calculation and by the best
KRR model, where only the test data in one of the 20 trials are
shown. As shown in Fig. 2(a), many data largely deviate from
the diagonal line representing equal DFT and KRR energies.
We also found that the skewness and kurtosis are not important
descriptors for the prediction.

Since we consider several crystal structures for each
chemical composition, all the data have an intrinsic error
originating from the absence of structural representations.
The intrinsic standard deviation averaged over the chemical
compositions σint can be estimated as

σint = 1

Ncomp

∑
i

√
1

N
(st)
i

∑
s

(Ei,s − 〈Ei〉)2, (19)

where Ncomp and N
(st)
i denote the number of chemical com-

positions and the number of prototype structures for chemical
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TABLE II. Prediction errors of KRR models for the cohesive
energy. The first row lists the representative quantities of the
distribution of atomic representations; SD, standard deviation. The
first column lists the atomic representations included in the models.
Elemental representations are included in all models. Values in
parentheses in the first column are the number of bins, number of
gn, number of Ql and Wl , and number of gn for PRDF, GRDF,
BOP, and AFS, respectively. For AFS, all possible pairs of gn are
considered. Values in parentheses in the third column are prediction
errors for models with the covariances of atomic representations. The
bottom three rows list the prediction errors of models with structural
representations computed using a normalized unrelaxed structure.
Units: eV/atom.

Mean Mean and SD

No structural representation 0.249 0.244 (0.231)
Optimized structure

PRDF (10) 0.189 0.153 (0.110)
PRDF (20) 0.175 0.155 (0.106)
PRDF (40) 0.166 0.152 (0.125)

Optimized structure
GRDF (10; trigonometric) 0.158 0.104 (0.050)
GRDF (20; trigonometric) 0.158 0.094 (0.045)
GRDF (40; trigonometric) 0.149 0.093 (0.053)
GRDF (10; Gaussian) 0.170 0.108 (0.056)
GRDF (20; Gaussian) 0.166 0.101 (0.058)
GRDF (40; Gaussian) 0.157 0.100 (0.051)
GRDF (80; Gaussian) 0.156 0.099 (0.061)
GRDF (10; Bessel) 0.172 0.106 (0.055)
GRDF (20; Bessel) 0.169 0.104 (0.055)

Optimized structure
BOP (20) 0.156 0.129 (0.064)
BOP (20)

+ GRDF (20; trigonometric) 0.108 0.077 (0.041)
AFS (10; trigonometric) 0.139 0.102 (0.079)
AFS (20; trigonometric) 0.146 0.102 (0.103)
Normalized unrelaxed structure

PRDF (20) 0.166 0.162 (0.072)
PRDF (40) 0.166 0.164 (0.071)
GRDF (20; trigonometric) 0.169 0.164 (0.074)

composition i, respectively. Ei,s and 〈Ei〉 are the cohesive
energy for chemical composition i with prototype structure s

and the average cohesive energy for chemical composition i,
respectively. The intrinsic standard deviation is estimated to
be 0.211 eV/atom, which is close to the prediction error for
all models, indicating that our set of elemental representations
is nearly complete for the prediction of the cohesive energy.

Next, we introduce descriptors related to structural rep-
resentations. They can be computed from both the crystal
structure optimized by the DFT calculation and the initial
prototype structures. The former is only useful for machine-
learning prediction when an observation is expensive. Since
the optimized structure calculation requires the same compu-
tational cost as the cohesive energy calculation, the benefit
of using machine learning is lost when using the optimized
structure. Only to examine the limitation of the procedure and
the atomic representations introduced in this study, structural
representations are first computed from the optimized crystal
structure. KRR models are constructed using many descriptor
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FIG. 2. Comparison of cohesive energy calculated by DFT cal-
culation and that calculated by the KRR prediction model. Only one
test data set is shown. Descriptor sets are composed of (a) the means
of elemental representations, (b) the means of elemental and PRDF
representations, (c) the means, SDs, and covariances of elemental
and PRDF representations, and (d) the means, SDs, and covariances
of elemental and 20 trigonometric GRDF representations. The mean
of the PRDF corresponds to the RDF. Structure representations are
computed from the optimized structure for each compound.

sets composed of elemental and structural representations. The
cutoff radius is set to 6 Å for the PRDF, GRDF, and AFS,
and the cutoff radius is set to 1.2 times the nearest-neighbor
distance for the BOP, which is a widely used definition of the
nearest neighbor.

First, three sets of PRDF histogram representations are
applied. The number of histogram representations for each
set is controlled only by the bin width. Figure 2 shows a
comparison of the DFT and KRR cohesive energies, where
the KRR models are constructed by a set of the means of
the elemental and PRDF representations [Fig. 2(b)] and a
set of the means, standard deviations, and covariances of
the elemental and PRDF representations [Fig. 2(c)]. When
considering only the means of the elemental and PRDF
representations, the lowest prediction error is as large as
0.166 eV/atom, as reported in Table II. This means that the
simple use of the PRDF does not enable a good model for
the cohesive energy to be developed. However, by including
the covariances of the elemental and PRDF representations, a
much better prediction model is obtained and the prediction
error significantly decreases, to 0.106 eV/atom.

Table II also lists the prediction error of KRR models
with descriptors obtained from the elemental and GRDF
representations. Considering only the means of the GRDFs, we
obtain prediction models with errors of 0.149–0.172 eV/atom,
which are very close to those of the prediction models
considering the means of the PRDFs. Similarly to the case
of the PRDF, the prediction model is improved by considering
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FIG. 3. Dependence of the prediction error on the number of
training data. The standard deviation for 20 trials is also shown.
A set of 20 trigonometric GRDFs and 20 BOPs is used as the
structural representations. Open circles and filled circles show the
prediction error of the KRR model without and with consideration
of the covariances of the elemental and structural representations,
respectively. The numbers of descriptors are 122 and 1952 in the
former and latter cases, respectively.

the SDs and covariances of the elemental and structural
representations. The best model shows a prediction error of
0.045 eV/atom, which is about half that of the best PRDF
model. This is also approximately equal to the “chemical
accuracy” of 43 meV/atom (1 kcal/mol). Figure 2(d) shows
a comparison of DFT and KRR cohesive energies, where
a set of the means, SDs, and covariances of the elemental
and trigonometric GRDF representations is adopted. As
shown in Fig. 2(d), most of the data are located near the
diagonal line. Table II also shows the prediction error of
KRR models with descriptor sets including the angular-
dependent structural representations of the BOPs and AFSs.
We obtain the best prediction model, with a prediction error of
0.041 eV/atom, by considering the means, SDs, and covari-
ances of the elemental, 20 trigonometric GRDF, and 20 BOP
representations.

We also examine the dependence of the prediction error
on the number of training data, as shown in Fig. 3. A set of
20 trigonometric GRDFs and 20 BOPs is used as structural
representations, which derives the best model of the cohesive
energy. The prediction error gradually decreases with an
increasing number of training data. Note that the prediction
error of the KRR model with the covariance is close to that
of the KRR model without the covariance when the number
of training data is small. In other words, a better prediction is
expected by including covariances only when a large training
data set is available. This may be ascribed to the fact that the
inclusion of the covariances leads to a significant increase in
the number of descriptors. The same behavior can be found
in the following sections on the predictions of the LTC and
melting temperature using other small data sets.

We used the optimized structure to calculate structural
representations. To make a practical prediction model for the
cohesive energy, however, it is necessary to use structures

TABLE III. Prediction errors of KRR models for LTC and melting
temperature.

Mean Mean and SD

LTC
No structural representation 0.173 0.142 (0.130)
GRDF (20) 0.179 0.108 (0.137)
BOP (20) 0.128 0.096 (0.155)
GRDF (20) + BOP (20) 0.156 0.102 (0.149)

Melting temperature
No structural representation 278 273 (236)
GRDF (20) 302 277 (301)
BOP (20) 264 238 (286)
GRDF (20) + BOP (20) 293 278 (307)

that can be obtained without performing the DFT calculation.
Therefore, we apply normalized prototype structures obtained
without performing the DFT calculation. The prototype
structures are isotropically normalized so that the volume per
atom becomes 1 Å3. Table II lists the prediction errors of
KRR models with descriptor sets based on the normalized
prototype structural representations. Contrary to the use of the
optimized structure, the prediction models with trigonometric
GRDFs and PRDFs have almost the same prediction error.
The prediction error of the model with the means of the
elemental and structural representations is 0.166 eV/atom,
which is almost the same as those of the prediction models
with optimized structural representations. At the same time, it
is important to consider the covariances of the elemental and
structural representations, which improve the prediction error
to 0.071 eV/atom.

B. LTC

The number of training data is limited for most physical
properties of interest. Therefore, we believe that it is very
important to examine the performance of descriptors using a
small data set when employed in physics and materials science.
Here both KRR and Bayesian optimization are performed to
examine the performance of descriptors using log-scaled LTC
data. Since the computational cost of obtaining the optimized
DFT structure is much lower than that of obtaining the LTC,
we use the optimized DFT structure to compute structural
representations. The prediction error is estimated as the RMSE
for test data, which is composed of a randomly selected 10% of
the data. The random selection of the test data is repeated 200
times, and then the average RMSE is regarded as the prediction
error.

Table III lists the prediction errors of KRR models for the
LTC data. As well as achieving cohesive energy prediction,
the structural representations improve the prediction model.
On the other hand, the inclusion of the covariances reduces
the accuracy of the prediction model due to the small training
data set, as observed in the previous section. The best model
is composed of the means and SDs of the elemental and BOP
representations, having a prediction error of 0.096 for the log-
scaled LTC.

Next, the performance of Bayesian optimization is ex-
amined. Both Bayesian optimization and random searches
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TABLE IV. Performance of Bayesian optimization using the LTC data. Average numbers of samples required to find PbClBr, CuCl, and
LiI are listed, which have the lowest, 11th-lowest, and 12th-lowest LTCs among the 110 compounds, respectively. Means and SDs of the
representations are considered in all models. Plus and minus signs in the first three columns show the representations and covariances included
and not included in the prediction models, respectively.

PbClBr CuCl LiI Average

GRDF BOP Cov. RMSE PI EI PI EI PI EI PI EI

− − − 0.142 13.9 12.3 54.4 47.5 17.5 18.9 28.6 26.2
+ − − 0.108 7.6 7.9 40.5 41.0 48.6 49.7 32.2 32.9
− + − 0.096 5.0 5.2 15.1 15.7 9.1 9.4 9.7 10.1
+ + − 0.102 5.0 5.1 22.4 22.3 28.4 27.0 18.6 18.1
− − + 0.130 35.0 32.3 11.8 11.4 30.1 33.1 25.6 25.6
+ − + 0.137 8.8 8.7 31.8 31.7 84.5 83.9 41.7 41.4
− + + 0.155 13.7 14.2 8.9 9.0 43.4 44.2 22.0 22.5
+ + + 0.149 9.0 9.0 13.9 14.1 63.1 64.0 28.7 29.0

Random 50 55 55 −

are repeated 200 times and the average number of samples
required to find the compound with the lowest LTC, i.e.,
PbClBr, is examined. Table IV lists the performance of
Bayesian optimization using the PI and EI algorithms. The
means and SDs of the representations are considered in all
models. Figure 4 shows the behavior of the lowest LTC during
Bayesian optimization in comparison with that in the random
search. When using the GP model with the BOP, the average
number of samples required for the optimization, Nave, is 5.0,
which is 10 times smaller than that of the random search,
Nave = 50. PbClBr is discovered much more efficiently by
Bayesian optimization than by random search.

To evaluate the performance for finding a wide variety
of low-LTC compounds, we prepare two data sets after
intentionally removing some low-LTC compounds. In these
data sets, CuCl and LiI, showing, respectively, the 11th-lowest
and 12th-lowest LTCs, are the solutions of the optimizations.
Table IV also reports the result of Bayesian optimization using
the data sets. When using the GP model with BOPs, the average
numbers of observations required to find CuCl and LiI are
Nave = 15.1 and 9.1, respectively, which are much smaller

that those for the random search. On the other hand, when
using the GP model with GRDFs, the average numbers of
observations required to find CuCl and LiI are Nave = 40.5
and 48.6, respectively. The delay of the optimization may
originate from the fact that both CuCl and LiI may be outliers
in the model with GRDFs, although the model with GRDFs
has an RMSE similar to that of the model with BOPs. These
results indicate that we need to optimize a set of descriptors
by examining the performance of Bayesian optimization for a
wide range of compounds to find such outlier compounds.

C. Melting temperature

The other example of a small data set is the experimental
melting temperature of solids. KRR and Bayesian optimization
are performed, as well as the LTC prediction. We use the
optimized DFT structure to compute structural representations.
Similarly to the LTC prediction, we use test data composed of
a randomly selected 10% of the data to estimate the average
prediction error over 200 random selections of the test data.
Table III lists the prediction errors of KRR models for the

PbClBr

Random

CuCl

BOP (Mean, SD)

LiI

GRDF
 (Mean, SD)

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
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101

102
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FIG. 4. Behavior of Bayesian optimization for the LTC data in finding PbClBr, CuCl, and LiI. The best LTC is shown, along with the
number of samples (iterations) during the Bayesian optimization and random search.
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TABLE V. Performance of Bayesian optimization using the melting temperature data. Average numbers of observations required to find
AlN, SiC, and MgO are listed, which exhibit the lowest, second-lowest, and third-highest melting temperatures among the 248 compounds,
respectively. Means and SDs of the representations are considered in all models. Plus and minus signs in the first three columns show the
representations and covariances included and not included in the prediction models, respectively.

RMSE AlN SiC MgO Average

GRDF BOP Cov. (K) PI EI PI EI PI EI PI EI

− − − 273 38.9 39.1 26.0 26.6 29.4 27.7 31.4 31.1
+ − − 277 24.5 25.4 30.9 36.8 22.8 25.8 26.1 29.3
− + − 238 22.5 22.5 28.2 32.0 20.9 21.1 23.9 25.2
+ + − 278 30.4 34.3 35.4 42.6 30.7 34.0 32.2 37.0
− − + 236 27.6 27.7 52.1 53.2 28.8 28.4 36.2 36.4
+ − + 301 35.5 41.8 71.8 73.5 35.0 43.8 47.4 53.0
− + + 286 38.4 48.0 68.5 71.6 35.2 39.2 47.4 52.9
+ + + 307 50.5 68.1 69.8 84.3 41.4 48.4 53.9 66.9

Random 125 125 125 −

melting-temperature data set. In contrast to the cohesive energy
and LTC predictions, only the BOP improves the prediction
model, while the GRDF reduces its accuracy. The inclusion
of the covariances improves the prediction model only when
considering elemental representations. This may be ascribed
to the low number of training data, similarly to the case of
the LTC. The best model is composed of the means, SDs,
and covariances of elemental information and has a prediction
error of 236 K.

Finally, the performance of Bayesian optimization to find
a target compound is examined. The number of observations
required to find a target compound averaged over 200 trials is
evaluated for both Bayesian optimization and a random search.
Table V shows the number of observations required to find a
target compound by Bayesian optimization compared with that
for a random search. To evaluate the performance in finding
a wide variety of high-melting-temperature compounds, we
prepare two data sets after intentionally removing some
high-melting-temperature compounds. In this case, SiC and
MgO, with the second-highest and third-highest melting tem-
peratures, respectively, are the solutions of the optimization.

Figure 5 shows the behavior of the highest melting
temperature among the samples during Bayesian optimization

to find AlN, SiC, and MgO in comparison with a random
search. When using the best RMSE model, composed of the
mean, SD, and covariance of the elemental representations,
the average numbers of samples required to find AlN, SiC,
and MgO are Nave = 27.6, 52.1, and 28.8, respectively. When
using the second-best RMSE model, composed of the mean
and SD of the elemental and BOP representations, with an
RMSE close to that of the best model, the average numbers of
samples required to find AlN, SiC, and MgO are Nave = 22.5,
28.2, and 20.9, respectively, which are about six times smaller
than the numbers of samples required to find the targets in the
random search.

VI. CONCLUSION

In this study, we have demonstrated an approach to generate
a set of compound descriptors from simple atomic representa-
tions. It was applied to three data sets for the cohesive energy,
LTC, and experimental melting temperature. We examined
the performance of the sets of descriptors in terms of the
accuracy of the kernel ridge models and the performance of
Bayesian optimization. For the cohesive energy data set, we
obtained the best prediction model, with a prediction error of
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FIG. 5. Behavior of Bayesian optimization for the melting temperature data in finding AlN, SiC, and MgO.
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0.041 eV/atom, which is approximately equal to the “chemical
accuracy” of 1 kcal/mol (0.043 eV/atom). A prediction
model with an error of 0.071 eV/atom of the cohesive
energy is obtained for the normalized prototype structures,
which can be used for the practical purpose of searching
for as-yet-unknown structures. Also in the predictions of the
LTC and melting temperature, the present method exhibits
good performances for both the kernel ridge models and
Bayesian optimization. Although we focused on crystalline
compounds, the descriptors used in the present study can
be easily applied to noncrystalline or molecular compounds.
The present method should therefore be useful for searching
for compounds with many different chemical properties and

applications from a wide range of chemical and structural
spaces without performing exhaustive DFT calculations.
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