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We clarify the topology of 3P 2 superfluids which are expected to be realized in the inner cores of neutron
stars and cubic odd-parity superconductors. 3P 2 phases include uniaxial/biaxial nematic phases and nonunitary
ferromagnetic and cyclic phases. Here, we show that all the phases are accompanied by different types of
topologically protected gapless fermions: surface Majorana fermions in nematic phases and a quartet of (single)
itinerant Majorana fermions in the cyclic (ferromagnetic) phase. Using the superfluid Fermi liquid theory, we
also demonstrate that dihedral-two and -four biaxial nematic phases are thermodynamically favored in the weak
coupling limit under a magnetic field. It is shown that the tricritical point exists on the phase boundary between
these two phases and may be realized in the core of realistic magnetars. We unveil the intertwining of symmetry
and topology behind the mass acquisition of surface Majorana fermions in nematic phases.

DOI: 10.1103/PhysRevB.95.140503

Introduction. The topological concept of matter has recently
spread over diverse fields in condensed matter. Nontriv-
ial topology embedded in bulk brings about topological
quantization in transport and anomalous electromagnetic
responses [1,2]. The topological viewpoint has also shed light
on a new facet of unconventional superconductors/superfluids
[3–10]. The key ingredient is Majorana fermions, which
behave as non-Abelian anyons [11,12] and possess Ising
spins [13–16]. The former is expected to be a key for
realizing fault-tolerant quantum computation [17,18], while
the latter is a consequence of the intertwining of topology and
symmetry [16].

The purpose of this Rapid Communication is to unveil
topological superfluidity relevant for high dense cores of
neutron stars and cubic superconductors [19–22]. Neutron
stars are unique astrophysical objects under extreme condi-
tions. Neutron superfluidity is an indispensable ingredient for
understanding the evolution of neutron stars. Superfluidity
indeed gives a key to understanding the long relaxation
time observed in the sudden speed-up events of neutron
stars [23–25], and the enhancement of neutrino emission at
the onset of superfluid transition might explain the the recently
observed cooling process [26–29]. The existence of superfluid
components may also explain the sudden changes of spin
periods observed in pulsars [30,31].

The prediction of 3P2 superfluidity in neutron stars dates
back to 1970 [32,33]. A strong spin-orbit force between
nuclei generates a short-ranged attractive 3P2 interaction,
and the high density induces a repulsive core in the 1S0

channel. The 1S0 → 3P2 transition indeed occurs at a critical
density (∼1014 g/cm3) relevant for the interior of neutron
stars [32–37]. As seen in Fig. 1(a), superfluid states subject
to the total angular momentum J = 2 are classified into
several phases [37–39]. Nematic phases preserve the time-
reversal symmetry (TRS), while the cyclic and ferromagnetic
phases are nonunitary states with spontaneously broken TRS.
The richness of 3P2 order parameters brings about various
types of massive/massless bosonic modes [40–48] and exotic

topological defects, including spontaneously magnetized vor-
tices, fractional, and non-Abelian vortices [36,49–52]. In
contrast to “bosonic” excitations, studies on the topology of
“fermions” in 3P2 superfluids are lacking.

In this Rapid Communication, we clarify that various types
of topological fermions exist in 3P2 superfluids. Low-lying
fermionic excitations in nematic phases are governed by
two-dimensional Majorana fermions bound to the surface.
Their mass acquisition is prohibited by the intertwining of
symmetry and topology. In contrast, the cyclic phase possesses
eight Weyl points and the low-lying quasiparticles behave as a
quartet of itinerant Majorana fermions. These observations on
topological fermions may give insight into transports and the
cooling mechanism in the inner cores of neutron stars.

3P2 phases can be realized in cubic odd-parity superconduc-
tors, i.e., the Eu irreducible representation of the Oh symmetry
group [19–22]. The formation of higher partial wave pairs,
e.g., 3P J , has also been discussed in cold atoms [53,54]. Here,
we argue tangible systems to realize topological phenomena
inherent to 3P2 phases.

Phase diagrams. We start to clarify the gap structure and
the thermodynamic stability of 3P2 superfluids. We define Pauli
matrices σ (τ ) in the spin (Nambu) space. The bulk states are
determined by the Bogoliubov–de Gennes (BdG) Hamiltonian,
H = 1

2

∑
k c†(k)H (k)c(k),

H (k) =
(

ε(k) iσ · d(k)σ2

iσ2σ · d∗(−k) −εT(−k)

)
, (1)

where c†(k) = [c†↑(k),c†↓(k),c↑(−k),c↓(−k)] denotes the cre-
ation and annihilation operators of neutrons in the Nambu
space. Here, ε(k) is composed of a 2 × 2 single-particle energy
subject to a simultaneous rotation of spin and orbital spaces,
SO(3)J , and the Zeeman field −γ h̄H · σ/2. Spin-triplet pairs
are generally represented by d(k) and the 3P2 order parameter
is given by the second-rank, traceless, and symmetric tensor
dμi , where dμ(k) = dμi k̂i and k̂ = k/kF. The repeated indices
imply the sum over (1,2,3) or (x,y,z). The quasiparticle
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FIG. 1. (a) GL phase diagram. (b) Gap and topological structures
of nematic phases. The thick arrows represent the d vectors and
the inner (red-colored) sphere denotes the Fermi sphere. (c) Phase
diagram under a magnetic field, obtained from the superfluid Fermi
liquid theory. The UN phase is stabilized at H = 0 for T < Tc0.
The thick (thin) curve is the first- (second-) order phase boundary.
(d) C(T )/CN(T ) under fixed magnetic fields.

excitation energy at zero fields is given by diagonalizing
Eq. (1) as E±(k) =

√
ε2

0(k) + |d(k)|2 ± |d(k) × d∗(k)|, where
ε0(k) = 1

2 tr ε(k). The Hamiltonian holds the particle-hole
symmetry (PHS), C H (k)C −1 = −H (−k), with C = τ1K ,
where K is the complex conjugation operator. In addition, the
TRS, T H (k)T −1 = H (−k) with T = iσ2K , is preserved
when dμi ∈ R and H = 0.

The ground state is determined by minimizing the
Ginzburg-Landau (GL) energy functional F , which is invari-
ant under SO(3)J and a gauge transformation U (1)ϕ . The func-
tional is given as F = α tr[dd∗] + β1|tr d2|2 + β2[tr(dd∗)]2 +
β3 tr[d2d∗2] [39]. Depending on βi , there are several phases,
as shown in Fig. 1(a). The ground state at the weak coupling
limit is the nematic phase which is represented by [37,39,55]

dμi = 	(T ,H )[ûμûi + rv̂μv̂i − (1 + r)ŵμŵi], (2)

with a orthonormal triad (û,v̂,ŵ). This state corresponds
to highly degenerate minima of F with respect to r ∈
[−1,−1/2]. At r = − 1

2 , dμi is invariant under D∞ = SO(2) �

Z2 	 O(2) (� is a semidirect product), which is called the
uniaxial nematic (UN) phase. As shown in Fig. 1(b), the full
gap with the hedgehog d vector is accompanied by the U (1)
axis along the ŵ and C2 rotation axes in the v̂–ŵ plane. The
biaxial nematic (BN) phase at r = −1 remains invariant under
dihedral-four D4 symmetry, which has C4 and C2 axes. The
intermediate r holds D2 symmetry with three C2 axes.

In Fig. 1(c), we display the phase diagram un-
der a magnetic field. This is obtained by minimiz-
ing the Luttinger-Ward thermodynamic potential, δ�[g] =
NF
2

∫ 1
0 dλ〈Tr S(k̂)[gλ(k̂,ωn) − 1

2g(k̂,ωn)]〉, where 〈· · · 〉 =

kBT
∑

n

∫
d k̂
4π

· · · denotes the Fermi surface average and
sum over the Matsubara frequency ωn = (2n + 1)πkBT/h̄

(n ∈ Z) [56–58]. The propagator g, which is a 4 × 4 matrix
in the Nambu space, is obtained from the low-energy part of
the Matsubara Green’s function, and the higher-energy part
is renormalized into the Fermi liquid parameters [56]. The
propagator is governed by the equation

[iωn − v − S{g},g(k̂,r; ωn)] + ivF
μ∂rμ

g(k̂,r; ωn) = 0, (3)

which is supplemented by the normalization condition g2 =
−π2 (we set h̄ = 1). This is the transportlike equation
propagating along the classical trajectory of the Fermi velocity
vF. gλ is obtained by replacing S �→ λS. The Zeeman term
v = − 1

2
1

1+F a
0
γ h̄H · diag(σ ,−σ2σσ2) is rescaled by the Fermi

liquid parameter F a
0 . The theory is reliable in the weak

coupling limit, 	/EF ∼ Tc0/TF  1 (Tc0 is the transition
temperature at H = 0), and applicable to whole temperatures
beyond the GL regime [56–58]. The Fermi liquid behaviors
and strong coupling corrections in dense neutrons were
investigated in Refs. [59–63].

The 4 × 4 self-energy matrix S contains information on
both quasiparticles and 3P2 pair potentials. The 3P2 pair
potentials, which appear in the off-diagonal submatrix of S,
are determined with the spin-triplet anomalous propagator
f through the gap equation dμi(r) = V

2 [〈fμk̂i〉 + 〈fi k̂μ〉] −
V
3 Tr〈fμk̂i〉, where V < 0 is the coupling constant of the 3P2

interaction. The diagonal submatrix of S, ν, represents the
Fermi liquid corrections ν = F a

0
1+F a

0
〈gμ〉σμ, where the diagonal

submatrix of g is represented by the 2 × 2 matrix g0 + gμσμ.
The magnetization density is Mμ/MN = 1 + 2

γ h̄H
〈gμ〉, where

MN denotes the magnetization in the normal state. Hence,
the diagonal self-energy describes an effective exchange
interaction to the spin polarization density of neutrons.

No stable region of nonunitary states is found in Fig. 1(c).
According to Fig. 1(a), however, the weak coupling limit is
close to the boundary of the cyclic phase and the cyclic phase
is nearly degenerate with the UN/BN phases. Therefore, the
ground state in Fig. 1(c) may be replaced by the cyclic phase
when strong coupling corrections are taken into account.

In Fig. 1(c), the UN (BN) phase appears at H = 0 (H �= 0).
The magnetic field gives rise to pair breaking in the momentum
region within d(k) · H �= 0. Consequently, the UN and D2 BN
phases are always accompanied by pair breaking because of
d(k) · H �= 0 for any H . The most favored configuration of
d(k) under H is d(k) ⊥ H , which can be realized by only the
D4 BN phase with the nodal direction aligned to ŵ ‖ H .

Two BN phases are separated by the second-
(first-) order phase boundary in the higher (lower) T

regime. The phase boundaries meet at the tricritical point
(T/Tc0,γ h̄H/πkBTc0) = (0.45,0.083) for F a

0 = −0.7. To
capture a consequence of the tricritical point, in Fig. 1(d) we
plot the heat capacity C(T ) = CN(T ) − T ∂2δ�/∂T 2, where
CN(T ) = 2π2

3 NFk
2
BT is the heat capacity of normal neutrons

and NF is the density of states of normal neutrons at the
Fermi level. The heat capacity contains critical information
on the thermal evolution of neutron stars [28]. In Fig. 1(d),
C(T ) shows the double jumps and the jump at the lower T

increases as (T ,H ) approaches the tricritical point. In recent
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years, neutron stars having a strong field H = 1013–1015 G,
i.e., magnetars, have been observed [64–67]. The magnetic
field corresponds to γ h̄H/πkBTc0 ≈ 0.001–0.1 with Tc0 =
0.2 MeV. This indicates that the tricritical point may be
realized in realistic magnetars.

The first-order phase boundary is sensitive to F a
0 , and the

region is enlarged (reduced) by negative (positive) F a
0 . For

F a
0 = 0, the tricritical point indeed lowers to 0.15Tc0. This

is attributed to the difference in the magnetic response. The
D2 BN phase, which has a hedgehog d vector, suppresses the
magnetization relative to that in the normal state, |M| < MN,
while the D4 BN phase with a two-dimensional configuration
of d shows |M| = MN when ŵ ‖ H . The effective field that
neutrons experience is affected by the spin polarization of
neutrons as H eff

μ = Hμ − F a
0

1+F a
0

Mμ

MN
. Hence, Heff in the UN

and D2 BN phases is always enhanced (screened) by the
polarized medium for −1 < F a

0 < 0 (F a
0 > 0), and the en-

hancement/screening effect is fed back to the spin polarization
of neutrons. In contrast, no polarization effect is realized in
the D4 BN phase, where M = MN.

Majorana fermions in nematic phases. Let us now clarify
the topological aspect of the nematic phases. The nematic
phases which preserve TRS (T 2 = −1) and the PHS (C 2 =
+1) are categorized to the class DIII in the topological
table [8]. Nontrivial topology is represented by the three-
dimensional winding number w3D = 1, similar to that of
3He-B [4]. The hallmark is the presence of massless Majorana
fermions on the surfaces. To clarify this, we first present
the bound state solution of the BdG equation, H (kx,ky,

−i∂z)ϕ(r) = Eϕ(r), where ϕ(r) denotes the four-component
wave function in the Nambu space. The surface is set to be nor-
mal to ẑ and the specular boundary condition is imposed on ϕ.

In the absence of a time-reversal breaking field, gapless
fermions are bound to the surface of the nematic phases, which

have the relativistic dispersion E(kx,ky) = ±
√
c2
xk

2
x + c2

yk
2
y ,

for |E| < 	. The wave function for E > 0 is obtained as
ϕE(r) ∝ ei(kxx+kyy) sin (kFk̂zz)e−z/ξ0 (�+ − eiφk�−), with the
coherence length ξ0 = h̄vF/2πkBTc0 and the spinors �+ ≡
(1,0,0,−i)T and �− ≡ (0,i,1,0)T. The velocities (cx,cy)
reflect the orientation of the triad (û,v̂,ŵ) with respect to the
surface: (cx,cy) = 	

kF
(1,r) for û ‖ ẑ, and 	

kF
(1,1 + r) for û ⊥ ẑ.

For T  	/kB, the field operator can be constructed
from only the surface bound states as � = (ψ↑,ψ↓,

ψ
†
↑,ψ

†
↓)T = ∑

E[ϕE(r)ηE + C ϕE(r)η†
E], where η

†
E denotes

the quasiparticle creation with the energy 0 < E(kx,ky) < 	.
The effective Hamiltonian for gapless surface fermions is
given with the spinor ψ = (ψ↑,ψ↓) and ψ̄ = i(σ1ψ)T as the
Majorana Hamiltonian

Hsurf =
∫

d2r‖ψ̄(r‖)(−iv̄μγμ∂μ)ψ(r‖), (4)

where (v̄1,v̄2) = (cx,cy) and (γ1,γ2) = (σ2,−σ1). Hence, the
low-energy physics in the nematic phases is governed by
Majorana fermions bound to the surface.

It is remarkable to note that the field operator obeys the
Majorana condition ψ↑ = iψ

†
↓. This indicates that massless

Majorana fermions in Eq. (4) possess the Ising spin character
S ≡ [ψ†

aσ abψb − ψaσ
T
abψ

†
b ]/4 = (0,0,S). Only perturbation
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FIG. 2. (a) Momentum-resolved surface density of states
Ns(k̂,E) and (b) local magnetization for H ⊥ ẑ and H ‖ ẑ, in the
nematic phase with û ⊥ ẑ.

which generates an effective mass in Hsurf is an external
field coupled to the Ising spin, Hmass = M

∫
d2r‖ψ̄(r‖)

(σ · ẑ)ψ(r‖). Let us now capture the role of symmetry behind
the Ising spin and mass acquisition of surface Majorana
fermions. The key is the combined symmetry defined as
P3 ≡ T C2,zτz. In the nematic phase, the C2 rotation about ẑ
denoted by C2,z = −iσz only changes H to (−Hx,−Hy,Hz).
This can be compensated by the TRS (T ) and the π phase
rotation (τz) when Ĥ · ẑ = 0. Hence, the operator transforms
the BdG Hamiltonian as P3H (k)P †

3 = H (k) + γ h̄Hσ · ẑ,
where k ≡ k − 2(k · ẑ) ẑ denotes the momentum transferred
by P3. Only the Zeeman field γ h̄H · ẑ breaks P3 symmetry. For
H · ẑ = 0, one can define the chiral operator � ≡ C P3 which
obeys the chiral symmetry, {�,H (0,0,kz)} = 0. According
to the index theorem [68], one can introduce the winding
number along the chiral symmetric momenta k = (0,0,kz),
w1D = − 1

4πi

∫
dkzTr[�H −1(k)∂kz

H (k)]kx=ky=0 = 2, unless
P3 symmetry is broken. The existence of massless Majorana
fermions is guaranteed by w1D �= 0.

In Fig. 2(a), we plot the k-resolved surface density of states,
NS(k̂,E) = −NF

π
Im g0(k̂,0; ωn → −iE + 0+). The surface

Majorana fermion acquires mass only when H breaks P3

symmetry. We plot the surface magnetization in Fig. 2(b).
Owing to the Ising character, the gapless surface states do not
contribute to the local magnetization density when H ⊥ ẑ. In
contrast, the massive Majorana fermions in H ‖ ẑ significantly
enhance the surface magnetization. Since neutron stars possess
strong axial and toroidal magnetic fields, the Ising spin gives
rise to the anisotropic distribution of magnetization on the
surface enclosing the 3P2 superfluid core.

Cyclic and ferromagnetic phases. The cyclic phase which
appears in Fig. 1(a) is the nonunitary state with spontaneously
breaking the TRS, whose order parameter is given by replacing
r in Eq. (2) to ω = ei2π/3 as

dμi = 	(T ,H )[ûμûi + ωv̂μv̂i + ω2ŵμŵi]. (5)

This possesses two distinct gap structures: full (nodal) gap
in the E+ (E−) branch. The nodal points are identified as
qkα (α = 1, . . . ,4 and q = ±1), where α denotes each vertex
of the tetrahedron [Fig. 3(a)]. The PHS, C H (kα)C −1 =
−H (−kα), implies that the point node at kα must be
accompanied by the PHS partner −kα .

It is convenient to introduce the new triad (n̂1,n̂2,n̂3), where
n̂3 is taken along a nodal direction qkα [Fig. 3(a)]. Let Vq,α be
a small region around qkα . In the new basis and the region of
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FIG. 3. (a) Configuration of Weyl points in the cyclic phase,
where q = ±1 possess the monopole charge qm = ±1. (b)
Momentum-resolved zero-energy density of states on the surface for
the misorientation angle ϑ = 2π/5.

k ∈ Vq,α , the 4 × 4 BdG matrix is decomposed into a pair of
the 2 × 2 matrix, H (k) �→ diag[H+(k),H−(k)] [69], where
H±(k) denotes the E±(k) branches. The low-energy effective
Hamiltonian in the cyclic phase is therefore governed by
the gapless sector H− = ∑

q,α

∑
k∈Vq,α

c†α(k)H q,α
− (k)cα(k),

which reduces to the Weyl Hamiltonian

H q,α
− (k) = êμ

a τ a(kμ − qkα,μ), (6)

with the vielbein (êμ

1 ,ê
μ

2 ,ê
μ

3 ) = (v̄n̂1,μ,v̄n̂2,μ,vFn̂3,μ), v̄ =
	/kF, and cα(k) = [cα(k),c†α(−k)]

T
. Each point node is

identified as the Weyl point by the monopole charge qm =
+1 (qm = −1) for q = +1 (−1), which is a source of the
hedgehoglike Berry curvature in k space. Reflecting the Weyl
points, zero-energy flat bands appear on the Fermi surface
which connect a pair of Weyl points projected onto the
surface. Figure 3(b) shows the k-resolved zero-energy density
of states on the surface, Ns(k̂x,k̂y,E = 0), where the surface
normal axis ẑ is assumed to be tilted from ŵ by angle
ϑ ≡ cos−1( ẑ · ŵ).

We now introduce the coordinate centered on the
Weyl point, K q ≡ k − qkα . The four-component real
quantum field ψ(r) = C ψ(r) is constructed from a
PHS pair of single-species Weyl fermions as ψα(r) ≡∑

K ei K ·r [cα(K+),cα(K−),c†α(−K+),c†α(−K−)]
T

[70]. The
low-energy Hamiltonian is governed by massless Majorana
fermions,

H ≈ H− =
∑

α

∫
d3rψ̄α(r)[−iêμ

a γ a∂μ]ψα(r), (7)

where we introduced ψ̄ = (τ1ψ)T and γ = (μ1τ1,μ1τ2,μ3)
with the Pauli matrices μi labeled by the PHS index q = ±1.
The itinerant Majorana fermions with pseudospin 1

2 form a
quartet (ψ1,ψ2,ψ3,ψ4) as a consequence of the tetrahedral
symmetry.

Another phase in Fig. 1(a) is known as the ferromagnetic
phase, dμi = 	(ûμ + iv̂μ)(ûi + iv̂i). This state is equivalent
to the A1 phase of 3He [71]. Similar to 3He–A1, the Zeeman
splitting of the Fermi surface in extremely high fields might
favor the ferromagnetic phase. The nonunitary phase is
accompanied by a single itinerant Majorana fermion with ↑
spin, i.e., α = 1 in Eq. (7).

Cubic superconductors. 3P2 phases can be realized in
cubic superconductors as the two-dimensional odd-parity

Eu state [19–22]. The d vector is represented by d(k) =
η1�1(k) + η2�2(k), where the basis functions of the Eu

state are given by �1(k) = (2ĉk̂c − âk̂a − b̂k̂b)/
√

2 and
�2(k) = √

3/2(âk̂a − b̂k̂b). The fourth-order GL energy rel-
evant to two-component order parameters is given by F =
β1(|η1|2 + |η2|2)

2 + β2(η1η
∗
2 − η∗

1η2)2. The cyclic order pa-
rameter of Eq. (5) is obtained as (η1,η2) = (1,i) for β2/β1 < 0.
For β2/β1 > 0, the UN/BN phases are realized by (η1,η2) =
(cos θ, sin θ ), where θ = 0 (π/2) corresponds to the UN (D4

BN) phase. Understanding their gap and topological structures,
which were first discussed in Ref. [19], may be fed back to the
physics of the 3P2 superfluid of neutron stars.

Concluding remarks. We have demonstrated that different
types of topological fermions exist in 3P2 phases: surface
Majorana fermions in nematic phases and itinerant Majorana
fermions in the cyclic and ferromagnetic phases. The topo-
logical and symmetry protection of neutrons may significantly
affect the heat transport and cooling mechanism. Furthermore,
we have mentioned that topological 3P2 phases may be realized
in solid states, such as cubic superconductors. The heavy
fermion superconductors PrOs4Sb12 [72] and UBe13 [73]
might be possible candidates to realize 3P2 phases.

The dense core of neutron stars consists of mostly 3P2

superfluid neutrons with a small amount of superconducting
protons and normal electrons in beta equilibrium. There are
open questions regarding the influence of protons. First,
Eq. (1) is extended into the form which takes account of
a neutron-proton interaction through nuclear forces. When
the interaction is weak, the topology of an extended H is
governed by the topology of the majority component, i.e., the
3P2 phase. For the general case of the interaction, however,
its influence on topology remains an unresolved problem.
Another role of superconducting protons is the expulsion
and confinement of magnetic fields. When the protons are
a type-II superconductor, the magnetic field is confined into
a low density of flux filaments within the penetration depth
�p ≈ 67 fm. Since the mean distance of the filaments is much
longer than �p, neutrons are free from the field [74,75].
However, it has been pointed out that the type-II scenario is
inconsistent with observations of a long period precession in
isolated pulsars [76–78]. A type-I superconductor of protons
may form an intermediate state with alternating domains of
superconducting and normal regions. The inhomogeneous
magnetic field leads to spatially inhomogeneous ground states,
since a low (high) field favors the UN and cyclic (D4 BN)
phase. Topologically protected gapless fermions may appear
at the interface of domains with different topologies.

We also notice that the richness of the 3P2 order parameter
manifolds leads to exotic topological excitations, such as non-
Abelian fractional vortices [52,79–81]. 3P2 superfluids offer a
unique platform to study the interplay between non-Abelian
Majorna fermions and non-Abelian vortices.
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