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Controlling Majorana states in topologically inhomogeneous superconductors
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Majorana bound states have been recently observed at the boundaries of one-dimensional topological
superconductors. Yet, controlling the localization of the Majorana states, which is essential to the realization of
any topological quantum device, is an ongoing challenge. To this end, we introduce a mechanism which can
break a topologically homogeneous state via the formation of topological domains, and which can be exploited
to control the position of Majorana states. We found, in fact, that in the presence of amplitude-modulated fields,
contiguous magnetic domains can become topologically inequivalent and, as a consequence, Majorana states can
be pinned to the domain walls of the magnetic structure. The formation of topological domains and the position
of Majorana states can be externally controlled by tuning an applied field (e.g., magnetic or gate).
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Introduction. The experimental observation of Majorana
bound states (MBS) [1] in topological superconductors [2–5]
marks the first milestone on the pathway toward topological
quantum computation [6]. In particular, topological supercon-
ductivity has been observed in proximized nanowires with
strong spin-orbit coupling (SOC) [7–12], and in ferromagnetic
atomic chains on the surface of a superconductor [13–15].
In general, conventional superconductivity can be turned
topological by the presence of a uniform magnetic field and
intrinsic SOC [16,17], an intrinsic ferromagnetic order and
SOC [18], or by a noncollinear spatially dependent magnetic
field [19–22]. In particular, a very promising system is repre-
sented by chains of Yu-Shiba-Rusinov states [23–25] induced
by magnetic atoms on the surface of conventional supercon-
ductors with ferromagnetic [18], antiferromagnetic [26], or
helimagnetic textures [22,27–36].

Nevertheless, the implementation of a reliable braiding
scheme [37–39], which is essential to the realization of
topological quantum devices, is an ongoing challenge. A
necessary prerequisite is the ability to control the position
of MBS, which are localized at the boundaries between
topologically trivial and nontrivial domains. In the proposed
schemes [16,17,19–21], these boundaries are determined by
the experimental setup and geometry, and can be manipulated
via a gradient of the gate voltage [37] or magnetic field [40],
via gate-tunable valves [41], via the magnetic flux in Josephson
junctions [42], via external magnetic fields in the presence of
an helimagnetic order and SOC [43], or by controlling the
magnetic texture in two-dimensional electron gases [44].

In this Rapid Communication, we introduce a physical
mechanism which can be exploited to locally break a homoge-
neous superconducting state into inhomogeneous topological
domains and to control the position of MBS. We found, in
fact, that in the presence of amplitude-modulated magnetic
fields, the superconducting gap and the topological invariant
strongly depends on the phase offset ϕ of the periodic texture.
Consequently, contiguous magnetic domains can become
topologically inequivalent and MBS can be pinned to the
domain walls of the magnetic structure. This leads to the
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emergence of a topologically inhomogeneous state charac-
terized by contiguous inequivalent domains, in an otherwise
homogeneous superconducting state. The main advantage is
that the formation of topological domains, and thus the position
of MBS, can be externally controlled by tuning an applied
uniform field. Differently from other proposals [37–40], this
mechanism does not rely on the manipulation of gradients of
the field intensity.

The model. Noninteracting s-wave superconductors with
periodically amplitude-modulated magnetic (Zeeman) fields
can be described by a Bogoliubov–de Gennes (BdG) tight-
binding Hamiltonian in the form

H = 1

2

∑
n

�†
n ·

[
2t−μ+bn · σ ıσy�

(iσy�)† −(2t − μ + bn · σ ∗)

]
· �n

− 1

2
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n ·
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]
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where �
†
n = [c†n↑,c

†
n↓,cn↑,cn↓] is the Nambu spinor with cn↑↓

and c
†
n↑↓ the electron annihilation and creation operators, σ =

[σx,σy,σz] the vector of Pauli matrices, μ the chemical poten-
tial, t the hopping parameter, � = 1 + iλσy with λ the intrinsic
SOC, � the superconducting gap, and bn the magnetic field on
the site rn. We assume for the sake of simplicity that the field
modulation is commensurate with the lattice (i.e., it has spatial
frequency θ = 2πp/q with p,q ∈ Z coprimes). Topologically
nontrivial gapped phases are realized in the presence of either
a collinear magnetic field (constant direction) with intrinsic
SOC λ �= 0 [16,17] or of a noncollinear field (nonconstant
direction) with λ=0 [19,21,22], or both [20]. In the second
case, in fact, the variation of the field direction is unitarily
equivalent to an effective SOC [45]. In order to see this, one
can rotate the z axis of the spin basis at each lattice site to the
field direction via a unitary transformation [19,46] Un. If the
SOC vanishes, in fact, the transformed BdG Hamiltonian [19]
coincides with Hamiltonian (1) after the substitutions

� → �n = U †
nUn+1, bn · σ → bnσz. (2)

This mandates the presence of an effective collinear Zeeman
field along the z axis with the same amplitude as the original
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field, a renormalized kinetic term (diagonal terms of �n),
and an effective SOC (off-diagonal terms of �n) which is
nonzero if the original field bn is noncollinear [19]. In the
presence of a finite magnetic field and SOC (effective or
intrinsic), Hamiltonian (1) exhibits gapped phases which break
time-reversal and chiral symmetries. These are the necessary
ingredients which allow the realization of s-wave topological
superconductors [16,17,19,21] characterized by a nontrivial
Z2 topological invariant. This invariant coincides with the
fermion parity [1,47,48] P = ∏

k=−k sgn[F (k)], defined in
terms of the Pfaffians F (k) = Pf[iτxH (k)] at the time-reversal
invariant momenta k = −k, being H (k) the BdG Hamiltonian
in momentum space and τx the first Pauli matrix in particle-
hole space. In the low-energy sector, this system is equivalent
to a p-wave topological superconductor [1,16,17,19].

Dependence on the phase offset. In the infinite-chain
limit (i.e., neglecting finite-size effects) and for vanishing
SOC (λ = 0), the Hamiltonian (1) is invariant under global
rotations of the spin basis or, equivalently, of the Zeeman
field. In order to see this, consider the case of a helical field
with direction uniformly varying within the plane yz, i.e.,
bn = b[sin (nθ + ϕ)ŷ + cos (nθ + ϕ)ẑ] where θ is the angular
variation of the field direction between adjacent sites, and ϕ

the phase offset describing the boundary offset of the magnetic
texture. A global rotation of the spin basis corresponds to
a variation of the phase offset. Moreover, in this case the
transformed Hamiltonian obtained via Eq. (2) does not depend
explicitly on the phase offset ϕ, since both the effective
Zeeman and SOC terms become uniform, i.e., bnẑ = bẑ and
�n = U

†
nUn+1 = cos (θ/2) + iσx sin (θ/2) (see Supplemental

Material [49]). The phase offset ϕ is thus immaterial, since
it can be absorbed by a unitary transformation. Hence, the
system exhibits a global U (1) gauge invariance with respect to
the phase offset ϕ as a consequence of the more general SO(3)
global spin-rotational symmetry. Thus, in the case of circular
helical fields without SOC, the bulk electronic spectrum does
not depend on the boundary offset of the magnetic texture
(except for energy contributions at the edges of the chain).

Nevertheless, if the SOC vanishes, an amplitude-modulated
field can break the phase-offset invariance even without
breaking the full spin-rotational symmetry. Consider, e.g., a
noncollinear amplitude/modulated field realized via an el-
liptical helical field bn = by sin (nθ + ϕ)ŷ + bz cos (nθ + ϕ)ẑ,
with by �= bz, shown in Fig. 1(a), or via a circular helical
field superimposed with a coplanar uniform field bn =
byz[sin (nθ + ϕ)ŷ + cos (nθ + ϕ)ẑ] + b0 with b0 in the yz

plane, shown in Fig. 1(b). As one can verify, in these cases
the field amplitude is not uniform, but periodically modulated
along the chain as bn =

√
〈b2〉 + δb2 cos [j (nθ + ϕ)] with

j = 2 and 1, respectively, in the case of the elliptical and
circular helical field. Hence the boundary phase offset ϕ

cannot be absorbed by unitary rotations, since the phase
offset affects not only the direction, but also the amplitude
modulation of the field. Analogously, one can consider a
collinear and amplitude/modulated magnetic field, e.g., bn =
[〈b〉 + δb cos (nθ + ϕ)]ẑ, shown in Fig. 1(c), with a finite SOC
� = 1 + λiσy . Notice that on a discrete lattice, the field texture
is not invariant under translations n → n − ϕ/θ unless ϕ/θ is
an integer. Hence, the phase offset cannot be absorbed by
spatial translations in the general case.

FIG. 1. Topologically inhomogeneous superconductors can be
realized in superconducting systems with amplitude-modulated mag-
netic fields, e.g., (a) elliptical helical field, (b) circular helical field
superimposed with an externally applied field b0, or (c) collinear
amplitude-modulated field with intrinsic SOC. The field amplitude
bn is not constant, but periodically modulated along the chain. These
systems can exhibit domain walls (DW) which break the spatial
periodicity of the field.

In all these systems, the boundary phase offset cannot be
gauged away by any unitary transformation, if the amplitude
modulation δb is finite. Thus, the energy spectrum will depend
explicitly on the offset of the magnetic texture at the boundary.
This dependence is not due to a change of the average field
per unit cell, which in fact does not depend on the phase
offset ϕ in the cases considered here (harmonic modulation),
as shown in the Supplemental Material [49]. Nevertheless,
changes of the phase offset �ϕ = mθ which are integer
multiples of the angle θ , are equivalent to a discrete lattice
translation n → n − �ϕ/θ . This mandates a periodicity of
the Hamiltonian (up to lattice translations) in the phase offset
ϕ with period �ϕ = 2π/q (see also Ref. [50]). Moreover, the
system is also periodic in the momentum with the same period
(see Supplemental Material [49]), which results in a reduced
Brillouin zone given by [0,2π/q]. The global U (1) continuous
symmetry (arbitrary variations �ϕ of the phase offset) is
broken down into a discrete symmetry (periodicity in the
phase offset �ϕ = mθ integer). This is analogous to the case
of a crystal lattice which breaks the continuous translational
symmetry of free space. Notice that the boundary dependence
can be obtained not only via magnetic fields, but more
generally via any amplitude-modulated field as, e.g., electric
fields [50–52] (charge-density waves) or strain-induced SOC
fields [53–57].

Figure 2 shows the dependence on the boundary phase
offset ϕ of the density of states (DOS) at low-energy spectra
of a one-dimensional superconductor with an amplitude-
modulated magnetic field, calculated from Hamiltonian (1).
In particular, we considered a circular helical field with spatial
frequency θ = 2π/3 superimposed with an applied uniform
field [see Fig. 1(b)], for two choices of the applied field. The
bulk energy spectrum depends periodically on the phase offset
ϕ with period �ϕ = θ .

Closing the particle-hole gap. As we have shown, the
energy spectrum of a superconductor in the presence of
amplitude-modulated magnetic fields can depend explicitly
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FIG. 2. DOS in the bulk (dark) and at the edges (color) of the
system described by Hamiltonian (1) in the low-energy range as a
function of the boundary phase offset ϕ in the case of a circular
helical field with spatial frequency θ = 2π/3 and amplitude byz

superimposed with an applied field b0 [as in Fig. 1(b)]. (a) Nontrivial
gaps with MBS alternating with trivial gaps as a function of the phase
offset ϕ obtained for b0/byz = 0.75 (δb2/〈b2〉 ≈ 1). (b) Nontrivial
gap with MBS in the whole range ϕ ∈ [0,2π ] for b0/byz = 0.3
(δb2/〈b2〉 ≈ 0.5). Notice that in both cases the bulk energy levels
are periodic in the phase offset with period �ϕ = θ = 2π/3. We
assume � = t/2, μ = 3t , byz = 1.5t , and b0 ‖ ẑ.

on the offset ϕ of the magnetic texture. In fact, if the energy
variation �E of the lowest-energy level is comparable with
the superconducting pairing �, the particle-hole gap may
close and reopen at specific values of the boundary offset
ϕ = ϕ∗. This is indeed the case shown in Fig. 2(a), where
the bulk particle-hole gap closes for certain values of the
phase offset ϕ. Hence, the bulk properties can be deeply
modified by the phase-boundary dependence: A conventional
nodeless s-wave superconductor becomes an unconventional
nodal superconductor for specific values of the phase offset.
In general, if the lowest-energy level closes and reopens
the gap linearly in the phase offset (E ∝ ϕ − ϕ∗) at any
of the two time-reversal invariant momenta k = 0,π/q in
the reduced Brillouin zone [0,2π/q], and if no additional
degeneracies are present, the Pfaffian F (k) will change its sign
and the topological invariant shall change at ϕ = ϕ∗ (see also
Ref. [58]). Fermion parity transitions do indeed occur if the
amplitude modulation δb is large compared with the average
magnetic field. This can be verified by expanding the Pfaffian
as a Fourier sum in the phase offset. For collinear amplitude-
modulated fields bn = 〈b〉 + δb cos (nθ + ϕ) [Fig. 1(c)] with
finite SOC, one obtains (neglecting higher harmonics)

F (k) ≈ F0(k) + Cδbq cos (qϕ) for k = 0,π/q, (3)

where F0(k)=±
√∏q−1

m=0 det [h(k+mθ)], being h(k) the Hamiltonian
in momentum space with constant magnetic field (δb = 0),
and where C is a constant prefactor (see Supplemental
Material [49]). Similar equations can be obtained in the
case of noncollinear amplitude-modulated fields. Thus, if the
particle-hole gap remains open for any value of the phase offset
ϕ, the fermion parity P = sgn[F (0)F (π/q)] will change its
sign at ϕ ≡ ϕ∗

m = {arccos [(δbc/δb)q] + 2πm}/q for m ∈ Z
if the amplitude modulation is larger than a critical value
δb > δbc ≡ q

√
min[|F0(0)|,|F0(π/q)|]/|C|.

Hence, for commensurate spatial frequencies θ = 2πp/q

(p,q coprimes) with q odd, a change of the phase offset can
drive a transition between trivial and nontrivial states if the
amplitude modulation δb is larger than a critical value δbc.
A remarkable consequence is that MBS can be created or
annihilated by changing the phase offset at the boundary.
This is indeed the key result of this Rapid Communication
and the main property of topological superconductors in the
presence of amplitude-modulated fields: The particle-hole
gap can be closed and reopened with a concurrent transition
between trivial and nontrivial states by tuning only the phase
offset ϕ of the magnetic texture, i.e., without changing the
field average intensity. In particular, Fig. 2(a) shows the case
where δb > δbc, with nontrivial gaps (P = −1) with MBS
alternating to trivial gaps (P = 1) for different values of the
phase offset ϕ ∈ [0,2π ]. Alternatively, a nontrivial gap can
span the whole interval [0,2π ], as shown in Fig. 2(b) in the
case that δb < δbc, where MBS are present for any possible
boundary configuration (P = −1 for any choice of the phase
offset ϕ).

Pinning of MBS. The dependence of the topological
properties on the offset of the magnetic texture can be exploited
to control the localization of MBS in the presence of a domain
wall which breaks the periodic rotation of the field direction,
without changing its average intensity. Consider, in fact, the
case shown in Fig. 1, where a domain wall at the lattice
site rm separates two contiguous and homogeneous magnetic
domains (left and right domains), which are characterized by
a different value of the phase offset, i.e., ϕL and ϕR with
�ϕm ≡ ϕR − ϕL �= 0. If the field amplitude is constant and
the SOC vanishes (λ = 0), the spin-rotational symmetry of
Hamiltonian (1) is unbroken. In this case, neglecting bound-
ary/termination conditions and additional symmetry-breaking
effects, the phase offset can be gauged away by unitary
rotations. Thus, under these assumptions, the two domains are
unitarily and topologically equivalent, i.e., P(ϕL) = P(ϕR),
being either both trivial or nontrivial. On the contrary, if
the field is amplitude modulated, the two domains are not
unitarily equivalent anymore, since the phase offset cannot
be gauged away by unitary transformations. Moreover, if
the amplitude modulation is large enough (δb > δbc), the
topological invariant will depend on the phase offset: In this
case their fermion parity may differ, i.e., P(ϕL) �= P(ϕR) for
certain values of the phase difference �ϕm. Hence, two distinct
and contiguous topological domains emerge, separated by the
domain wall of the underlying magnetic texture. Consequently,
MBS localize at the boundaries of the topologically nontrivial
domain, i.e., at one edge of the chain and at the domain
wall. Notice that, for the sake of simplicity, the domain wall
thickness is assumed to be equal to one interatomic distance.
However, domain walls in magnetically ordered materials
typically extend over several lattice sites: In this case the
pinned MBS would be localized over a similar length scale.

To illustrate the formation of topological domains and the
consequent pinning of MBS, we calculate the local density
of states (LDOS) at zero energy, which corresponds to the
probability to find an intragap MBS at a given position rn

along the chain. Fig. 3(a) shows the LDOS in the case of a
circular helimagnetic field with spatial frequency θ = 2π/3
superimposed with a uniform field, as a function of the ratio
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FIG. 3. LDOS at zero energy in the presence of a domain wall
localized at the center m = 121 of the chain (N = 241 sites), as a
function of the lattice site rn (a) of the ratio between the superimposed
uniform field b0 and the helical field byz, and (b) of the chemical
potential (gate field). The zero-energy peaks signal the presence
of MBS localized alternatively at the edges, or at one edge and
at the domain wall. We assume a circular helimagnetic field with
spatial frequency θ = 2π/3 superimposed with a uniform field b0 ‖ ẑ,
and with � = t/2, byz = 1.5t , �ϕm = π/3, μ = 3t [panel (a)], and
b0/byz = 0.75 (δb2/〈b2〉 ≈ 1) [panel (b)].

between the superimposed uniform field b0 and the helical field
b, with a fixed phase difference �ϕm = π/3 at the domain
wall. At b0 = 0, the field amplitude is constant (δb = 0) and
thus the left and right domains are topologically equivalent
[P(ϕL) = P(ϕR) = −1]. In this case MBS are necessarily
localized at the two edges of the chain. Nevertheless, as
the magnitude of the applied field b0 increases such that
δb > δbc, one of the MBS becomes pinned to the domain
wall, leaving one side of the chain topologically trivial
[P(ϕL) �= P(ϕR)].

Moreover, the formation of contiguous topological domains
can be obtained in proximized nanowires also by tuning the
chemical potential via an applied gate field. This is similar
to the case of homogeneous topological superconductors
with uniform magnetic fields [16,17], where a change in
the chemical potential (or magnetic field intensity) can turn
the topological state from trivial to nontrivial. For example,
Fig. 3(b) shows the localization of MBS as a function of the
chemical potential μ. MBS are localized alternatively at the left
or right edge and at the domain wall for different values of μ.

Hence, by controlling the external magnetic field or gate
voltage, MBS can be moved from the edge of the chain to
the domain wall. The position of MBS can be revealed by
a measure of the local differential conductance at zero bias,
which is proportional to the LDOS at zero energy, obtained via
scanning tunneling microscopy [7,13]. The pinning of MBS
is topologically robust against magnetic and nonmagnetic
disorder, as long as the perturbation is small, as verified in
the Supplemental Material [49].

Experimental implementation. The implementation of the
model proposed here requires the realization of amplitude-
modulated magnetic textures with a periodicity comparable
with the lattice parameter of the superconducting chain, in the
presence of domain walls on a similar length scale.

A possible implementation is to realize a heterostructure
where a proximized nanowire with strong SOC is contiguous
to an antiferromagnetic material. The magnetic field of an
antiferromagnet is indeed dominated by a nonzero quadrupolar
contribution [59,60], which results in a periodic field with
the same periodicity of the ordering vector. The mismatch
between the ordering vector of the antiferromagnet and the
lattice parameter of the nanowire will then result in an
amplitude-modulated Zeeman field at the wire lattice sites.
Domain walls in antiferromagnets have a typical thickness
of hundreds of atoms [61]: The ensuing pinned MBS will
be thus localized on a similar length scale. Notice also
that amplitude-modulated magnetic orders occur, e.g., in
multiferroics [62,63] and gadolinium compounds [64,65],
and in general in materials with competing ferromagnetic
and antiferromagnetic exchanges and in the presence of
anisotropic distortions which favors magnetization along a
specific axis [66]. In these systems, where helical orders are
generally coupled with a spontaneous electric polarization,
electric fields or currents may be employed to induce a sliding
of the helical spin texture [67]. Other means may involve using
spin-torque mechanisms or spin currents to twist the phase
offset of the helical order [68,69].

Another possible implementation can be realized at larger
length scales via artificial one-dimensional superlattices real-
ized using nanoscale lithography design on ultrathin films [70]
or quantum dot solids [71], in the presence of nanomagnets.
This would allow a fine-tuning of the magnetic texture
and domain wall properties by controlling the position and
orientation of the nanomagnets.

In principle, an amplitude-modulated texture can be also
achieved in topological Yu-Shiba-Rusinov chains [13,21]
via an external magnetic field [43]. Notice that a realistic
theoretical description of such system should take into account
the effect of the external field on the magnetic texture, which
would likely relax into a nonplanar magnetic configuration,
and the dependence of the ordering vector on the Fermi
momentum [27,29,72–74]. Moreover, a more fundamental
challenge is the creation of stable domain walls in these
systems via, e.g., magnetic impurities.

Conclusions. We have found that amplitude-modulated
magnetic fields can induce the emergence of a topologically
inhomogeneous state via the formation of topological domains.
In these systems, MBS become pinned to domain walls
between contiguous and topologically inequivalent domains.
Such systems can be in principle realized with proximized
nanowires in a magnetic field induced by an antiferromag-
net, in artificial one-dimensional superlattices via nanoscale
lithography, or in quantum dot solids.

Remarkably, the formation of topological domains and the
localization of MBS can be externally controlled by tuning an
applied and uniform magnetic or gate field, without moving
the domain wall. Controlling the localization of MBS is the
first step in the realization of a reliable braiding scheme in
topological devices.
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