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Dissipation in mesoscale superfluids
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We investigate the maximum speed at which a driven superfluid can flow through a narrow constriction with a
size on the order of the healing length. Considering dissipation via the thermal nucleation of quantized vortices,
we calculate the critical velocity for superfluid 4He and ultracold atomtronic circuits, identify fundamental length,
and velocity scales, and are thus able to present results obtained in widely different temperature and density ranges
in a universal framework. For ultranarrow channels, we predict a drastic reduction in the critical velocity as the
energy barrier for flow reducing thermally activated phase slip fluctuations is suppressed.
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The flow of dissipationless atomic supercurrents in neutral
superfluids is one of the most dramatic manifestations of
macroscopic quantum coherence [1–3], with applications to
matter wave interferometry [4–6]. Recently, there has been
increased interest in dimensionally confined superfluids, due
to progress in manufacturing nanoscale channels and fountain
effect devices for studying the flow of superfluid helium [7–24]
and the availability of trapped nonequilibrium atomic Bose-
Einstein condensates [25–39]. Common to these experiments
in vastly different density and interaction regimes is an
observed increase in dissipation for highly confined systems.

In general, superflow is possible at speeds less than a
superfluid critical velocity set by the Landau criterion vc �
min ε(p)/p below which there are no accessible excitations
ε(p) with momentum p [40]. Among the different types of
excitations in superfluids, quantized vortices [1,41–44] give
rise to the smallest vc. For flow through a cylindrical channel,
if the total kinetic energy is converted into vortex rings with
the size a of the constriction, the Landau criterion predicts a
critical velocity vc,F ∼ (κ/a) ln(a/ξ0) [42], where κ = h/m is
the quantum of circulation for condensed bosons of mass m

and ξ0 is a characteristic length scale of the superfluid. This
prediction (due to Feynman) has been born out by nearly a
half-century worth of superfluid massflow observations with
temperature independent critical velocities [2,45]. However,
it must ultimately break down as the constriction radius ap-
proaches ξ0. Moreover, any observed temperature dependence
of vc can only be described by the existence of an energy
activation barrier for the creation of vortices.

In this Rapid Communication, we consider confined
mesoscale superflow through quasi-one-dimensional (1D)
constrictions with a characteristic size a approaching the
temperature (T ) dependent correlation (healing) length ξ (T ),
and find a strong increase in dissipation when a/ξ (T )
approaches one. Going beyond previous studies [2,36], we
(i) quantitatively predict the temperature, size, and drive
dependence of the critical velocity without adjustable param-
eters, (ii) use a paradigmatic orifice geometry to model the
enhancement of vortex creation in spatially inhomogeneous
flow near a sharp boundary, which significantly lowers critical
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velocities, (iii) point out the universality between high-density
4He [8,18] and low-density atomic condensates [25,27,28,36],
by characterizing constrictions via the dimensionless length
a/ξ0 and measuring velocities in units of v0 = κ/(4πξ0), and
(iv) describe the crossover to the purely 1D limit, a Luttinger
liquid in the thermal regime. Predictions are expected to be
logarithmically accurate in the critical regime while correc-
tions of order unity may arise when extrapolating to lower T .

We begin by considering superflow between reservoirs with
a chemical potential difference �μ (pressure difference �P )
connected by prototypical geometric constrictions with either
a “channel” or “orifice” shape as seen in Fig. 1. Channel
flow is spatially homogeneous with a constant superfluid
velocity vs that is representative of flow through long narrow
cylindrical pores. Flow through an orifice can be studied by
considering a hyperbolic surface of revolution connecting two
bulk reservoirs where the potential flow problem can be solved
analytically [46]. The solution is characterized by divergent
flow near the boundaries as seen in Fig. 1(c), where the creation
of line vortices (Fig. 2, left) is facilitated. Ring vortices in the
center of the orifice (Fig. 2, right) are not strongly affected by
the spatial dependence of flow near the boundaries.

The energy cost for creating a quantized vortex is due to
(i) the kinetic energy of circular superflow around the core
region, and (ii) the loss of condensation energy within the
core [41]. For a vortex ring of radius R (length L = 2πR)
or a line vortex (length L) in a constriction of radius a, the
combination of these effects yields

Etension = L
4π

ρsκ
2

(
ln

�

ξ
+ α

)
, (1)

where � = a for line vortices, � = R for ring vortices, and
the constant α depends of the vortex type and model of the
core. Solving the Gross-Pitaevski (GP) equation, one finds that
α = 0.385 for line vortices [47] and α = ln 8 − 2 + 0.385 �
0.464 for ring vortices [48]. Obtaining a more accurate model
of the vortex core is possible via numerical simulations in
low [49] and high density superfluids [50,51]. The results are
consistent with the GP value of α and show only weak density
dependence. The reduction of the kinetic energy of superflow
due to interaction with the vortex is

Eflow = κρs

∫∫
vs · dS, (2)
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FIG. 1. (a) A current of superfluid atoms driven through a long
channel with a homogeneous (radius independent) flow profile.
(b) Flow through a narrow orifice formed from the surface of
revolution of a hyperbola around the flow axis. (c) Velocity field
vs for the potential flow though an orifice in units of the average
flow speed vJ . The flow direction is indicated by black lines, with the
magnitude diverging as a power law at the orifice boundary [46].

where the integral is over the area bounded by the vortex
ring, or between the vortex line and boundary. The total
energy is E = Etension + Eflow. To unify the description of
driven quantum fluids, we employ the Josephson relation
in 3D [52] κ2ρs(T )ξ (T ) = 4π2kBTc, where ρs(T ) is the
superfluid mass density for a transition temperature Tc and
ξ (T ) = ξ0(1 − T/Tc)−ν and ν is the correlation length critical
exponent. We numerically checked that the Josephson relation
is valid to within 20% down to T/Tc ≈ 0.7, for details see
Ref. [46]. For flow through an orifice with speed vJ , we obtain
the energy barrier for a line vortex located a distance x from

ring vortices

a

R

line vortices

a
x

FIG. 2. Two vortex types that can be nucleated in a confined
geometry. (Left) A line vortex located a distance x from the center
of the orifice or channel. The vortex line begins and ends on the
boundary, with the flow circulating around it. (Right) A vortex line
can detach from the boundary and close on itself forming a vortex
ring of radius R. Arrows indicate the circulation of quantized flow
around the vortex core.

its center:

βcEline(x) = 2π
a

ξ

√
1 −

(
x

a

)2[
ln

(
1 − |x|

a

)
+ ln

a

ξ
+ α

]

− vJ

v0

(
a

ξ

)2
π2ξ

2ξ0

(
1 − x

a

)
(3)

and that for a centered ring vortex with radius R:

βcEring(R) = 2π2 R

ξ

(
ln

R

ξ
+ α

)

− vJ

v0

(
a

ξ

)2
π2ξ

ξ0

⎡
⎣1 −

√
1 −

(
R

a

)2
⎤
⎦, (4)

where βc = 1/(kBTc). From these expressions (and those for
channel flow derived in the Supplemental Material [46]) we
observe the emergence of natural length (ξ0) and velocity
[v0 = κ/(4πξ0)] scales that are essential for constructing a
universal theory of dissipative superfluids.

The velocity of superflow at finite T is limited by the
thermal nucleation of quantized vortices which traverse the
flow lines leading to a change of phase of the superfluid
order parameter by ±2π (see, e.g., Ref. [53]). The decay of a
persistent current is then governed by vortex energetics via

� = �0[e−βEmax(+vJ ) − e−βEmax(−vJ )], (5)

where h� = �μ = m�P/ρs drives total mass flow
J = ρs

∫∫
vs · dS ≡ πa2ρsvJ and Emax ≡ maxL E is the sad-

dle point of the vortex excitation energy over the domain
of the channel or orifice. The difference of rates in Eq. (5)
corresponds to the contributions from vortices which reduce
and increase the superflow, respectively. The attempt rate �0 is
related to the phase space available for vortex excitations and
is geometry dependent:

�0 = 1

τGL

La

ξ 2

{ πa
ξ

vortex ring
2π vortex line

, (6)

with τ−1
GL = 16kB(Tc − T )/h the Ginzburg-Landau relaxation

rate. The decay rate in Eq. (5) contains the main contribution
from integration over zero modes, corresponding to a trans-
lation of the vortex with action Sv in both time and space. In
addition, there are Jacobians due to the change of coordinates
from the superfluid phase � to the radius R of the vortex ring
or the location x of the vortex line, and a contribution from
integration over the negative eigenvalue mode. As previously
discussed [54,55], the Jacobian is

√
Sv/2π for the zero modes,

and the negative eigenvalue mode contributes a factor of
similar magnitude. We have verified that the combination of
all these factors is of order unity and thus neglect them. Other
modifications to the pre-factor in Eq. (5) could result when
considering the microscopic details of dynamics and vortex
evolution inside the constriction [56–61] and would introduce
quantitative logarithmic corrections to the nucleation theory.

Evaluation of the critical velocity from Eq. (5) proceeds
as follows. For a given flow profile and vortex type, we
maximize the vortex energy as a function of ±vJ over
the spatial domain of possible configurations. This leads to
critical vortex positions x∗(±vJ ) ∈ (−a,a) for line vortices
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FIG. 3. Upper and lower bounds on the critical velocity are
indicated by lines from the channel (L = 103ξ0, blue) and orifice
(L = 10ξ0, red) flow profiles for both ring (dashed) and line vortices
(solid) at T = 0.7Tc, h̄� = 0.1kBTc, and ν � 0.6717. Symbols
show experimental massflow results for superfluid helium [18,45]
and Bose-Einstein condensates [25,27,36]. Details are provided in
the Supplemental Material [46] where we discuss the relationship
between the zero temperature healing length and ξ0 in the weakly
interacting Bose gas [62].

and critical radii R∗(±vJ ) ∈ (0,a) for ring vortices. Vortices
with a length smaller than the critical one will tend to collapse,
or anihilate at boundaries, while those larger can proliferate,
leading to dissipation. For a fixed constriction radius a/ξ0,
temperature T/Tc and external drive potential �0/�, Eq. (5)
can be numerically solved self-consistently giving the critical
velocity when vJ = vc.

When a/ξ0 	 1, the boundaries of the constriction no
longer play an important role and only uniform channel
flow is relevant. Due to the resulting large critical velocities,
energy increasing fluctuations can be neglected and the saddle
point energies can be found analytically. The resulting pair of
transcendental equations

R∗

ξ
= 1

π2

T

Tc

ln �0
�

ln R∗
ξ

+ α − 1
, (7)

vc

v0
= ξ0

R∗

(
ln

R∗

ξ
+ α + 1

)
(8)

can be solved numerically for R∗ and vc [46].
Our main results for the critical velocity in both the channel

and orifice flow profiles are shown as lines in Fig. 3. When
employing the scales v0 and ξ0, mass flow measurements
in drastically different density, interaction, and temperature
regimes are well bounded by the vortex nucleation theory, and
experiments on confined superfluid 4He and low-dimensional
Bose-Einstein condensates can be directly compared. For both
flow profiles, line vortices have lower activation energies than
ring vortices, giving smaller velocities and a lower bound on
vc. An absolute upper bound is provided by ring vortices in the
orifice flow profile. In the limit a 	 ξ0, where the geometry
approaches that of bulk flow, we recover the intrinsic superfluid
velocity due to the nucleation of vortex rings analyzed by
Langer and Fisher [43]. For 4He, we have used a vortex core
size determined from specific heat measurements [46,63], and
have thus been able to correct a long-standing inconsistency

of 27 orders of magnitude in the applied pressure difference
employed in Ref. [43] to obtain agreement with experiments.
For tight constrictions, both the lower and upper bound turn
towards smaller velocities indicative of enhanced dissipation.

While details of additional experiments are discussed in
the Supplemental Material [46], Fig. 3 includes data from
two 4He studies whose critical velocities display a clear
temperature dependence—a signature of activated behavior.
Harrison et al. [45] measured flow in networks of imperfect
pores of varying radii, which should provide a lower bound
on flow speeds, behavior consistent with our results. Recent
measurements on single nanopores by Duc et al. [18] exhibit
drastically different behavior: large critical velocities that
decrease as the radius approaches the correlation length. While
the microscopic details of the flow profiles are not known, vc

for the narrowest pore is bounded by the channel prediction,
consistent with the reported aspect ratio of 10:1 and suggesting
a crossover to strongly dissipative quasi-1D flow.

Figure 3 also includes results from analogous neutral
atomtronic circuits using utracold bosonic and fermionic
condensates [3]. Here, the “orifice” can be replaced with
a quantum point contact between two resonantly coupled
Fermi gases [37] or channel-like flow can be driven by the
discharge of an bosonic atom capacitor [29] or by dragging
an optical potential through a simply [27,36] or multiply
connected [28,30,33] Bose-Einstein condensate. For the latter,
our nucleation theory yields vc ≈ 100 μm s−1 for the drag and
vc ≈ 1 mm s−1 for the toroidal flow in remarkable agreement
with measurements and more microscopic theoretical analysis
[33,35,64].

Intuition for the dissipation in narrow pores with radius
a ≈ ξ can be gained by considering the unoptimized energy
of line vortices with position x = 0 at the center of the channel.
This approximation is qualitatively correct since narrow pores
can be expected to be in the channel flow regime with line
vortex activation energies comparable to temperature. The
vortex energy is found from the sum of Eqs. (1) and (2) with
x = 0:

βcEline(x = 0) = 2π
a

ξ

(
ln

a

ξ
+ α

)
− π2ξ

2ξ0

vs

v0

(
a

ξ

)2

, (9)

with resulting critical velocity

vc

v0
= 2

π2

ξξ0

a2

T

Tc

sinh−1

{
1

64π

ξ 2

aL

(
1 − T

Tc

)−1

× exp

[
2πa

ξ

Tc

T

(
ln

a

ξ
+ α

)]}
. (10)

As a/ξ → 1+, the activation energy in the exponent of Eq. (10)
decreases rapidly, and the small multiplier of the exponential is
no longer compensated. As a consequence, the critical velocity
drops by several orders of magnitude.

In the quasi-1D (a � ξ ) limit, there are no transverse
degrees of freedom, and the system can be described in
analogy to fluctuating superconducting wires by computing
the resistance due to thermally activated phase slips [65,66].
Translated into the language of 1D superfluidity, the phase slip
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(b)

(a)

FIG. 4. (a) The critical velocity in a quasi-1D superfluid channel
of length L = 103ξ0 as a function of radius for T/Tc = 3/4,
h� = kBTc, and ξ (3Tc/4) � 2.5ξ0. The solid and dashed blue lines
extending over the full domain of the plot were computed via the
vortex nucleation theory, while the green line is for 1D, Eq. (11).
(b) The temperature dependence of the critical velocity for a channel
(L = 103ξ0) and orifice (L = 10ξ0) with a = 10ξ0. As T → Tc, the
correlation length ξ diverges, thus reducing the effective channel
width a/ξ (T ) and lowering vc. The shaded gray bars demarcates the
radii where 1 � a/ξ (T ) � 3/2 and in this region the upper bound
due to ring vortices is no longer expected to be relevant.

energy is (see Ref. [46])

βcE1D = π

(
a

ξ

)2( 4

3
√

2
− π

ξ

ξ0

vs

v0

)
. (11)

For line vortices in the channel flow profile, the tension scales
with (a/ξ )2 in contrast to the linear dependence in Eq. (9).
This difference is unimportant at the crossover a/ξ ≈ 1 and
the critical velocity from the nucleation of line vortices and the
1D theory should be in agreement as demonstrated in Fig. 4(a).
The lower bound on the critical velocity due to line vortices
drops three orders of magnitude, and crosses over to the
1D result for single mode channels. An analogous crossover
from the linear to nonlinear Josephson junction regime has
been observed in superflow through an array of orifices
near Tc [8].

Figure 4(b) shows the T dependence of vc for constrictions
with a/ξ0 = 10 and we observe a reduction as T → Tc.
Qualitatively, this is due to the fact that ξ (T ) increases as
T → Tc, thus reducing the ratio a/ξ (T ), which determines
the effective constriction radius. Experiments on 4He have
reported an apparent temperature power-law scaling of vc [18],
which we have confirmed is the spurious result of an interplay
between the thermal activation energy and vortex attempt rate.
As T → 0, vortices will no longer be thermally activated and
dissipation will be dominated by the nucleation of quantum
phase slips [67,68].

In summary, we considered two characteristic confined
flow geometries and the thermal activation of representative
low energy excitations, ring and line vortices, inside them.
The resulting bounds they place on the critical velocity of
neutral superflow through narrow constrictions agree with
a large body of measurements on confined superfluid 4He
and low-dimensional ultracold gases. As the confinement
radius approaches the healing length, we find an exponential
suppression of the critical velocity of three orders of
magnitude. The experimental observation of this dramatic
reduction would be a clear signal of entering the strongly
fluctuating mesoscale regime.
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