
PHYSICAL REVIEW B 95, 144107 (2017)

Mesoscale modeling of vacancy-mediated Si segregation near an
edge dislocation in Ni under irradiation
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We use a continuum method informed by transport coefficients computed using self-consistent mean field
theory to model vacancy-mediated diffusion of substitutional Si solutes in FCC Ni near an a

2 [11̄0](111) edge
dislocation. We perform two sequential simulations: first under equilibrium boundary conditions and then under
irradiation. The strain field around the dislocation induces heterogeneity and anisotropy in the defect transport
properties and determines the steady-state vacancy and Si distributions. At equilibrium both vacancies and Si
solutes diffuse to form Cottrell atmospheres with vacancies accumulating in the compressive region above the
dislocation core while Si segregates to the tensile region below the core. Irradiation raises the bulk vacancy
concentration, driving vacancies to flow into the dislocation core. The out-of-equilibrium vacancy fluxes drag Si
atoms towards the core, causing segregation to the compressive region, despite Si being an oversized solute in Ni.
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I. INTRODUCTION

Development of creep resistant methodologies has been
gathering attentions for the past decades [1,2], especially for
materials in nuclear reactors [3,4]. One practical and promising
way to reduce or prevent creep is introducing appropriate
solutes into materials [5–7] as precipitates, if formed, create
obstacles against the motion of high-dimensional defects like
dislocations [8]. Experimentally, the formation of precipitates
under irradiation has been observed in alloys such as Si in
Ni [9,10]. Designing alloys with improved creep resistance
requires a predictive understanding of the transport of point
defects (vacancies and self-interstitial atoms) and solutes near
sinks under irradiation.

Irradiation and stress affect the diffusion of point defects
and solute atoms in alloys. Irradiation creates collision
cascades, producing a large number of Frenkel pairs and point
defect clusters in the bulk [11,12]. This supersaturation of point
defects induces out-of-equilibrium fluxes of vacancies and
self-interstitials, which can drag solute atoms towards or away
from sinks, depending on the kinetic correlations between
solutes and point defects [13]. The stress fields generated by
sinks such as dislocations or grain boundaries can also modify
the diffusion properties of point defects and solutes [14].
Dederichs et al. [15] showed that stress can break the symmetry
of the saddle-point configurations, causing anisotropy in the
transport coefficients. Heterogeneous stress also modifies the
driving forces, which are given by the gradients of chemical
potentials [16,17].

Accurate modeling of defect diffusion requires a multiscale
approach, with data from smaller length-scale models inform-
ing larger length-scale models. Modern density functional
theory can provide energy barriers and vibrational frequencies
required to compute transition rates for atomic jump events.
Atomistic methods, like molecular dynamics and kinetic
Monte Carlo simulations, can directly model atomic transport
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processes [18]. Purge et al. studied the self-diffusion in the
cores of screw and edge dislocations in aluminum using
molecular dynamics and showed that at high temperatures
dislocation cores become effective sources or sinks for point
defects and the effect of pre-existing defects on the dislocation
mobility diminishes [19]. Sivak et al. used kinetic Monte Carlo
to model diffusion of point defects in dislocation strain fields
in body-centered cubic iron and vanadium and found that
the dislocations are more efficient sinks for self-interstitial
atoms than for vacancies [20]. However, atomistic simulations
are typically limited to modeling systems with nanometer
length scales over picosecond timescales, which prevents
them from simulating diffusion in mesoscale systems over
long times. The self-consistent mean field (SCMF) method
[21,22] or a Green function approach [23] can compute the
corresponding transport coefficients from the atomic jump
rates to bridge the gap between microscopic atomic processes
and macroscopic species transport. Phase field models [24,25]
informed with precomputed transport coefficients can simulate
diffusion processes with length scales up to millimeters over
a timescale of days. Geslin et al. [26] and Ke et al. [27]
used phase field methods to model dislocation climb based on
vacancy diffusion. Both of these studies explicitly computed
the climb rate as a function of external stress and showed the
applicability of phase field methods to model creep, however
they did not consider the effects of solutes. We use a related
mesoscale method to model the coupled diffusion of vacancies
and solute atoms, and focus on how the dislocation strain
field and irradiation modify the configuration of the solute
segregation.

We model vacancy-mediated diffusion of substitutional
Si in face-centered cubic (FCC) Ni near an a

2 [11̄0](111)
edge dislocation using precomputed transport coefficient data.
Previous studies by Garnier et al. computed the atomic jump
rates for Ni-Si alloys using density-functional theory [28] and
obtained the corresponding transport coefficients as well as
their strain derivatives using the SCMF method informed with
strain-modified jump rates [14,29]. In our model we only
consider the diffusion of vacancies and Si solutes because self-
interstitial atoms formed under irradiation diffuse quickly and
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are annihilated at sinks like dislocations or grain boundaries
on a short timescale, leaving behind a highly saturated
vacancy environment in the bulk crystal [30]. Furthermore, the
self-interstitials interact weakly with oversized substitutional
solutes like Si in Ni, compared with vacancies [31,32]. In this
paper, we first describe the details of our mesoscale model
in Sec. II along with the simulation choices in Sec. III. We
perform two sequential simulations: first at equilibrium and
second under irradiation. Section IV presents and discusses
the simulation results. Finally, Sec. V provides conclusions
and discusses extensions of the methodology.

II. MESOSCALE MODEL

In the framework of thermodynamics of irreversible pro-
cesses [17], driving forces and transport coefficients determine
the fluxes of species in a multicomponent system. Transport
coefficients linearly relate fluxes of each species to driving
forces. For vacancy-mediated diffusion of Si in the dilute limit,
gradients of chemical potentials for vacancies μV and silicon
μSi produce fluxes JV and JSi in both species [14,17],

JV = −LVV∇μV − LVSi∇μSi,

JSi = −LSiV∇μV − LSiSi∇μSi.
(1)

The transport coefficients are strain-dependent second-rank
tensors: LVV, LSiV = LVSi, and LSiSi. The off-diagonal term
LSiV is crucial to solute transport under irradiation, when
the Si atoms are dragged by the out-of-equilibrium vacancy
fluxes created by irradiation. Consequently, Si can segregate
at vacancy sinks such as dislocations, where vacancies are
annihilated but solute atoms are not.

The chemical potentials μV and μSi that provide driving
forces for the diffusion depend on the volumetric strain
and also capture the interactions between species. For dilute
vacancy and Si concentrations in the small strain limit [17],

μV = αVεv + kBT ln
(
γVcV/c0

V

)
,

μSi = αSiεv + kBT ln
(
γSicSi/c

0
Si

)
,

(2)

where kB is the Boltzmann constant, T is the temperature, γ

is the activity, c is the atomic fraction, and c0 the equilibrium
concentration. Both the vacancy and Si have isotropic elastic
dipoles (derivative of energy with respect to strain), so the
chemical potentials μV and μSi vary linearly with volumetric
strain εv with coefficients αV = 6.37 eV and αSi = −0.251 eV
[28]. The Si equilibrium concentration corresponds to the spe-
cific alloy, while c0

V = exp(−Ef /kBT ) for vacancy formation
energy Ef

v = 1.63 eV [28]. The activity coefficients γV and
γSi capture solute-vacancy interaction effects on chemical
potentials. We use a low-temperature expansion for dilute
concentrations [33,34] for γV and γSi,

γV = 1 + cSi

∑
j

Zj (e−�gj /kBT − 1),

γSi = 1 + cV

∑
j

Zj (e−�gj /kBT − 1),
(3)

TABLE I. Transport coefficients [1/(eV Å ns)] and their deriva-
tives with strains at T = 960 K from Ref. [14]. In the dilute limit,
LVV is proportional to cV while LSiV and LSiSi are proportional to
cVcSi.

AB L0
AB Lv

AB Lt
AB

VV 1.52 × 10−1cV 1.29 × 101cV −7.42 × 100cV

SiV 1.57 × 10−1cVcSi 1.33 × 101cVcSi −2.24 × 101cVcSi

SiSi 1.29 × 100cVcSi 1.09 × 102cVcSi −5.08 × 101cVcSi

with Zj sites in shell j with binding energy �gj . Silicon and
nickel vacancies have interactions out to the third shell. Garnier
et al. [28] found an attractive �g1 = −0.0996 eV (Z1 = 12),
a small �g2 = 0.0120 eV (Z2 = 6), and a repulsive �g3 =
0.0452 eV (Z3 = 24).

The strain field created by an edge dislocation induces
heterogeneity and anisotropy in defect transport coefficients.
The strain tensor ε can be decomposed into volumetric strain
εv = 1

3εv1 (where 1 is the identity matrix), tetragonal strain εt
along cube axes 〈100〉, and shear strain εs,

ε = 1
3εv1 + εt + εs. (4)

For a system with cubic symmetry, the transport coefficient
tensor LAB(ε) can be expanded as [14]

LAB = L0
AB1 + Lv

AB
1
3εv1 + Lt

ABεt + Ls
ABεs, (5)

where L0
AB is the stress-free value, and Lv

AB , Lt
AB , and Ls

AB are
the strain derivatives [15]. For the Ni-Si system, the shear strain
contribution to the atomic jump frequencies is negligible so
Ls

AB ≈ 0 [28]. For an a
2 [11̄0](111) edge dislocation in FCC Ni,

a natural coordinate system (the dislocation frame) is formed
by the Burgers vector b = a

2 [11̄0] (a is the lattice parameter for
FCC Ni), the slip plane normal n = [111], and the threading
vector t = [1̄1̄2]. Garnier et al. computed transport coefficients
of the Ni-Si-vacancy system for T = 960 K, 1060 K, and
1160 K, which show positive, zero, and negative off-diagonal
transport coefficients L0

SiV [14]. The LAB tensor component in
the b × n plane is [14]

LAB =
(

L0
AB + 1

3Lv
ABεv + 1

6Lt
ABεbb

2
3Lt

ABεbn

2
3Lt

ABεbn L0
AB + 1

3Lv
ABεv

)
,

(6)

and the values of L0
AB , Lv

AB , and Lt
AB are listed in Table I for

T = 960 K. Indeed, for the special case of Ni-Si alloy, Garnier
et al. [28] have shown an interesting result that the derivatives
of migration barriers with respect to volumetric strain ∂Em/∂εv

is a constant for all types of atomic jumps in the system. Since
the migration barriers have good linear dependences on the
volumetric strain εv in a larger strain range than that for LAB

[28,29], we use the following expression instead of Eq. (6) to
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denote LAB to achieve a better accuracy,

LAB =
(

L0
AB · exp

( − ∂Em/∂εv

kBT
εv

) + 1
6Lt

ABεbb
2
3Lt

ABεbn

2
3Lt

ABεbn L0
AB · exp

( − ∂Em/∂εv

kBT
εv

)
)

, (7)

where the migration barrier derivatives ∂Em/∂εv ≡
−2.336 eV, which is proportional to the ratio between Lv

AB

and L0
AB .

We choose a simulation temperature T = 960 K, for which
L0

SiV > 0 and a positive solute-vacancy drag is expected. In the
dilute limit, LVV is proportional to cV while LSiV and LSiSi are
proportional to cVcSi. We use isotropic elasticity theory for the
edge dislocation strain field in the plane of the dislocation line:
εv = −b sin θ/4πr , εbn = b(cos θ cos 3θ )/16πr , and εbb =
−b(4 + 3 cos 2θ ) sin θ/8πr , where r is the distance from the
dislocation, and θ is the angle from the slip plane. Therefore
near an edge dislocation, both transport coefficients and
chemical potentials are spatially dependent, and transport co-
efficients are anisotropic due to nonzero εbn and εbb. All three
strain components become singular at r = 0 and decay as r−1.

III. SIMULATION SETUP

The simulation domain is an annular region with inner
radius rin and outer radius rout in the b × n plane. Since an edge
dislocation has translational symmetry along the threading
vector t, for simplicity we project the 3D diffusion system
into a 2D plane perpendicular to t, i.e. the b × n plane. We
use a polar coordinate system centered at the dislocation,
which is natural for simulating an edge dislocation due to the
separability of the strain in r and θ . The mesoscale equations
are singular at r = 0 in the elastic strain components εv, εbb,
and εbn. We choose an inner radius rin = 2a to exclude the
dislocation core from the simulation region, ensuring that all
three strain components are below 3% to validate the small
strain approximation used in Eq. (2) and Eq. (7). We use an
outer boundary condition to capture the vacancy saturation due
to irradiation instead of allowing vacancies to be produced
or recombined throughout the simulation region. The outer
radius is chosen as rout = 14.5a (50 Å), which we find is
small enough to ignore the production and annihilation of
vacancies within the simulation region while large enough
to model the irradiation-induced solute segregation for our
simulations. However, the model employed in this work is
also suitable for larger length scale systems up to microns or
even millimeters. The variation in the strain fields and point
defect distribution requires a denser distribution of small radial
points with equal spacing of angular points; we use a uniform
mesh in the angular direction and a logarithmic mesh in the
radial direction. For an Nθ × Nr mesh, the grid point (ri,θj )
is located at ri = rin exp( i

Nr
ln(rout/rin)) for i = 0,1, . . . ,Nr

and θj = j

Nθ
2π for j = 0,1, . . . ,Nθ , with periodic boundary

conditions for θ . We use a 100 × 100 mesh for the present
simulations.

We apply appropriate boundary conditions at the inner
boundary r = rin to simulate the dislocation core interaction
with vacancies and solutes. We treat the core as a perfect
sink for vacancies by assuming that vacancies diffuse fast

enough near the sink to maintain the spatially dependent
equilibrium vacancy concentration c

EQ
V (r) in the core and at

the core boundary. The equilibrium solution for the vacancy
concentration due to the dislocation strain field is determined
by setting μV = 0 in Eq. (2),

c
EQ
V (r,θ ) = c0

V

γV
exp

(
− αVεv(r,θ )

kBT

)
, (8)

which depends on the local volumetric strain εv(r,θ ). We fix
the vacancy concentration cV at the inner boundary to be the
equilibrium vacancy concentration,

cV(rin,θ ) = c
EQ
V (rin,θ ). (9)

The vacancy activity γV depends on the local Si concentration
cSi so it must be computed adaptively during the simulations.
Since Si atoms cannot be absorbed or created by the dislocation
core, we fix the normal flux of Si at the inner boundary to be
zero,

r̂ · JSi|r=rin
= 0, (10)

where r̂ is the unit vector along the radial direction.
We perform sequential simulations of vacancy-mediated

diffusion of substitutional Si in FCC Ni near an edge
dislocation: first under equilibrium boundary conditions,
which provides initial conditions for the second simulation of
diffusion under irradiation. We apply the equilibrium vacancy
concentration as the outer boundary condition for cV,

cV(rout,θ ) = c
EQ
V (rout,θ ). (11)

The bulk Si concentration is 0.5% ensuring that Si is in the
dilute limit,

cSi(rout,θ ) = 5 × 10−3 (12)

as the outer boundary condition for cSi. For the first simulation,
vacancies and Si solutes are initially uniformly distributed
and evolve towards their equilibrium distributions in the
presence of the dislocation strain field. After the system
reaches equilibrium, we study how irradiation modifies the
diffusion behavior of vacancies and Si solutes. As irradiation
creates an oversaturation of vacancies in the bulk, we change
the outer boundary condition for vacancies to be

cV(rout,θ ) = 10−7, (13)

which is approximately one and a half orders of magnitude
larger than the equilibrium concentration. The saturated bulk
vacancy concentration can be several orders of magnitude
larger than the equilibrium value, depending on the irradiation
rate [35–37]. The outer boundary condition for Si is the same
as in the equilibrium case. We run both simulations for two
days of simulation time, which is sufficient for both vacancies
and Si to reach their steady state.

To capture the large timescale difference between vacancy
diffusion and Si diffusion, we apply adaptive time steps in
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FIG. 1. Time evolution of the vacancy distribution around an edge dislocation under equilibrium boundary conditions. Initially vacancies
are uniformly distributed with concentration cV = c0

V = 2.77 × 10−9. The vacancy distribution evolves due to the presence of the dislocation
strain field until it reaches a steady state configuration after 20 μs. At steady state, vacancies accumulate in the energetically favorable
compressive region and are depleted from the energetically unfavorable tensile region, forming a Cottrell atmosphere. We evolve the diffusion
systems for two days of simulation time, which allows both vacancies and Si to reach their steady-state configurations. (Contour plots for
vacancy concentrations use log scale relative to c0

V to capture the large spacial variation near the dislocation core without losing features in the
far-field area. Vacancy concentration outside the simulation region is set at equilibrium value to help illustrate the outer boundary condition for
vacancies.)

the simulation. Our simulations show that vacancies diffuse
quickly and reach their steady state in microseconds, while Si
atoms diffuse much slower and reach their steady state over
hours. A fixed time step has difficulty with diffusion processes
over vastly different timescales, so we use an adaptive time-
step scheme in which the time step �t is determined by:

�t = 10−1 · min

{
cV

|ċV| ,
cSi

|ċSi|
}
, (14)

where ċV and ċSi are the time derivatives of the vacancy and Si
concentrations and the minimum is computed over the entire
simulation domain. Equation (14) ensures that during each
step, the relative changes in the species concentrations do not
exceed 10%, which leads to numerically stable simulations
while the time step �t increases with time. Initially, the
vacancy concentration changes determines �t , and after va-
cancies reach their steady state, the time step �t is dominated
by the slowly changing Si concentration. All of the simulation
has been implemented using FiPy [38], a finite volume partial
differential equation solver, developed mainly for phase-field
simulations.

IV. SIMULATION RESULTS

Figure 1 shows that under equilibrium boundary conditions
vacancies diffuse to form a Cottrell atmosphere at steady state.
Even though both species have an initial uniform distribution,
the heterogeneous volumetric strain field created by the
dislocation induces spatial variation in the chemical potentials,

driving vacancies and solutes to diffuse. For vacancies, since
αV > 0, the chemical potential gradient drives the vacancies
from the tensile region towards the compressive region,
where they accumulate. At steady state, when the vacancy
concentration profile stops evolving with time, a Cottrell
atmosphere is formed around the dislocation with vacancy
segregation above the core and depletion of vacancies below
the core.

Figure 2 shows that around an edge dislocation the Si con-
centration profile also evolves towards a Cottrell atmosphere
but with segregation in the tensile region and depletion in
the compressive region and that the evolution process takes
longer than for vacancies. Similar to the vacancy case, the
strain dependent term in the chemical potential αSiεv influences
the steady-state Si distribution at equilibrium. However, since
Si is an oversized solute in Ni αSi < 0, the tensile region is
energetically favored and therefore, the Si atoms segregate
in the tensile region and are depleted from the compressive
region. The Si concentration profile reaches its steady state
after 10 hours, which is nine orders of magnitudes slower
than the vacancy evolution. In the dilute limit, the diffusivity
DA for a species A, is related to the corresponding transport
coefficient LAA,

DA = lim
cA→0

	kBT

cA

LAA, (15)

for atomic volume 	 and concentration cA; thus, the Si
diffusivity is proportional to the vacancy concentration while
the vacancy diffusivity is not. After vacancies reach their
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FIG. 2. Time evolution of the Si distribution around an edge dislocation under equilibrium boundary conditions. The Si profile also starts
from a uniform distribution with Si concentration cSi = c0

Si = 0.5% and evolves due to dislocation strain fields. The Si atoms diffuse much
slower than vacancies and reach the steady-state configuration after 10 hours. Similar to the vacancy case, the Si atoms form a Cottrell
atmosphere at steady state segregating to the tensile region and are depleted from the compressive region.

steady-state configuration, the depleted vacancy concentration
below the core slows the transport of Si atoms; this creates
the intermediate state where Si atoms are concentrated in
two lobe-shaped regions just below the slip plane on the

edge of the vacancy depletion region. The Si atoms in these
lobe-shaped regions continue to diffuse slowly into the vacancy
depletion region and by t = 10 h have segregated below the
core.

FIG. 3. Time evolution of the vacancy distribution near an edge dislocation under irradiation. At t = 0 ns, both species are at equilibrium
and they evolve due to the presence of irradiation. Irradiation produces a highly saturated vacancy environment in the far-field region, causing
a large number of vacancies to flow into the simulation region. At steady state, the tensile region is no longer depleted of vacancies and there
is a large vacancy concentration gradient in the radial direction pointing from the outer boundary near the bottom of the simulation region to
the inner core; c.f., Fig. 5.
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FIG. 4. Time evolution of solute (Si) concentration profile under irradiation, starting from the equilibrium Si distribution. Under irradiation,
vacancy drag on Si atoms dominates the Si flux field causing Si to move toward the compressive region above the core. At steady state, more
Si atoms segregate above the core than below the core, with the maximum Si concentration approaching twice the far field Si concentration
c0

Si = 0.5%.

Figure 3 shows as irradiation raises the vacancy con-
centration in the outer boundary, vacancies flow towards
the dislocation core. At t = 0 ns, irradiation produces a
highly saturated vacancy environment in bulk, while vacancies
within the simulation region are still at the equilibrium
distribution. Vacancies flow from the outer boundary towards
the dislocation core. At 20 μs vacancies reach their steady-state
configuration, where the depletion region below the core has
disappeared and the entire simulation region is oversaturated
with vacancies. At steady state, the vacancy driving force
∇μV does not vanish and vacancies continue to flow to the
core, though ċV. This is shown in Fig. 4 which shows that
at 20 μs, there are nonzero vacancy fluxes towards the core
from all directions even though vacancies have reached their
steady-state distribution.

Figure 4 shows that irradiation generates an unexpected
enrichment of Si in the compressive region above the core,
despite the fact that Si is oversized in FCC Ni. Since both
the inner and outer boundary conditions for Si are the same
as in the equilibrium case, the evolution of Si distribution
under irradiation is completely due to the out-of-equilibrium
vacancy fluxes. The positive off-diagonal transport coeffi-
cient LSiV linearly relates the Si flux JSi to the vacancy
driving force ∇μV, which drags Si solutes towards the
inner core. Since Si atoms cannot be absorbed by the core,
they accumulate around the core, creating a solute chemical
potential gradient ∇μSi that drives Si away from the core.
At steady state, both driving forces must be balanced so that
there is no Si flux along the radial direction. The vacancy
fluxes JV are larger in the compressive region (as Fig. 4
shows) and thus drag more Si atoms to segregate above the
core.

Figures 5(a) and 5(b) show that at the beginning of the
simulation under equilibrium conditions, the heterogeneous
strain fields around an edge dislocation induce complex
flow patterns for homogeneously distributed vacancies and
Si solutes. The vacancies and Si are uniformly distributed
initially. When the dislocation is introduced, the initial fluxes
of both species show heterogeneity due to spatial variation of
the chemical potential created by nonuniform volumetric strain
εv(r), as well as anisotropy due to the effect of nonzero εbb

and εbn on the transport coefficients. Vacancies flow from the
tensile region below the core to the compressive region above
the core, which leads to the steady-state Cottrell atmosphere
vacancy distribution shown in the last subfigure of Fig. 1. The
Si solutes move in the opposite direction, which explains that
Si atoms segregate to the tensile region and are depleted from
the compressive region.

Figures 5(c) and 5(d) show that at 20 μs of irradiation a
vacancy flux field flows into the inner boundary, which drags
Si solutes towards the dislocation core. Under irradiation,
vacancies reach the steady-state configuration at 20 μs while
Si still appears to be at the equilibrium distribution. Irradiation
modifies the flow patterns of both vacancies and Si. The dif-
ference between the highly saturated vacancy concentration in
the far-field region and the equilibrium vacancy concentration
at the inner core leads to the steady-state vacancy flux field
directed toward the core. The vacancy fluxes have larger
magnitudes in the compressive region above the core and
relatively smaller magnitudes in the tensile region below the
core. The directions and relative magnitudes of the Si fluxes
are similar to that of the vacancies, suggesting that the flow of
Si atoms is dominated by the positive vacancy drag LSiV∇μV

(L0
SiV > 0). The Si atoms are dragged by vacancies towards
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(a) JV at the introduction of the dislocation (b) JSi at the introduction of the dislocation

(c) JV at 20 µs of irradiation (d) JSi at 20 µs of irradiation

FIG. 5. Flow streams around an edge dislocation for (a) vacancies at the introduction of the dislocation, (b) Si at the introduction of the
dislocation, (c) vacancies at 20 μs after irradiation, and (d) Si at 20 μs after irradiation. Color coding indicates the magnitude of fluxes with

units: [1/(Å
2

ns)]. At the beginning of the equilibrium simulation when both species are uniformly distributed, vacancies flow from the tensile
region below the core to the compressive region above the core, while Si atoms move in the opposite way. The anisotropy of both fluxes comes
from the anisotropy of transport coefficients and the heterogeneity of volumetric strain which influences the chemical potentials. At 20 μs of
irradiation, vacancies reach the steady-state configuration while Si stays at the equilibrium distribution. Irradiation creates a vacancy flux field
flowing into the core from all directions, with larger flux magnitudes in the compressive region than in the tensile region. The Si fluxes show
similar flow pattern to that of the vacancy.

the sink and accumulate around the dislocation core, which
explains the out-of-equilibrium Si segregation. More Si atoms
segregate to the compressive region where the vacancy fluxes
have larger magnitudes than to the tensile region, despite the
fact that they are oversized in Ni.

V. CONCLUSIONS

We use a mesoscale model to simulate vacancy-mediated
diffusion of substitutional Si solutes in FCC Ni near a
[11̄0](111) edge dislocation: first under equilibrium conditions
and then under irradiation. The dislocation strain field and
irradiation play crucial roles in determining point defect and
solute diffusion behavior. Near the edge dislocation, the spatial
variation of volumetric strain εv causes heterogeneity in the
defect transport coefficients and chemical potentials, with the
transport coefficients also being anisotropic due to nonzero
εbb and εbn. These effects create complex vacancy and Si

fluxes even though both species are uniformly distributed at
the beginning of the simulation and determine the equilibrium
distributions. In the presence of the dislocation strain field,
both vacancies and Si solutes diffuse to form a Cottrell atmo-
sphere with vacancies segregating to the compressive region
above the core and Si segregating to the tensile region below
the core. Irradiation raises the bulk vacancy concentration,
driving vacancies to flow into the dislocation core, where the
equilibrium vacancy concentration is imposed (perfect sink
assumption). Although irradiation does not directly modify
the solute distribution, the out-of-equilibrium steady-state
vacancy flux drags Si atoms towards the dislocation core
due to the positive coupling between Si and vacancies at the
simulation temperature T = 960 K. This results in segregation
in the compressive region, despite the fact that Si is an
oversized solute in Ni.

Several approximations have been used in the current study.
First of all, we assume both species are in the dilute limit, at
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which only vacancy-solute pairs are considered in the cluster
expansion and the SCMF solution is accurate [14,22]. In
our system, the vacancy concentration cV is below 10−7 and
the Si concentration cSi is around 0.5%, in which scenario
we can estimate the contribution from three or more-body
vacancy-Si clusters is roughly 1% of that from vacancy-Si
pairs. Second, we use a small strain limit to validate the
linearities in Eq. (2) and Eq. (7). In our simulation region,
the inner radius is picked so that the volumetric strain is below
3% and the tetragonal component along cube axes 〈100〉 is
below 1%, which guarantees that the migration barrier Em and
transport coefficients LAB have good linear dependences on
strains [28,29]. Last, we apply inner boundary conditions for
both species rather than simulating the dislocation core region
(r < rin). This choice is partly motivated by the inaccuracy
of using the current mesoscale method to model the highly
distorted core region. On the other hand, we believe that
these boundary conditions are reasonable approximations. The
equilibrium boundary condition for vacancies is equivalent
to treating the dislocation as a perfect sink, which has been
used in prior works [26,27] and proven to be valid. The zero
normal-flux boundary condition is to maintain the conservation
law of Si atoms, considering the fact that Si atoms cannot be
created or be annihilated at an isolated dislocation. This model

ignores the effects from pipe diffusion and dislocation motion.
To cover all these effects, an improvement can be done by
developing an atomistic model, increasing accuracy with a
decrease in efficiency, to explicitly simulate the dislocation
core, and coupled with the present mesoscale simulation at the
core boundary.

In this study we have focused on a specific diffusion process
that leads to irradiation-driven Si segregation around an edge
dislocation in Ni, but the multiscale methodology has other
applications. The Onsager transport equations [Eq. (1)] as well
as the expressions for species chemical potentials [Eq. (2)]
and transport coefficients [Eq. (5)] can be applied to describe
diffusion in other defect systems such as free surfaces or
grain boundaries. Moreover, the continuum model can be
extended to model systems with larger length scales up to
millimeters, and simulate more complex diffusion processes,
such as solutes segregating to extended defects including
dislocation loops, grain boundaries, and interfaces.
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